ON THE AUTOMORPHISM GROUP OF THE SUBGROUP LATTICE OF A FINITE ABELIAN p-GROUP; SOME GENERALIZATIONS

KAN YASUDA

ABSTRACT. The automorphism group $\operatorname{Aut} \mathcal{L}(M)$ of the submodule lattice $\mathcal{L}(M)$ of a finite-length module M over complete discrete valuation ring $\mathfrak o$ is studied. Let $\lambda=(\lambda_1,\cdots,\lambda_l)$ be the type of M. We show that for those M with $\lambda_1\geq \lambda_2\geq \lambda_3\geq 1$, $\operatorname{Aut} \mathcal{L}(M)$ can be analyzed by computing a certain subgroup of the bijections on a quotient of the scalar ring $\mathfrak o$. In particular, when the residue field $k=\mathfrak o/\mathfrak p$ is a finite fieled $\mathbb F_q$, we compute the order of the group.

1. Objective

Let $\mathfrak o$ be a discrete valuation ring with the maximal ideal $\mathfrak p$, a prime element π (i.e., $\mathfrak o\pi=\mathfrak p$) and the valuation function $v:\mathfrak o\smallsetminus\{0\}\to\mathbb Z_{\geq 0}$. Let $k\cong\mathfrak o/\mathfrak p$ denote the residue field. Let M be an $\mathfrak o$ -module of finite length. Then, since $\mathfrak o$ is a principal ideal domain, M can be written as a sum of cyclic $\mathfrak o$ -submodules:

$$M\cong \mathfrak{o}/\mathfrak{p}^{\lambda_1}\oplus\cdots\oplus\mathfrak{o}/\mathfrak{p}^{\lambda_l},$$

with $\lambda = (\lambda_1, \dots, \lambda_l)$ being some partition of a non-negative integer (That is, we have $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_l$). λ is called the *type* of M. Now since we have $\mathfrak{o}/\mathfrak{p}^i \cong \overline{\mathfrak{o}}/\overline{\mathfrak{p}}^i$ where $\overline{\mathfrak{o}}$ is the completion of \mathfrak{o} and $\overline{\mathfrak{p}}$ its maximal ideal, without loss of generality we can assume \mathfrak{o} to be complete. Let $\mathcal{L}(M)$ denote the set of \mathfrak{o} -submodules of M. $\mathcal{L}(M)$ inherits a lattice structure by inclusion relation. Our main objective is to compute Aut $\mathcal{L}(M)$, the automorphism group of the lattice $\mathcal{L}(M)$, for such λ as $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 1$.

When $\mathfrak{o}=\mathbb{Z}_p$, the ring of p-adic integers, M becomes nothing but a finite abelian p-group and $\mathcal{L}(M)$ the subgroup lattice of M. This can be generalized by considering the case $\mathfrak{o}=W[\mathbb{F}_q]$, the ring of Witt vectors over the finite field \mathbb{F}_q , for $W[\mathbb{F}_p]\cong\mathbb{Z}_p$. Another example of \mathfrak{o} is the ring k[[t]] of formal power series in one variable t.

We call $e = (e_1, \dots, e_l) \in M^l$ an ordered basis for M if $M = \bigoplus_{i=1}^l \mathfrak{o}e_i$ and $\mathfrak{o}e_i \cong \mathfrak{o}/\mathfrak{p}^{\lambda_i}$. Let e be fixed. We denote by R(e) the set of $\varphi \in \operatorname{Aut} \mathcal{L}(M)$ satisfying

$$\begin{cases} \varphi(\mathfrak{o}e_i) = \mathfrak{o}e_i & \forall i \in [1, l] \\ \varphi(\mathfrak{o}(e_1 + e_i)) = \mathfrak{o}(e_1 + e_i) & \forall i \in [2, l] \end{cases}$$

In most cases it boils down to computing R(e) in order to analyze Aut $\mathcal{L}(M)$, in the sense we describe as follows.

Since an autormophism of \mathfrak{o} -module M induces an automorphism of the lattice $\mathcal{L}(M)$, we have the natural group homomorphism

$$\Theta: \operatorname{Aut} M \to \operatorname{Aut} \mathcal{L}(M).$$

It can be directly checked that $\operatorname{Ker} \Theta \cong (\mathfrak{d}/\mathfrak{p}^{\lambda_1})^{\times}$ and that $\operatorname{Aut} M$ can be expressed in matrix form, as described in the sequel. Naturally $\operatorname{Aut} \mathcal{L}(M)$ contains a subgroup isomorphic to $\operatorname{Aut} M/\operatorname{Ker} \Theta$, and we let $\operatorname{PAut} M$ denote this subgroup.

It turns out that Aut $\mathcal{L}(M)$ is a product of these two subgroups R(e) and PAut M. Namely, we have

Lemma 1.

$$R(e) \cdot \operatorname{PAut} M = \operatorname{Aut} \mathcal{L}(M)$$

 $R(e) \cap \operatorname{PAut} M = 1.$

Also, we remark that if e and e' are ordered base for M, then it is easily checked that $\varphi R(e)\varphi^{-1}=R(e')$, where $\varphi\in \operatorname{PAut} M$ is the lattice automorphism induced by the module automorphism of M defined by $e_i\mapsto e_i'$ $(1\leq i\leq l)$. Hence the isomorphism type of R(e) does not depend on the choice of e. We content ourselves with computing R(e) instead of computing $\operatorname{Aut} \mathcal{L}(M)$ for our purpose.

2. HISTORICAL BACKGROUND

Let us mention the relation with earlier results. The structure of $\operatorname{Aut} \mathcal{L}(M)$ is well-known for the case $\lambda_1 = \lambda_2 = \lambda_3$, which is essentially the result of Baer [2]. In this case, we have $\operatorname{Aut} \mathcal{L}(M) \cong R(e) \ltimes \operatorname{PAut} M$, and

$$R(e) \cong \operatorname{Aut} \mathfrak{o}/\mathfrak{p}^{\lambda_3}$$

where Aut $\mathfrak{o}/\mathfrak{p}^{\lambda_3}$ is the group of automorphisms of ring $\mathfrak{o}/\mathfrak{p}^{\lambda_3}$. In particular, when $\lambda_1 = \cdots = \lambda_l = 1$ $(l \geq 3)$, M becomes a vector space over the residue filed k of \mathfrak{o} , and Aut $\mathcal{L}(M)$ is isomorphic to $P\Gamma L(l,k)$, the group of projective semi-linear automorphisms. This result is a variation of so called the Fundamental Theorem of Finite Projective Geometry.

