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ON THE AUTOMORPHISM GROUP OF THE SUBGROUP LATTICE
OF A FINITE ABELIAN p-GROUP; SOME GENERALIZATIONS

KAN YASUDA

ABSTRACT. The automorphism group Aut £(M) of the submodule lattice £L{M) of a finite-length
module M over complete discrete valuation ring o is studied. Let A = (A1, -+, M) be the type of
M. We show that for those M with A; > X2 > Az > 1, Aut £(M) can be analyzed by computing
a certain subgroup of the bijections on a quotient of the scalar ring o. In particular, when the
residue field k = o/p is a finite fieled F,, we compute the order of the group.

1. OBJECTIVE

Let o be a discrete valuation ring with the maximal ideal p, a prime element 7 (i.e., om = p)
and the valuation function v : 0 \ {0} — Z>o. Let k = o/p denote the residue field. Let M be an
o-module of finite length. Then, since o is a principal ideal domain, M can be written as a sum of
cyclic o-submodules:

M=~o/pM & - - ®o/pV,

with A = (A1,--+, A1) being some partition of a non-negative integer (That is, we have Ay > A2 >
-+ > MN). Ais called the type of M. Now since we have o/p* = 3/p* where 0 is the completion of
o and P its maximal ideal, without loss of generality we can assume o to be complete. Let L(M)
denote the set of o-submodules of M. £(M) inherits a lattice structure by inclusion relation. Our
main objective is to compute Aut £(M), the automorphism group of the lattice L(M), for such A
as A1 > Ay > A3 > 1.

When o = Z,, the ring of p-adic integers, M becomes nothing but a finite abelian p-group and
L(M) the subgroup lattice of M. This can be generalized by considering the case 0 = W(F,], the
ring of Witt vectors over the finite field F,, for W[F,] & Z,. Another example of o is the ring K{t]]
of formal power series in one variable t.

We call e = (e1,--- ,e1) € M! an ordered basis for M if M = @
be fixed. We denote by R(e) the set of ¢ € Aut L(M) satisfying

@(oe;) = oe; Vie (1,1
<p(0(€1 + ei)) = 0(61 + ei) Yie [2,[]

1

i, 0e; and oe; 2 o/pti. Let e

In most cases it boils down to computing R(e) in order to analyze Aut L(M), in the sense we
describe as follows.

Since an autormophism of o-module M induces an automorphism of the lattice L(M), we have
the natural group homomorphism

O : Aut M — Aut L(M).

It can be directly checked that Ker © = (o/p*1)* and that Aut M can be expressed in matrix form,
as described in the sequel. Naturally Aut £(M) contains a subgroup isomorphic to Aut M/ Ker &,
and we let PAut M denote this subgroup.

It turns out that Aut £(M) is a product of these two subgroups R(e) and PAut M. Namely, we
have

Lemma 1.

R(e) - PAut M = Aut L(M)
R(e) NPAut M = 1.



Also, we remark that if e and e’ are ordered base for M, then it is easily checked that ¢R(e)g™! =
R(¢€’), where ¢ € PAut M is the lattice automorphism induced by the module automorphism of M
defined by e; — e; (1 < i <1). Hence the isomorphism type of R(e) does not depend on the choice
of e. We content ourselves with computing R(e) instead of computing Aut L(M) for our purpose.

2. HISTORICAL BACKGROUND

Let us mention the relation with earlier results. The structure of Aut £(M) is well-known
for the case Ay = Az = A3, which is essentially the result of Baer [2]. In this case, we have
Aut L(M) = R(e) x PAut M, and

R(e) = Auto/p?3,
where Aut 0/p*3 is the group of automorphisms of ring o/p*¢. In particular, when AM=-=N=
‘1 (I > 3), M becomes a vector space over the residue filed k of o, and Aut L(M) is isomorphic
to PI \L(l ,k), the group of projective semi-linear automorphisms. This result is a variation of so
called the Fundamental Theorem of Finite Projective Geometry.