We next consider the case when the residue field of \mathfrak{o} is the finite field \mathbb{F}_p . Let $M = \mathfrak{o}/\mathfrak{p} \oplus \mathfrak{o}/\mathfrak{p} \cong \mathbb{F}_p \oplus \mathbb{F}_p$. Then Aut $\mathcal{L}(M)$ is isomorphic to the symmetric group \mathfrak{S}_{p+1} and PAut M isomorphic to the projective general linear group PGL(2,p) (Note that |PGL(2,p)| = (p+1)p(p-1)). In this case, R(e) is a subgroup that fixes three points and isomorphic to \mathfrak{S}_{p-2} . More generally, for $M = \mathbb{Z}_p/p^{\lambda_2}\mathbb{Z}_p \oplus \mathbb{Z}_p/p^{\lambda_2}\mathbb{Z}_p$ ($\mathfrak{o} = \mathbb{Z}_p$ is the ring of p-adic integers), Holmes' result [5] states that Aut $\mathcal{L}(M)$ is isomorphic to $\mathfrak{S}_p^{\wr(\lambda_2-1)}\wr\mathfrak{S}_{p+1}$, where $\mathfrak{S}_p^{\wr n}$ means $\mathfrak{S}_p\wr\dots\wr\mathfrak{S}_p$ (n times) and ℓ denotes the standard wreath product. In this case, PAut M is nothing but $PGL_2(\mathbb{Z}_p/p^{\lambda_2}\mathbb{Z}_p)$, and we note that $|PGL_2(\mathbb{Z}_p/p^{\lambda_2}\mathbb{Z}_p)| = (p+1)p(p-1)\cdot(p^{\lambda_2-1})^3$. R(e) is the subgroup that fixes three points $\mathbb{Z}_p(1,0)$, $\mathbb{Z}_p(0,1)$ and $\mathbb{Z}_p(1,1)$; in fact, we have

$$R(e)\cong (\mathfrak{S}_p^{\wr(\lambda_2-1)}\wr\mathfrak{S}_{p-2}) imes \left\{\prod_{i=0}^{\lambda_2-2}(\mathfrak{S}_p^{\wr i}\wr\mathfrak{S}_{p-1})
ight\}^3.$$

Holmes [5] also obtains a result for the case $\lambda_1 > \lambda_2 > \lambda_3 = 0$: Aut $\mathcal{L}(M) \cong G^2 \times H^{\lambda_1 - \lambda_2 - 1}$, where $G = \mathfrak{S}_p^{\wr \lambda_2}$ and $H = \mathfrak{S}_p^{\wr (\lambda_2 - 1)} \wr \mathfrak{S}_{p-1}$.

There have been works to bridge the gap between Baer's result and Holmes'. Costantini-Holmes-Zacher[3] and Costantini-Zacher[4] treated the case of abelian p-groups in a rather general framework. Yasuda[11] studied the case of finite abelian p-groups for $\lambda_1 > \lambda_2 = \lambda_3$ with explicit computation of R(e) and $\operatorname{Aut} \mathcal{L}(M)$. In this work, we shall treat the case $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 1$, in the general setting of finite-length modules over (complete) discrete valuation ring.

3. NOTATIONS AND NOTIONS

Here we give some supplementary definitions and notations. Put $\mathfrak{q}_i = \mathfrak{p}^i \setminus \mathfrak{p}^{i+1}$ for $i \geq 1$; i.e., $\mathfrak{q}_i = \{a \in \mathfrak{o} \mid v(a) = i\}$. We define $\mathfrak{q}_0 = \mathfrak{o} \setminus \mathfrak{p} = \mathfrak{o}^{\times}$, the set of invertible elements. For $a, b \in \mathfrak{o}$ such that $v(a) \geq v(b)$ $(b \neq 0)$, there exists an element $x \in \mathfrak{o}$ such that a = xb. As \mathfrak{o} is a domain, x must be unique. We use the notation $\frac{a}{b} = x$.

Given a set X, $\operatorname{Map}(X)$ denotes the set of maps $f: X \to X$. $\operatorname{Sym}(X)$ denotes the set of bijections $f: X \to X$. $\operatorname{Map}(X)$ forms a monoid with respect to function composition, whereas $\operatorname{Sym}(X)$ forms a group. Given two sets X and Y, we define Y^X to be the set of maps $f: X \to Y$.

Let G be a group, and H a group acting on a set X. Let $f,g:X\to G$ be two maps, and define a map $f\circ g:X\to G$ by $f\circ g(x)=f(x)\cdot g(x)$ where \cdot is the product in G. Then G^X becomes a group with respect to this \circ . Let $h\in H$ and $f\in G^X$. We define a semidirect product $G^X\rtimes H$ with respect to the group homomorphism $H\to \operatorname{Aut} G^X$ ($h\mapsto (f\mapsto fh^{-1})$). We write $G\wr H$ to denote this semidirect product, and call it the wreath product of G and G.

We now give the description of the automorphism group $\operatorname{Aut} M$ of an \mathfrak{o} -module M in matrix form, as promised. Let e be fixed. The action of $f \in \operatorname{Aut} M$ is then determined by its action on $e = (e_1, \cdots, e_l)$. Write

$$f(e_j) = \sum_{i=1}^l a_{ij} e_i$$

and express f as the matrix $(a_{ij})_{i,j=1}^l$. Rewriting $\lambda = (\lambda_1, \ldots, \lambda_l) = \langle d_1^{m_1}, \ldots, d_r^{m_r} \rangle$ $(d_1 > \cdots > d_r)$ (this means that λ contains m_r -many components equal to d_r), Aut M can be expressed in matrix form as

$$\begin{pmatrix} GL_{m_1}(\mathfrak{o}/\mathfrak{p}^{d_1}) & \cdots & \operatorname{Hom}((\mathfrak{o}/\mathfrak{p}^{d_r})^{\oplus m_r}, (\mathfrak{o}/\mathfrak{p}^{d_1})^{\oplus m_1}) \\ \vdots & \ddots & \vdots \\ \operatorname{Hom}((\mathfrak{o}/\mathfrak{p}^{d_1})^{\oplus m_1}, (\mathfrak{o}/\mathfrak{p}^{d_r})^{\oplus m_r}) & \cdots & GL_{m_r}(\mathfrak{o}/\mathfrak{p}^{d_r}) \end{pmatrix},$$

with respect to the ordered basis e. Here, the block matrix in the diagonal

$$A \in GL_{m_i}(\mathfrak{o}/\mathfrak{p}^{d_i})$$

is of size $m_i \times m_i$ and has elements of $\mathfrak{o}/\mathfrak{p}^{d_i}$ in its components, satisfying $\pi \nmid \det A$. Also, the block matrix at (i,j)-position $(i \neq j)$

$$A \in \operatorname{Hom}((\mathfrak{o}/\mathfrak{p}^{d_j})^{\oplus m_j}, (\mathfrak{o}/\mathfrak{p}^{d_i})^{\oplus m_i})$$

is of size $m_i \times m_j$ and in its components has elements of $\mathfrak{p}^{d_i - \min(d_j, d_i)}(\mathfrak{o}/\mathfrak{p}^{d_i})$, that is, for i < j ($\Longrightarrow d_i > d_j$) elements of $\mathfrak{p}^{d_i - d_j}(\mathfrak{o}/\mathfrak{p}^{d_i})$, and for i > j ($\Longrightarrow d_i < d_j$) elements of $\mathfrak{o}/\mathfrak{p}^{d_i}$.

4. MAIN RESUTLS

For the case $\lambda_1 > \lambda_2 = \lambda_3$, we can state our main result as follows:

Theorem 2. Assume $\lambda_2 = \lambda_3$. Then R(e) contains a normal subgroup N such that

$$R(e)/N \cong \operatorname{Aut} \mathfrak{o}/\mathfrak{p}^{\lambda_3},$$

$$N \cong \begin{cases} k^{\lambda_1 - \lambda_2} & \lambda_2 = \lambda_3 > 2, \\ (k^{\times})^{\lambda_1 - \lambda_2} & \lambda_2 = \lambda_3 = 1. \end{cases}$$

The case $\lambda_1 \ge \lambda_2 > \lambda_3$ turns out to be rather complicated. The rest of this section is dedicated to explain our main result for this case.

Let $i \geq 1$. For $a, b \in \mathfrak{o}$, we write

$$a \equiv b \bmod \mathfrak{p}^i$$

to mean $a-b \in \mathfrak{p}^i$. With abuse of notation, we write \mathfrak{p}^i also to denote this equivalence relation. Then obviously we have $\mathfrak{p} \succ \mathfrak{p}^2 \succ \mathfrak{p}^3 \succ \cdots$. On the other hand, put $\mathfrak{u}_i = 1 + \mathfrak{p}^i \subset \mathfrak{o}$ $(i \ge 1)$. For $a, b \in \mathfrak{o}$, write

$$a \sim b \bmod \mathfrak{u}_i$$

if $a \in \mathfrak{u}_i b$. Clearly this defines an equivalence relation on \mathfrak{o} . Again with abuse of notation, we just write \mathfrak{u}_i to denote this relation. Then note that we have $\mathfrak{u}_1 \succ \mathfrak{u}_2 \succ \mathfrak{u}_3 \succ \cdots$. Also note that $\mathfrak{p}^i \succ \mathfrak{u}_i$ holds for all $i \geq 1$.

Lemma 3. The union of relations $\mathfrak{p}^i \cup \mathfrak{u}_j$ is an equivalence relation for all $i, j \geq 1$.

Hence we have $\mathfrak{p}^i \vee \mathfrak{u}_j = \mathfrak{p}^i \cup \mathfrak{u}_j$, and it makes sense to denote the quotient set by $\mathfrak{o}/\mathfrak{p}^i/\mathfrak{u}_j = \mathfrak{o}/\mathfrak{u}_i/\mathfrak{p}^i = \mathfrak{o}/\mathfrak{p}^i \vee \mathfrak{u}_j$ for all $i, j \geq 1$.

Now we proceed to the following lemma:

Lemma 4. Let $\varphi \in R(e)$ be given. There exist bijective maps $\tau : \mathfrak{o} \to \mathfrak{o}$ and $\sigma : \mathfrak{o} \to \mathfrak{o}$ such that $\varphi \mathfrak{o}(ae_1 + e_2) = \mathfrak{o}(\tau(a)e_1 + e_2)$ and $\varphi \mathfrak{o}(e_1 + ae_2) = \mathfrak{o}(e_1 + \sigma(a)e_2)$ for all $a \in \mathfrak{o}$. τ and σ induce bijections $\tau : \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \to \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}$ and $\sigma : \mathfrak{o}/\mathfrak{p}^{\lambda_2} \to \mathfrak{o}/\mathfrak{p}^{\lambda_2}$, respectively, which are uniquely determined by φ .

Let $\varphi \in R(e)$ be given and τ, σ as in the preceding lemma. We list in the following lemma some of the properties satisfied by τ and σ .