We next consider the case when the residue field of o is the finite field F,. Let M =o/p&o/p
Fp, @ Fp. Then Aut L(M) is isomorphic to the symmetric group 6,41 and PAut M isomorphic
to the projective general linear group PGL(2,p) (Note that |[PGL(2,p)| = (p + 1)p(p — 1)). In
this case, R(e) is a subgroup that fixes three points and isomorphic to G,_2. More generally, for
M = Zp/p*Z, ® L,/p**Z, (0 = Z, is the ring of p-adic integers), Holmes’ result [5] states that
Aut L(M) is isormorphic to 6;,(’\2_1) 16p41, where 61 means 6,116, (n times) and ? denotes
the standard wreath product. In this case, PAut M is nothing but PGLg(Z,,/p’\QZp), and we note
that |PGLa(Z,/p*Zp)| = (p+ 1)p(p — 1) - (p*271)3. R(e) is the subgroup that fixes three points
Zx(1,0), Zp(0,1) and Z,(1,1); in fact, we have

A2—2 3
R(e) = (ngz—l) 16,_2) x { H (Gg’zsp_l)} .
i=0
Holmes [5] also obtains a result for the case A\; > A2 > A3 = 0: Aut L(M) = G?x HM~22-1 where
G=6Y and H=6""16, ;.

There have been works to bridge the gap between Baer’s result and Holmes'. Costantini-
Holmes-Zacher[3] and Costantini-Zacher{4] treated the case of abelian p-groups in a rather general
framework. Yasuda[l1] studied the case of finite abelian p-groups for Ay > Ay = A3 with explicit
computation of R(e) and Aut L(M). In this work, we shall treat the case \; > Ay > A3 > 1, in
the general setting of finite-length modules over (complete) discrete valuation ring.

3. NOTATIONS AND NOTIONS

Here we give some supplementary definitions and notations. Put q; = p* < p**1 for i > 1; i.e.,
q; = {a € 0 | v(a) = i}. We define qo = o \ p = 0%, the set of invertible elements. For a,beo
such that v(a) > v(b) (b # 0), there exists an element x € o such that a = zb. As o0 is a domain, z
must be unique. We use the notation § = z.

Given a set X, Map(X) denotes the set of maps f : X — X. Sym(X ) denotes the set of
bijections f : X — X. Map(X) forms a monoid with respect to function composition, whereas
Sym(X) forms a group. Given two sets X and Y, we define Y to be the set of maps f: X —Y.

Let G be a group, and H a group acting on a set X. Let f,g: X — G be two maps, and define
amap fog: X — G by fog(r) = f(z)- g(z) where - is the product in G. Then G¥ becomes
a group with respect to this o. Let h € H and f € GX. We define a semidirect product GX x H
with respect to the group homomorphism H — AutG~¥ (h — (f — fh™1)). We write G? H to
denote this semidirect product, and call it the wreath product of G and H.

We now give the description of the automorphism group Aut M of an o-module M in matrix
form, as promised. Let e be fixed. The action of f € Aut M is then determined by its action on
e=(e1, - ,e). Write

l
fleg) =) aye

i=1
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and express f as the matrix ,(alj)i,jzr Rewriting A = (A, ..., A) = (1™, ..., d,"™") (d1 > - >

d,) (this means that A\ contains m,-many components equal to d,), Aut M can be expressed in
matrix form as

GLum,(0/p™) -~ Hom((o/p®)®™ , (o/p®)®™)

Hom((o/p®)®™1, (o/p)®™) - GLp, (0/p%)
with respect to the ordered basis e. Here, the block matrix in the diagonal
A€ GLy, (0/p%)

is of size m; x m; and has elements of 0/p% in its components, satisfying 7 { det A. Also, the block
matrix at (i, j)-position (i # j)

A € Hom((o/p%)®™s, (o/p%)®™)
is of size m; X m; and in its components has elements of pd“_“mi"(dﬂ‘ i) (o /p%), that is, for i < j (=
d; > d;) elements of p%~% (0/p%), and for i > j (=> d; < d;) elements of o/p%:.
4. MAIN RESUTLS
For the case A\; > A2 = A3, we can state our main result as follows:
Theorem 2. Assume Ay = A\3. Then R(e) contains a normal subgroup N such that
R(e)/N = Auto/p*2, |
N {kh-*z A2 = A3 > 2,
(RX)M1=22 Xg=A3=1

The case A1 > Ay > A3 turns out to be rather complicated. The rest of this section is dedicated
to explain our main result for this case.
Let i > 1. For a,b € 0, we write

a = bmod p*
to mean a — b € p*. With abuse of notation, we write p* also to denote this equivalence relation.
Then obviously we have p > p2 > p3 > --.. On the other hand, put u; =1 +p* C o (i > 1). For

a,b € o, write

a ~ bmod uy;
if @ € u;b. Clearly this defines an equivalence relation on o. Again with abuse of notation, we
just write u; to denote this relation. Then note that we have u; > up > uz > ---. Also note that
p' > u; holds for all 1 > 1. ‘ '

Lemma 3. The union of relations p* Uu; is an equivalence relation for alli,5 > 1.