Lemma 5. We have

- (1): $\tau(1) \sim 1 \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_2}, \ \sigma(1) \equiv 1 \mod \mathfrak{p}^{\lambda_2},$
- (2): $\tau(\mathfrak{p}) \subset \mathfrak{p}, \ \sigma(\mathfrak{p}) \subset \mathfrak{p},$
- (3): $\tau(ab) \sim \tau(a)\tau(b) \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3} \text{ for all } a, b \in \mathfrak{o},$
- (4): $\sigma(ab) \sim \sigma(a)\sigma(b) \mod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \text{ for all } a, b \in \mathfrak{o},$
- (5): $\tau(a-b) \sim \tau(a) \tau(b) \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{p}^{\lambda_2 + v(b)} \vee \mathfrak{u}_{\lambda_3} \text{ for all } a, b \in \mathfrak{o},$

(6): $\sigma(a-b) \sim \sigma(a) - \sigma(b) \mod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \text{ for all } a, b \in \mathfrak{o},$

(7): $\tau(a) \equiv \sigma(a^{-1})^{-1} \mod \mathfrak{p}^{\lambda_2} \text{ for all } a \in \mathfrak{o}^{\times},$

(8): $\tau(a) \sim \sigma(a) \mod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \text{ for all } a \in \mathfrak{o}.$

Given three positive integers $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 1$, let

$$\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})$$

denote the set of bijections $\tau: \mathfrak{o} \to \mathfrak{o}$ that satisfy the following three conditions:

Valuation law: $\tau(\mathfrak{p}) \subset \mathfrak{p}$,

Strict product law: $\tau(ab) \sim \tau(a)\tau(b) \bmod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3}$ for all $a, b \in \mathfrak{o}$,

Difference law: $\tau(a-b) \sim \tau(a) - \tau(b) \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{p}^{\lambda_2 + v(b)} \vee \mathfrak{u}_{\lambda_3}$ for all $a, b \in \mathfrak{o}$.

In this section we shall prove that this set forms a group and a $\tau \in \operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})$ induces a bijection $\tau : \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \to \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}$. It turns out that R(e) can be described by using this group.

Lemma 6. Let $\tau: o \to o$ be a bijective map that satisfies the valuation law and the strict product law. Then we have

$$au(\mathfrak{p}^i)=\mathfrak{p}^i$$

for all $i \in [0, \lambda_1]$; that is, we have

$$v(\tau(a)) = v(a)$$

for all $a \in \mathfrak{o} \setminus \mathfrak{p}^{\lambda_1}$.

Lemma 7. Let $i \leq \lambda_1$ and $j \leq \lambda_2$. Let $\tau : \mathfrak{o} \to \mathfrak{o}$ be a bijective map that satisfies the difference law and the condition $v(\tau(a)) = v(a)$ for all $a \in \mathfrak{o} \setminus \mathfrak{p}^{\lambda_1}$. For $a, b \in \mathfrak{o}$, we have $a \sim b \mod \mathfrak{p}^i \vee \mathfrak{u}_j$ if and only if $\tau(a) \sim \tau(b) \mod \mathfrak{p}^i \vee \mathfrak{u}_j$. That is, there exists a unique bijective map $\overline{\tau}$ that makes the diagram below commutative:

$$\begin{array}{cccc} \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} & \stackrel{\tau}{----} & \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \\ & & & \downarrow \\ & & \downarrow \\ & & \mathfrak{o}/\mathfrak{p}^i/\mathfrak{u}_j & \stackrel{\tau}{----} & & \mathfrak{o}/\mathfrak{p}^i/\mathfrak{u}_j \end{array}$$

Proposition 8. Aut_{$\lambda_1,\lambda_2,\lambda_3$}(\mathfrak{o}) forms a subgroup of Sym(\mathfrak{o}).

Now denote by $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak o)_{\mathfrak u_{\lambda_2}}$ the stabilizer of $\mathfrak u_{\lambda_2}$ in $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}$. That is,

$$\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} = \{ \tau \in \operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o}) \mid \tau(\mathfrak{u}_{\lambda_2}) = \mathfrak{u}_{\lambda_2} \}.$$

Then define

$$\Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_1, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \times \operatorname{Aut}_{\lambda_2, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \right)$$

to be the set of $(\tau, \sigma) \in \operatorname{Aut}_{\lambda_1, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \times \operatorname{Aut}_{\lambda_2, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}}$ satisfying the conditions

$$\begin{cases} \tau(a)^{-1} \equiv \sigma(a^{-1}) \bmod \mathfrak{p}^{\lambda_2} & \forall a \in \mathfrak{o}^{\times}, \\ \tau(a) \sim \sigma(a) \bmod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} & \forall a \in \mathfrak{o}. \end{cases}$$

Note that since $\tau(a)\tau(a^{-1}) \sim 1 \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3}$ whence $\tau(a)^{-1} \sim \tau(a^{-1}) \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3}$ for all $a \in \mathfrak{o}^{\times}$, the first condition $\tau(a)^{-1} \equiv \sigma(a^{-1}) \mod \mathfrak{p}^{\lambda_2}$ implies the second condition $\tau(a) \sim \sigma(a) \mod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3}$.

Lemma 9. The set

$$\Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_1, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \, \times \, \operatorname{Aut}_{\lambda_2, \lambda_2, \lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \right)$$

forms a subgroup of $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \times \operatorname{Aut}_{\lambda_2,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}}$.

We have observed that $\tau \in \operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})$ induces a bijective map $\tau : \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \to \mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}$. That is to say, there exists a natural group homomorphism $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o}) \to \operatorname{Sym}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)$. Let us define

$$\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)$$
$$\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)$$

to be the images of $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o}) \longrightarrow \operatorname{Sym}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)$ and $\operatorname{Aut}_{\lambda_2,\lambda_2,\lambda_3}(\mathfrak{o}) \longrightarrow \operatorname{Sym}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)$, respectively. Furthermore, let

$$\frac{\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1}{\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1}$$

be the subgroups of the above two, corresponding to $\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}}$ and $\operatorname{Aut}_{\lambda_2,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}}$, respectively. Lastly, we denote by

$$\Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \times \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \right)$$

the subgroup of $\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}\mathfrak{u}_{\lambda_2}\right)_1 \times \operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1$ that corresponds to $\Delta_{\lambda_3}^{-1}\left(\operatorname{Aut}_{\lambda_1,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}} \times \operatorname{Aut}_{\lambda_2,\lambda_2,\lambda_3}(\mathfrak{o})_{\mathfrak{u}_{\lambda_2}}\right)$. Now we can state our:

Theorem 10 (Main Isomorphism Theorem). We have

$$R(e) \cong \Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \times \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \right)$$

if $\lambda_2 > \lambda_3$.