Hence we have p* Vu; = p' Uu,, and it makes sense to denote the quotient set by o/p*/u; =
o/uj/p* =0/p*Vujforalli,j>1.
Now we proceed to the following lemma:

Lemma 4. Let ¢ € R(e) be given. There exist bijective maps 7 : 6 — o and o : 0 — o such that
wo(ae; + e2) = o(T(a)e; + e2) and wo(e; + aez) = o(e1 + o(a)ez) for alla € 0. T and o induce
bijections T : 0/p™ Juy, — 0/p*/uy, and o : o/p** — o/p>2, respectively, which are uniquely
determined by .

Let ¢ € R(e) be given and 7, ¢ as in the preceding lemma. We list in the following lemma some
of the properties satisfied by 7 and o.

Lemma 5. We have
(1): 7(1) ~ 1 mod p** Vuy,, (1) = 1 mod p*z,
(2): 7(p) Cp, o(p) Cp,
(3): 7(ab) ~ 7(a)7(b) mod p* V uy, for alla,b€ o,
(4): o(ab) ~ o(a)o(b) mod p*2 Vuy, for alla,b€ o,
(5): 7(a —b) ~7(a) — 7(b) mod p* v p*2+v®) vuy, for all a,b € o,
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(6): o(a—b) ~0o(a) —o(b) mod p*2 Vuy, foralla,b € o,
(7): 7(a) = o(a~!)"! mod p*? for all a € 0%,
(8): 7(a) ~ o(a) mod p*2 Vuy, foralla € o.
Given three positive integers A\; > Ay > A3 > 1, let
AUtf\l,)\z,)\u(o)
denote the set of bijections 7 : 6 — o that satisfy the following three conditions:

Valuation law: 7(p) C p,

Strict product law: 7(ab) ~ 7(a)7(b) mod p** V uy, for all a,b € o,

Difference law: 7(a — b) ~ 7(a) — 7(b) mod p** v p*2+*®) vy, for all a,b € 0.
In this section we shall prove that this set forms a group and a 7 € Auty, i, x,(0) induces a
bijection 7 : 0/p*1 /uy, — 0/p*! /u,,. It turns out that R(e) can be described by using this group.

Lemma 6. Let 7: 0 — o be a bijective map that satisfies the valuation law and the strict product
law. Then we have '

T(p’) = p’

for all i € [0, \]; that is, we have

v(7(a)) = v(a)
for all a € o \ p1.
Lemma 7. Leti < Ay and j < Az. Let 7 : 0 — o be a bijective map that satisfies the difference
law and the condition v(7(a)) = v(a) for alla € o \ p>. For a,b € o, we have a ~ bmod p* vV u;
if and only if T(a) ~ 7(b) mod p* Vu;. That is, there exists a unique bijective map T that makes
the diagram below commutative: '

o/p* fur, —— o/p* fuy,

! !

o/pfu; ——— o/p'/y
Proposition 8. Auty, x,,x;(0) forms a subgroup of Sym(o).
Now denote by Auty,,x;,2:(0)u,, the stabilizer of uy, in Auty, a, ;- That is,
AUtz\l,/\z,/\a(o)uxz = {T € AUtz\l‘/\zAa(o) l T(u'\z) = qu} .
Then define
A;;,l (Aut)\lq)\zv\a(o)u,\z X Aur’/\'z,)xzw\a (o)uxz)

to be the set of (7,0) € Autx,,x;,0,(0)u,, X Auty, x;2,(0)y,, satisfying the conditions

() ! =o(a~!) mod p** Va € o0X,

7(a) ~ o(a) mod p*? Vuy, Yaco.
Note that since 7(a)r(a™?) ~ 1 mod p* Vuy, whence 7(a)~! ~ 7(a~!) mod p* Vu,, for all

a € 0%, the first condition 7(a)~! = o(a~') mod p*? implies the second conditon 7(a) ~ ¢(a) mod
A
P Vuy,.