Note that one way of isomorphism

$$\Phi: R(e) \to \Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \times \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \right)$$

is already given, by sending $\Phi: \varphi \mapsto (\tau, \sigma)$. In order to compute R(e), this theorem allows us to compute $\Delta_{\lambda_3}^{-1} \left(\operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \times \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \right)$ instead. Let

$$\Lambda: \Delta_{\lambda_3}^{-1}(\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \times \operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1) \to \operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1$$

be the "projection" map to the first component; i.e., $\Lambda:(\tau,\sigma)\mapsto \tau$. Then Ker Λ is the set of $(1,\sigma)$ satisfying

$$\begin{cases} \sigma(a) \equiv a \bmod \mathfrak{p}^{\lambda_2} & a \in \mathfrak{o}^{\times}/\mathfrak{p}^{\lambda_2}, \\ \sigma(a) \sim a \bmod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} & a \in \mathfrak{p}/\mathfrak{p}^{\lambda_2}. \end{cases}$$

Let K be the kernel of the natural map $\operatorname{Aut}_{\lambda_3}(\mathfrak{o}/\mathfrak{p}^{\lambda_2})_1 \longrightarrow \mathfrak{o}^{\times}/\mathfrak{p}^{\lambda_2}$, that is,

$$K = \{ \sigma \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \mid \sigma(a) = a \text{ for all } a \in \mathfrak{o}^{\times}/\mathfrak{p}^{\lambda_2} \}.$$

Lemma 11. We have

$$\operatorname{Ker} \Lambda \cong K$$
.

We shall show that the group in question, $\Delta_{\lambda_3}^{-1}(\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1\times\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1)$, is isomorphic to a semidirect product of K and the first component $\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1$:

Proposition 12. The sequence

$$1 \longrightarrow K \longrightarrow \Delta_{\lambda_2}^{-1}(\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \times \operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1) \longrightarrow \operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \longrightarrow 1$$

is exact and splitting. In other words, we have

$$\Delta_{\lambda_3}^{-1}(\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1\times\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_2}\right)_1)\cong\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1\ltimes K.$$

This result divides our investigation into two parts: the analysis of the structure of K and that of $\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1$. We begin with the former.

Recall that

$$\begin{split} K &= \left\{ \sigma \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \mid \sigma(a) = a \ ^\forall a \in \left(\mathfrak{o}^\times/\mathfrak{p}^{\lambda_2} \right) \right\} \\ &= \left\{ \sigma \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \mid \sigma(a) = a \ ^\forall a \in \left(\mathfrak{o}^\times/\mathfrak{p}^{\lambda_2} \right) \ \text{and} \ \sigma(a) \sim a \ \text{mod} \ \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \ ^\forall a \in \mathfrak{p}/\mathfrak{p}^{\lambda_2} \right\}. \end{split}$$

For the sake of convenience, we shall analyze groups slightly larger than K; namely,

$$\tilde{K} = \left\{ \sigma \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right) \mid \sigma(a) \sim a \bmod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \ \forall a \in \mathfrak{o}/\mathfrak{p}^{\lambda_2} \right\},\,$$

and

$$\tilde{K}_1 = \left\{ \sigma \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2} \right)_1 \mid \sigma(a) \sim a \bmod \mathfrak{p}^{\lambda_2} \vee \mathfrak{u}_{\lambda_3} \ ^\forall a \in \mathfrak{o}/\mathfrak{p}^{\lambda_2} \right\}.$$

Of course we have $\tilde{K}_1 = \{ \sigma \in \tilde{K} \mid \sigma(1) = 1 \}.$

Proposition 13. \tilde{K} decomposes into a direct product as

$$\tilde{K} \cong Q_0 \times Q_1 \times \cdots \times Q_{\lambda_2 - \lambda_3 - 1}$$

where each factor Q_i (defined for $0 \le i \le \lambda_2 - 1$) is given by

$$Q_i = \left\{ \sigma \in ilde{K} \mid \sigma(a) = a \; \textit{for all } a \in (\mathfrak{o} \setminus \mathfrak{q}_i)/\mathfrak{p}^{\lambda_2}
ight\}.$$

Corollary 14. \tilde{K}_1 and K decompose into direct products as

$$\widetilde{K}_1 \cong \overline{Q}_0 \times Q_1 \times \cdots \times Q_{\lambda_2 - \lambda_3 - 1} \text{ and}$$

$$K \cong Q_1 \times Q_2 \times \cdots \times Q_{\lambda_2 - \lambda_3 - 1},$$

respectively, where

$$\overline{Q}_0 = \left\{ \sigma \in \tilde{K}_1 \mid \sigma(a) = a^{\forall} a \in \mathfrak{p}/\mathfrak{p}^{\lambda_2} \right\} = \left\{ \sigma \in Q_0 \mid \sigma(1) = 1 \right\}.$$

We now focus on the calculation of each Q_i . First, we give a description of generators of Q_i . We begin with the following lemma.

Lemma 15. Let $\sigma \in \tilde{K}$ and $0 \le j \le \lambda_2 - \lambda_3$. If $a \equiv b \mod \mathfrak{p}^j$, then $\sigma(a) - a \equiv \sigma(b) - b \mod \mathfrak{p}^{j+\lambda_3}$.

We apply this lemma particularly to Q_i $(0 \le i \le \lambda_2 - \lambda_3 - 1)$. For $j \in [i+1, \lambda_2 - \lambda_3]$, let $(\mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2})^{\mathfrak{q}_i/\mathfrak{p}^j}$ denote the set of maps $z:\mathfrak{q}_i/\mathfrak{p}^j \to \mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2}$. Note that since $\mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2}$ is an abelian group, so becomes $(\mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2})^{\mathfrak{q}_i/\mathfrak{p}^j}$ naturally. Given $j \in [i+1, \lambda_2 - \lambda_3]$ and $z:\mathfrak{q}_i/\mathfrak{p}^j \to \mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2}$, define a map $g_{j,z}:\mathfrak{o}/\mathfrak{p}^{\lambda_2} \to \mathfrak{o}/\mathfrak{p}^{\lambda_2}$ by

$$g_{j,z}(a) = egin{cases} a + z (a mod \mathfrak{p}^j) & a \in \mathfrak{q}_i, \ a & ext{otherwise}. \end{cases}$$

We shall show that $g_{j,z}$ is in Q_i ; more precisely,

Proposition 16. We have

$$Q_i = \langle g_{j,z} \rangle \inf_{\substack{j \in [i+1,\lambda_2-\lambda_3] \\ z \in \left(\mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2}\right)^{\mathfrak{q}_i/\mathfrak{p}^j}}} = \langle g_{j,z} \rangle \inf_{\substack{j \in [i+1,\lambda_2-\lambda_3] \\ z \in \left(S\pi^{j+\lambda_3-1}\right)^{\mathfrak{q}_i/\mathfrak{p}^j}}},$$

where $(S\pi^{j+\lambda_3-1})^{\mathfrak{q}_i/\mathfrak{p}^j}$ denotes the set of maps $z:\mathfrak{q}_i/\mathfrak{p}^j \longrightarrow S\pi^{j+\lambda_3-1} \subset \mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2}$.

Using these generators, we give two sorts of descriptions of Q_i . The former turns out to be useful particularly for the case $\lambda_3 = 1$, whereas the latter being useful for the case $\lambda_3 \geq \frac{1}{2}\lambda_2$.

For $j \in [i+1, \lambda_2 - \lambda_3 + 1]$, define

$$L_i^{(j)} = \left\{ \sigma \in Q_i \mid \sigma(a) \equiv a \bmod \mathfrak{p}^{j+\lambda_3-1} \ \forall a \in \mathfrak{o}/\mathfrak{p}^{\lambda_2} \right\}.$$

Then clearly we have $Q_i \triangleright L_i^{(j)}$ for each j whence obtain a chain of normal subgroups $L_i^{(j)}$.

Proposition 17. We have a normal series of Q_i :

$$Q_i = L_i^{(i+1)} \rhd L_i^{(i+2)} \rhd \cdots \rhd L_i^{(\lambda_2 - \lambda_3 + 1)} = 1,$$

where the factors of the series are given by

$$L_i^{(j)}/L_i^{(j+1)} \cong (\mathfrak{o}/\mathfrak{p})^{\mathfrak{q}_i/\mathfrak{p}^j},$$

for all $j \in [i+1, \lambda_2 - \lambda_3]$.

Proposition 18. We have

$$L_i^{(j)} = \langle g_{n,z} \rangle \max_{z \in \left(\mathfrak{p}^{n+\lambda_3-1}/\mathfrak{p}^{\lambda_2}\right)^{\mathfrak{q}_i/\mathfrak{p}^n}} = \langle g_{n,z} \rangle \max_{z \in \left(S\pi^{n+\lambda_3-1}\right)^{\mathfrak{q}_i/\mathfrak{p}^n}} .$$

Lemma 19. We have the exact sequence of groups

$$1 \longrightarrow L_i^{(\lambda_2 - \lambda_3)} \longrightarrow Q_i \longrightarrow Q_{i+1} \longrightarrow 1.$$

This sequence splits if $\lambda_3 = 1$.

Proposition 20. If $\lambda_3 = 1$, then Q_i decomposes into a wreath product as

$$Q_i \simeq \underbrace{k \wr k \wr \cdots \wr k}_{\lambda_2 - i - 1} \wr 1$$

where 1 is to act on k^{\times} trivially and k on k by addition. To put it more concisely,

$$Q_i \simeq (k^{l(\lambda_2-i-1)})^{k^{\times}}.$$

We present another way of describing the structure of Q_i . In order to do this, let us define

$$U_i^{(j)} = \left\{ \sigma \in Q_i \mid \sigma(a) - a \equiv \sigma(b) - b \bmod \mathfrak{p}^{\lambda_2} \text{ if } a \equiv b \bmod \mathfrak{p}^j \right\},\,$$

where $i \leq j \leq \lambda_2 - \lambda_3$. This gives us a filtration of Q_i :

$$Q_i = U_i^{(\lambda_2 - \lambda_3)} \supset U_i^{(\lambda_2 - \lambda_3 - 1)} \supset \cdots \supset U_i^{(i+1)} \supset U_i^{(i)} = T_i.$$

Here, T_i is the group of translations, i.e.,

$$T_i = \left\{ \sigma \in Q_i \mid \sigma(a) - a = \sigma(b) - b \text{ for all } a, b \in \mathfrak{o}/\mathfrak{p}^{\lambda_2} \right\}.$$

Lemma 21. We have

$$U_i^{(j)} = \langle g_{n,z} \rangle \underset{z \in \left(\mathfrak{p}^{n+\lambda_3-1}/\mathfrak{p}^{\lambda_2}\right)^{\mathfrak{q}_i/\mathfrak{p}^n}}{n \in [i+1,j]}.$$

Now for each $j \in [i+1, \lambda_2 - \lambda_3]$ define

$$H_i^{(j)} = \{ \sigma \in U_i^{(j)} \mid \sigma(a) = a \text{ if } a_{j-1} = 0 \in S \},$$

with $a \in \mathfrak{o}/\mathfrak{p}^{\lambda_2}$ being written as $a = \sum_{n=1}^{\lambda_2-1} a_n \pi^n$ with $a_n \in S$. Obviously the definition of $H_i^{(j)}$ depends on the choice of S.