Lemma 9. The set
A:\-;;l (Aub\l,/\z,)\s(o)u)\z x AUtz\z,/\z,/\a(o)uxz)
forms a subgroup of Auta, x; 2 (0)uy, X AUtaz, ;05 (0)us, -
We have observed that 7 € Auty, A, x,(0) induces a bijective map 7 : 0/p*1 /uy, — 0/p*1 /uy,.

That is to say, there exists a natural group homomorphism Auty, x,x,(0) — Sym (0/p**/uy,).
Let us define

Auty, (o/p™ /uy,)
Aut)‘3 (O/D’\z)



to be the images of Auty, x,.z;(0) — Sym (o/p™ /uy,) and Auty, x,,5,(0) — Sym (0/p*?), respec-
tively. Furthermore, let

Auty, (o/p™ /unr,),
Auty, (o/p’\'-’)1

be the subgroups of the above two, corresponding to Autx, x,.x,(0)u,, and Auty, xg,25(0)us,, TE
spectively. Lastly, we denote by

A3, (Auty, (0/p™ /ur,), x Autyg (0/p™),)
the subgroup of Auty, (°/p>\1u)\2)1 x Auty, (o/p*?), that corresponds to A;: (Auta, az,05(0)uy, ¥

AutM,M’,\B(o)uh). Now we can state our:
Theorem 10 (Main Isomorphism Theorem). We have
R(e) = A3} (Auty, (o/p™ /ux,), X Auty, (0/p72);)
if Ao > Az.
Note that one way of isomorphism
& : R(e) — A3} (Auty, (0/p* /un,), X Auty, (0/p*?),)

is already given, by sending & : ¢ — (7,0). In order to compute R(e), this theorem allows us to
compute Ay} (Auty, (0/p1 /ux,); X Auty, (0/p?2),) instead. Let '

A AN (Auty, (0/p™ /ua,), ¥ Auty, (0/p™) ) — Auta, (0/p™ /ur,),
be the ” projection” map to the first component; i.e., A : (7,0) +— 7. Then Ker A is the set of 1,0)
satisfying
{a(a) = a mod p*? a € 0% /p*?,
o(a) ~amod p** Vuy, ac€p/p.
Let K be the kernel of the natural map Auty, (0/p*?); — 0*/p?, that is,
K = {0 € Auty, (ca/ph)1 |o(a) =aforalla€ 0* /p*?}.

Lemma 11. We have
KerA = K.

We shall show that the group in question, A} }(Auty, (0/p* /ux;), X Auty, (o/p*2),), is iso-
morphic to a semidirect product of K and the first component Aut), (o/pM /qu)15

Proposition 12. The sequence
1 — K — A7} (Auty, (0/p™ /uy,), X Auty, (o/p*?),) — Auty, (o/p™ /ur,), — 1
is exact and splitting. In other words, we have
A5 Auty, (0/p™ /uy,), x Auty, (0/p2),) = Auty, (0/p™ Jux,), x K.

This result divides our investigation into two parts: the analysis of the structure of K and that
of Auty, (0/p*/uy,),. We begin with the former.
Recall that

K = {0 € Auty, (0/p**), | c(a) =a Yae (0 /p*2)}
= {o € Auty, (0/p*), | o(a) = a Ya € (0*/p**) and o(a) ~ a mod p*2 Vuy, Ya € p/p*?}.
For the sake of convenience, we shall analyze groups slightly larger than K’; namely,
K = {0 € Auty, (0/p*?) | o(a) ~ a mod p*? Vuy, Ya € o/p?},

and
K= {o € Auty, (0/p>‘2)1 | 0(a) ~ a mod p** Vuy, Ya € o/p*?}.

Of course we have K| = {0 € K | 0(1) = 1}.
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Proposition 13. K decomposes into a direct product as

K~QoxQx X Qxr-xm1
where each factor Q; (defined for 0 < i < Ay — 1) is given by

Qi = {ae K|o(a)=a foralaec (O\qi)/p“}-

Corollary 14. K; and K decompose into direct products as

K, Qo x Q1 X -+ x Qxy—xy-1 and
K=Q; xQax - X Qxx,-1,

respectively, where
Q={oekilo@=a"aep/p*}={ceQulo()=1}.

We now focus on the calculation of each Q;. First, we give a description of generators of Q;.
We begin with the following lemma.

Lemma 15. Leto € K and 0 < j < A2 — A3. Ifa = bmod p, then o(a) —a = o(b) —b mod pi*>s.
We apply this lemma particularly to @; (0 < i < Xp — A3 —1). For j € [i +1,A2 — A, let
(pj“*"\ﬂ“l/p’\’)qi/pj denote the set of maps z : g;/p? — pit2s~1/pA2 Note that since pitrs—1/phz

is an abelian group, so becomes (;Jj+>‘3“1/;3)‘2)q""/pJ naturally. Given j € [i + 1,A2 — A3] and
z:q;/p? — pI+2s~1/pr2 define a map g; . : 0/p*? — o/p*? by

a+z(amod p?) ac€q;,
95,2(a) = v
a otherwise.
We shall show that g; , is in Q;; more precisely,
Proposition 16. We have

Qi =(gjz)  jeli+1ra-na) = (g52) seli+1Aa—As]
ze(,_,j+,\3—1/p,\2)w-i/v’ ze(S1r3'+"3‘1)“"/pJ

where (SmI+23=1)%/¥" denotes the set of maps z : q;/p? — Sri+tra=1  pi+la=1/pla.

Using these generators, we give two sorts of descriptions of @;. The former turns out to be
useful particularly for the case A3 =1, whereas the latter being useful for the case A3 > %/\2.
For j € [i + 1, 2 — A3 + 1], define

ng) ={oc€Qi|o(a)=amodp’**-1Y ¢ o/p*}.
Then clearly we have Q; > ng ) for each J whence obtain a chain of normal subgroups ng ).
Proposition 17. We have a normal series of Q;: .
Qi = L§i+1) > L£i+2) S Lgxg—)\sﬂ) -1,
where the factors of the series are given by
LY LI = (o/p)» /¥,
foralljeli+ 1,‘)\2 — Azl
Proposition 18. We have

LEJ) = (gn,z> ne{j,Az2—As] = (gn.z) n€fj,A2~A3]
ze(p"'+"3_1/p’\2)"‘/pn zE(Sr”‘L’\?"l)“"/’"

Lemma 19. We have the eract sequence of groups
1— Lgl\z_l\g) — Qi — Qiy1 — 1.

This sequence splits if A3 = 1.
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Proposition 20. If A3 = 1, then Q; decomposes into a wreath product as
Qi~klkl--- 1kl
Ap—i-1
where 1 is to act on k> trivially and k on k by addition. To put it more concisely,
Q; ~ (kl(/\z——i—l))kx'
We present another way of describing the structure of @Q;. In order to do this, let us define
U = {0 €Qi|a(a)—a=o(b) —bmod p** if a = bmod p’},
where i < j < Ap — A3. This gives us a filtration of @Q;:
Q; = m()\z—,\g) 5 Ui(,\g—xg—n 5.0 Ui(i+l) S Ui(z') - T
Here, T; is the group of translations, i.e.,
T,={c€Qi|o(a)—a=o(b)—bforalla,be o/p*?}.
Lemma 21. We have
Ui(j) = <gn,z) n€fi+1,j] .
ze(prtra=t/pr2)ti/e”
Now for each j € [i + 1, A2 — A3] define
Hi(j) ={oe€ Ui(j) | o(a) =aif aj_1 =0¢€ S},

A2—1
n=1

with a € 0/p>? being written as a = 3 a,m" with a, € S. Obviously the definition of Hfj )

depends on the choice of S.
Proposition 22. The subgroups Hi(j ) are abelian; more precisely, we have
i . i1y x kX
Hz_(.’l) o~ (p_7+/\3—1/p)\2)(‘1-/P )x

) F—i—=1yXx x
. (o/p,\,_,\3_1+1)(0/9 ) xk )

Proposition 23. Q; decomposes into a product of abelian subgroups Hi(j ) ¢ Q: (1+1 < j < Aa—A3)
as - .
Qi — H’fi+1)Hfi+2) . Hi()\z—As)’

with the properties
i+1) y7(i4+2) %) j+1
(HFVHID . HP ) N HITY =1,
i+1) pp(i+2 j j+1 j+1 i+1) pr(i+2) &2
(Hi(’ 'H{ )-~-Hf’))Hf’ )= HY )(H§’ HY -.-Hi’).