Proposition 22. The subgroups $H_i^{(j)}$ are abelian; more precisely, we have

$$\begin{split} H_i^{(j)} &\cong \left(\mathfrak{p}^{j+\lambda_3-1}/\mathfrak{p}^{\lambda_2} \right)^{(\mathfrak{q}_i/\mathfrak{p}^{j-1})\times k^{\times}} \\ &\cong \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2-\lambda_3-j+1} \right)^{(\mathfrak{o}/\mathfrak{p}^{j-i-1})^{\times}\times k^{\times}}. \end{split}$$

Proposition 23. Q_i decomposes into a product of abelian subgroups $H_i^{(j)} \subset Q_i$ $(i+1 \le j \le \lambda_2 - \lambda_3)$ as

$$Q_i = H_i^{(i+1)} H_i^{(i+2)} \cdots H_i^{(\lambda_2 - \lambda_3)},$$

with the properties

$$\begin{cases} \left(H_i^{(i+1)}H_i^{(i+2)}\cdots H_i^{(j)}\right)\cap H_i^{(j+1)} = 1, \\ \left(H_i^{(i+1)}H_i^{(i+2)}\cdots H_i^{(j)}\right)H_i^{(j+1)} = H_i^{(j+1)}\left(H_i^{(i+1)}H_i^{(i+2)}\cdots H_i^{(j)}\right). \end{cases}$$

Lemma 24. If $i + \lambda_3 \ge \lambda_2 - \lambda_3$, then we have

$$Q_i \cong \bigoplus_{j=i}^{\lambda_2-\lambda_3-1} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2-\lambda_3-j}\right)^{(\mathfrak{o}/\mathfrak{p}^{j-i})^\times \times k^\times}.$$

Proposition 25. If $\lambda_3 \geq \frac{1}{2}(\lambda_2 - 1)$, then K is abelian and

$$K \cong \bigoplus_{i=1}^{\lambda_2 - \lambda_3 - 1} \bigoplus_{j=i}^{\lambda_2 - \lambda_3 - 1} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2 - \lambda_3 - j} \right)^{(\mathfrak{o}/\mathfrak{p}^{j-i})^{\times} \times k^{\times}}.$$

Also, if $\lambda_3 \geq \frac{1}{2}\lambda_2$, then Q_0 is abelian and

$$Q_0 \cong igoplus_{j=0}^{\lambda_2-\lambda_3-1} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2-\lambda_3-j}
ight)^{\left(\mathfrak{o}/\mathfrak{p}^j
ight)^{ imes} imes k^{ imes}}.$$

Now we describe the structure of \overline{Q}_0 , which we shall need later in computing $\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1$. So for each $j\in[1,\lambda_2-\lambda_3]$, put

$$\overline{L}_0^{(j)} = \left\{ \sigma \in \overline{Q}_0 \mid \sigma(a) \equiv a \bmod \mathfrak{p}^{j + \lambda_3 - 1} \ \forall a \in \mathfrak{o}/\mathfrak{p}^{\lambda_2} \right\}.$$

Evidently we have $\overline{Q}_0 \triangleright \overline{L}_0^{(j)}$ for each j.

Proposition 26. We have a normal series of \overline{Q}_0 :

$$\overline{Q}_0 = \overline{L}_0^{(1)} \rhd \overline{L}_0^{(2)} \rhd \cdots \rhd \overline{L}_0^{(\lambda_2 - \lambda_3 + 1)} = 1,$$

where the factors of the series are given by

$$\overline{L}_0^{(j)}/\overline{L}_0^{(j+1)} \cong (\mathfrak{o}/\mathfrak{p})^{(\mathfrak{o}^{\times} \smallsetminus \{1\})/\mathfrak{p}^j}$$

for each $j \in [1, \lambda_2 - \lambda_3]$.

Proposition 27. Assume $\lambda_3=1$. Then \overline{Q}_0 decomposes into a semidirect product as

$$\overline{Q}_0 \simeq k^{(\mathfrak{o}^{\times} \smallsetminus \{1\})/\mathfrak{p}^{\lambda_2-1}} \rtimes k^{(\mathfrak{o}^{\times} \smallsetminus \{1\})/\mathfrak{p}^{\lambda_2-2}} \rtimes \cdots \rtimes k^{(\mathfrak{o}^{\times} \smallsetminus \{1\})/\mathfrak{p}}.$$

Proposition 28. \overline{Q}_0 decomposes into a product of abelian subgroups as

$$\overline{Q}_0 \cong \overline{H}_0^{(1)} H_0^{(2)} \cdots H_0^{(\lambda_2 - \lambda_3)},$$

where

$$\overline{H}_0^{(1)} = \{ \sigma \in H_0^{(1)} \mid \sigma(1) = 1 \}$$
$$\cong \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2 - \lambda_3} \right)^{k^{\times} \setminus \{1\}}.$$

Proposition 29. If $\lambda_3 \geq \frac{1}{2}\lambda_2$, then we have

$$\overline{Q}_0 \cong \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2-\lambda_3}\right)^{k^\times \smallsetminus \{1\}} \oplus \bigoplus_{j=1}^{\lambda_2-\lambda_3-1} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_2-\lambda_3-j}\right)^{(\mathfrak{o}/\mathfrak{p}^j)^\times \times k^\times}.$$

Now we shift our attention to calculating the structure of $\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1$. Let N and \overline{N} be the kernels of the natural homomorphisms

$$\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \longrightarrow \operatorname{Aut}\mathfrak{o}/\mathfrak{p}^{\lambda_3}$$

and

$$\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \to \operatorname{Aut}(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_3}),$$

respectively. That is,

$$\begin{split} N &= \left\{ \tau \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \mid \tau(a) \equiv a \bmod \mathfrak{p}^{\lambda_3} \ ^\forall a \in \mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right\}, \text{ and } \\ \overline{N} &= \left\{ \tau \in \operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1 \mid \tau(a) \sim a \bmod \mathfrak{p}^{\lambda_1} \vee \mathfrak{u}_{\lambda_3} \ ^\forall a \in \mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right\}. \end{split}$$

Thus we have a normal series

$$\operatorname{Aut}_{\lambda_3}\left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2}\right)_1 \rhd N \rhd \overline{N} \rhd 1.$$

Theorem 30. The following holds.

(1): We have

$$\operatorname{Aut}_{\lambda_3} \left(\mathfrak{o}/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \right)_1/N \cong \operatorname{Aut} \mathfrak{o}/\mathfrak{p}^{\lambda_3}.$$

(2): We have

$$N/\overline{N} \cong \begin{cases} k & \lambda_3 \ge 2, \\ k^{\times} & \lambda_3 = 1. \end{cases}$$

(3): We have

$$\overline{N} \cong \overline{Q}_0 \times Q_0^{\lambda_1 - \lambda_2} \times K.$$

Hence in particular \overline{N} is abelian if $\lambda_3 \geq \frac{1}{2}\lambda_2$.

We can show that N is abelian for certain types of λ :

Proposition 31. If $\lambda_3 > \frac{1}{2}\lambda_1$, then N is abelian.

The structure of \overline{N} resembles that of K; We obtain a decomposition of \overline{N} similar to that of K:

Proposition 32. \overline{N} decomposes into a direct product as

$$\overline{N} \cong V_0 \times V_1 \times \cdots \times V_{\lambda_1 - \lambda_3 - 1},$$

where each factor V_i (defined for $0 \le i \le \lambda_1 - 1$) is given by

$$V_i = \{ \tau \in N \mid \tau(a) = a \ \forall a \in (\mathfrak{o} \setminus \mathfrak{q}_i)/\mathfrak{p}^{\lambda_1}/\mathfrak{u}_{\lambda_2} \}.$$

Lemma 33. We have the following.

- (1): $V_i \cong Q_{i-\lambda_1+\lambda_2}$ for $i \in [\lambda_1 \lambda_2 + 1, \lambda_1 \lambda_3 1]$, (2): $V_1 \cong \underline{V_2} \cong \cdots \cong V_{\lambda_1-\lambda_2} \cong Q_0$ where $\lambda_1 > \lambda_2$,
- (3): $V_0 \cong \overline{Q}_0$.

Lastly, we consider the situation in which the residue field k is the finite field \mathbb{F}_q . Then Aut $\mathcal{L}(M)$ is evidently finite, and by the structual theorem we can compute the order of the group. There is not much to do for case $\lambda_2 = \lambda_3$, so assume $\lambda_2 > \lambda_3$. We start with computing the order $|Q_i|$. We can use either the L-sequence of Q_i or H-decomposition. Let us choose the former this time:

$$\begin{split} |Q_i| &= q^{(q-1)+(q-1)q+(q-1)q^2+\dots+(q-1)q^{\lambda_2-\lambda_3-i-1}} \\ &= q^{-1+q^{\lambda_2-\lambda_3-i}}. \end{split}$$

In particular, we get $|Q_0|=q^{-1+q^{\lambda_2-\lambda_3}}.$ Since $K=\prod_{i=1}^{\lambda_2-\lambda_3-1}Q_i,$ we see that

$$|K| = \prod_{i=1}^{\lambda_2 - \lambda_3 - 1} |Q_i| = q^{\sum_{i=1}^{\lambda_2 - \lambda_3 - 1} (-1 + q^i)} = q^{-\lambda_2 + \lambda_3 + 1 + \sum_{i=1}^{\lambda_2 - \lambda_3 - 1} q^i}.$$

Also, by L-sequence or H-decomposition of \overline{Q}_0 , we see that $|\overline{Q}_0|q^{\lambda_2-\lambda_3}=|Q_0|$. So we compute:

$$\begin{split} |\overline{N}| &= |\overline{Q}_0| \cdot |Q_0|^{\lambda_1 - \lambda_2} \cdot |K| \\ &= q^{-\lambda_2 + \lambda_3} q^{-1 + q^{\lambda_2 - \lambda_3}} \left(q^{-1 + q^{\lambda_2 - \lambda_3}} \right)^{\lambda_1 - \lambda_2} \cdot q^{\sum_{i=1}^{\lambda_2 - \lambda_3 - 1} (-1 + q^i)} \\ &= q^{-\lambda_2 + \lambda_3} q^{-1 + q^{\lambda_2 - \lambda_3}} q^{-\lambda_1 + \lambda_2 + (\lambda_1 - \lambda_2) q^{\lambda_2 - \lambda_3}} q^{-\lambda_2 + \lambda_3 + 1 + \sum_{i=1}^{\lambda_2 - \lambda_3 - 1} q^i} \\ &= q^{-\lambda_2 - \lambda_1 + 2\lambda_3 + (\lambda_1 - \lambda_2) q^{\lambda_1 - \lambda_2} + \sum_{i=1}^{\lambda_2 - \lambda_3} q^i}. \end{split}$$

REFERENCES

- [1] Baer, R. "The significance of the system of subgroups for the structure of the group." Amer. J. Math. 61 (1939), 1-44.
- [2] Baer, R. "A unified theory of projective spaces and finite Abelian groups." Trans. Amer. Math. Soc. 52 (1942), 282-343.
- [3] Costantini, M., Holmes, C. S., and Zacher, G. "A representation theorem for the group of autoprojectivities of an abelian p-Group of finite exponent." Ann. Mat. Pura. Appl. Ser. 4. 175 (1998), 119-140.
- [4] Costantini, M., and Zacher, G. "On the group of autoprojectivities of periodic modular groups." J. Group Theory. no. 4 1 (1998), 369-394.
- Holmes, C. "Automorphisms of the lattice of subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$." Arch. Math. 51 (1988), 491-495.
- Macdonald, I.G. Symmetric Functions and Hall polynomials, 2nd. ed.. Oxford: Clarendon Press, 1995.
- [7] Schmidt, R. Subgroup Lattices of Groups. Berlin: Walter de Gruyter, 1994.
- [8] Serre, J.-P. Local Fields. New York Berlin: Springer-Verlag, 1979.
- [9] Suzuki, M. Structure of a Group and the Structure of its Lattice of Subgroups. Berlin: Springer-Verlag, 1967.
- [10] Vogt, F. "Subgroup lattices of finite Abelian groups: structure and cardinality." K. A. Baker, R. Wille eds... Lattice Theory and its Applications. Heldermann Verlag, 1995; 241-259.
- [11] Yasuda, K. On the Automorphism Group of the Subgroup Lattice of a Finite Abelian p-Group. Master's thesis, University of Tokyo, 2000.

E-mail address: kan@msf.biglobe.ne.jp

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES. UNIVERSITY OF TOKYO, TOKYO, JAPAN