Lemma 24. Ifi+ A3 > Ay — A3, then we have
Az—Az—1

Q; = @ (o/pAz—)\a—j)(o/Pj_i)xka.

j=i
Proposition 25. If A3 > 1(A2 — 1), then K is abelian and

Az—As—1Az—Az—1

Kx @ @ (ofpr)
i=1 j=1 )

Also, if A3 > X2, then Qo is abelian and

Az—Az-1

T e

§=0
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Now we describe the structure of Qy, which we shall need later in computing Auty, (0/p** /uy, ).
So for each j € [1, A2 — A3, put

féj) ={0€Qy|o(a)=amodp’**~1 g € o/p*}.
.Evidently we have —Q—O > IE,” for each j.
Proposition 26. We have a normal series of Qy:
| @Ozfél)bfff)bmb

where the factors of the series are given by

ZSAZ_A3+1) =1,

+() 7+ o x E
. LoJ /LoJ = (U/P)(o ~h/e
for each j € [1, 2 — A3).
Proposition 27. Assume A3 = 1. Then 60 decomposes into a semidirect product as
Qo ~ k(X N(1D/p72 70 g R (XN {11)/pP272 s k0N {1)/p

Proposition 28. Q, decomposes into a product of abelian subgroups as

—Q—O ~ F((ll)Héz) . '_H((),\Q—As)’
where

Hy = {oe H |o(1) =1}

= (o/p )

Proposition 29. If A3 > )2, then we have

— A2—Xs kX~ {1} Az—Az—1 Ae—As—j (0/p7)* x k>
Qo = (o/p ) ® @ (o/p ) .

j=1

Now we shift our attention to calculating the structure of Auty, (0/p* /uy,),. Let N and N be
the kernels of the natural homomorphisms

Auty, (0/p* /uy,), — Auto/p’
and
Auty, (o/p™ /uy,); — Aut(o/p™ /uy,),
respectively. That is, '
— A — Az v A1
N = {7 € Auty, (o/p* /uy,), | 7(a) = a mod p** Ya € p** /uy, }, and
N = {1 € Auty, (0/p™ /up,), | 7(a) ~ a mod p* Vuy, Ya € p* /uy, } .
Thus we have a normal series ‘
Auty, (0/p*/ur,), > N> N> 1.
Theorem 30. The following holds.
(1): We have
Aut,, (o/p’\“/u,\z)1 /N = Auto/p*s.
(2): We have
— >
N/N B Aaz2,
kX Az =1.
(3): We have
N=Q,xQy ™ xK.
Hence in particular N is abelian if A3 > %)\2.

We can show that N is abelian for certain types of A:

Proposition 31. If A\3 > %)\1, then N is abelian.



The structure of N resembles that of K; We obtain a decomposition of N similar to that of K:

Proposition 32. N decomposes into a direct product as
N2VyxVyx-xVy a1,
where each factor V; (defined for 0 <i < Ay — 1) is given by
Vi={reN|7r@)=a"ac (o~q)/p*/ux}

Lemma 33. We have the following.

(1): V, = Qi—/\1+)\2 fOTi S [/\1 — A2+ 1,0 — Az — 1],

(2): iV =..- =V, _), = Qo where A1 > Az,

(3): Vo = Q- .

Lastly, we consider the situation in which the residue field k is the finite field Fy. Then Aut L(M)

is evidently finite, and by the structual theorem we can compute the order of the group. There is

not much to do for case Ay = A3, so assume Xo > A3. We start with computing the order |Q;]. We
can use either the L-sequence of Q; or H-decomposition. Let us choose the former this time:

|Qi| = g9~ D+(a- 1)g+(g—1)g%+-+(g—1)g*2 7 3771

_H_q,\z—,\g—i
q .

In particular, we get |Qo| = g~ 49?7 Since K = H?i;’\a—l Q;, we see that

A2_A3_1 Ag—Az3—1

(K= [T 1@ = qEi T ) = g et e D
i=1 :
Also, by L-sequence or H-decomposition of @y, we see that |Qy|g*?~** = |Qo|. So we compute:

IN| = Qo - 1Qol** 2 - | K|

_ q—A2+>\3q—1+q'\2_>‘3 (q—l+q*2—*3))“'A2 .qz:?:';*a“(—uq“)
— q—)\2+)\3q—1+q'\2_'\3 q—z\1+>\2+(/\1 ~Az)gt2 s q—A2+)\3+1+Z;\:1_A3—1 q’
R R R IR DL et D et
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