Numerical Radius Norm for Module Maps

モジュール写像の数域半径ノルム

群馬大学・教育学部 伊藤 隆 (Takashi ITOH)
Department of Mathematics, Faculty of Education, Gunma University

In the present note we will explain a couple of results related to numerical radius norm for module maps on C^*-algebras.

(1) One is to extend the Ando-Okubo's theorem concerning Schur multipliers in the infinite dimensional setting.

(2) The other is to characterize a completely bounded module map.

This is joint with Masaru Nagisa (Chiba University).

1. Schur products and Schur multipliers

Let $M_n(\mathbb{C})$ be the $n \times n$ matrix algebra over \mathbb{C}. For $a = [a_{ij}], b = [b_{ij}] \in M_n(\mathbb{C})$, the Schur product \circ is defined by

$$a \circ b = [a_{ij}b_{ij}].$$

The Schur multiplier $S_a : M_n(\mathbb{C}) \rightarrow M_n(\mathbb{C})$ for $a \in M_n(\mathbb{C})$ is defined by $S_a(x) = a \circ x$. The Schur norm for $a \in M_n(\mathbb{C})$ is defined by

$$\|a\|_s = \|S_a\| = \sup\{\|a \circ x\| : \|x\| = 1\}.$$

The following is due to Haagerup in which the Schur multiplier appears naturally in operator algebras.

Example [Haagerup, 5] Let G be a locally compact group, $C(G)$ the continuous functions and $R(G)$ the group von-Neumann algebra. For $\varphi \in C(G)$, if

$$M_\varphi : R(G) \ni \lambda_g \mapsto \varphi(g)\lambda_g \in R(G)$$
is normal (σ-weak - σ-weak continuous), then
\[\|M_\varphi\|_{cb} = \sup\{\|\varphi(g_j^{-1}g_i)\|_s | g_i \in G, i \leq n, n \in \mathbb{N}\}. \]

The next result is unpublished.

Theorem A [Haagerup, 5] Let \(a = [a_{ij}] \in M_n(\mathbb{C}) \). Then the following are equivalent:

1) \(\|S_a\| \leq 1. \)
2) There are \(0 \leq r_1, r_2 \in M_n(\mathbb{C}) \) such that
\[
\begin{bmatrix} r_1 & a \\ a^* & r_2 \end{bmatrix} \geq 0, \quad r_1 \circ I \leq I \text{ and } r_2 \circ I \leq I.
\]
3) \(a \) has a factorization \(a = b^*c \) such that \(b^*b \circ I \leq I, \ c^*c \circ I \leq I. \)
4) There are vectors \(\{\xi_i\}, \{\eta_i\} \subset \ell^2_n, (i = 1, \cdots, n) \) such that \(\|\xi_i\|, \|\eta_i\| \leq 1 \) and \(a_{ij} = (\xi_j|\eta_i) \).

We consider the numerical radius norm \(w(\cdot) \) on \(\mathcal{B}(\mathcal{H}) \):
\[
w(a) = \sup_{\xi \neq 0} \frac{|(a\xi|\xi)|}{\|\xi\|^2}.
\]
It is easy to see that \(w(a) \leq \|a\| \leq 2w(a) \).

We also consider the induced norm for \(S_a \) with respect to the numerical radius norm that will be denoted by \(\|S_a\|_w \):
\[
\|S_a\|_w \equiv \sup_{x \neq 0} \frac{w(a \circ x)}{w(x)}.
\]

The following is due to Ando and Okubo which looks similar to Theorem A but each condition is finer than the above.

Theorem B [Ando-Okubo, 2] Let \(a = [a_{ij}] \in M_n(\mathbb{C}) \). Then the following are equivalent.
1) \(\|S_a\|_w \leq 1. \)
2) There is a $0 \leq r \in M_n(\mathbb{C})$ such that
\[
\begin{bmatrix}
 r & a \\
 a^* & r
\end{bmatrix} \geq 0, \quad \text{and} \quad r \circ I \leq I.
\]

3) a has a factorization $a = b^*d b$ such that $b^*b \circ I \leq I$, $d^*d \leq I$.

4) There are vectors $\{\xi_i\} \subset \ell^2_n, (i = 1, \cdots, n)$ and a contraction $d \in M_n(\mathbb{C})$ such that $||\xi_i|| \leq 1$ and $a_{ij} = (d \xi_j | \xi_i)$.

Remark The Haagerup’s theorem is derived from the Ando-Okubo’s theorem, because
\[
||S_a|| = ||S \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}||_w.
\]

To show 1) \Rightarrow 2), $||S_a|| \leq 1$ implies
\[
||S \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}||_w \leq 1.
\]

By the implication 1) \Rightarrow 2), there exists
\[
0 \leq r = \begin{bmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{bmatrix} \in M_n(\mathbb{C}) \quad \text{such that}
\]
\[
\begin{bmatrix}
 r_{11} & r_{21} & 0 & a \\
 r_{12} & r_{22} & 0 & 0 \\
 0 & 0 & r_{11} & r_{21} \\
 a^* & 0 & r_{12} & r_{22}
\end{bmatrix} \geq 0.
\]

This implies that
\[
\begin{bmatrix}
 r_{11} & a \\
 a^* & r_{22}
\end{bmatrix} \geq 0.
\]

2. **Module maps on operator systems**

Let $\varphi : M_n(\mathbb{C}) \rightarrow M_n(\mathbb{C})$. Then the followings are equivalent:

1) There exists $a \in M_n(\mathbb{C})$ such that $\varphi = S_a$.

2) \(\varphi(\lambda x \mu) = \lambda \varphi(\mu) \) \(\lambda \in M_n(\mathbb{C}), \)

\[
\lambda = \begin{bmatrix}
\lambda_1 \\
\vdots \\
0
\end{bmatrix} \quad \text{and} \quad \mu = \begin{bmatrix}
\mu_1 \\
\vdots \\
0
\end{bmatrix} \in M_n(\mathbb{C})
\]

(i.e. \(\ell_n^\infty \)-module map)

Let \(A \) be a \(C^* \)-algebra and \(V \) an operator system in \(\mathcal{B}(\mathcal{H}) \), i.e., \(V \) is a self-adjoint subspace in \(\mathcal{B}(\mathcal{H}) \) with the identity. Let \(T \) be a bounded linear map from \((V, || \cdot ||) \) to \((\mathcal{B}(\mathcal{H}), || \cdot ||) \). We denote by \(T \otimes \text{id}_n \) the linear map

\[
\mathcal{M}_n(V) \ni [x_{ij}] \mapsto [T(x_{ij})] \in \mathcal{M}_n(\mathcal{B}(\mathcal{H})).
\]

If \(\sup_n ||T \otimes \text{id}_n|| \) is bounded, then we say \(T \) is completely bounded and denote the supremum by \(||T||_{cb} \). If \(T \otimes \text{id}_n \) is positive for all \(n \), then we say \(T \) is completely positive.

We denote by \(||T||_w \) the operator norm of \(T \) viewed as a bounded linear map from \((V, w(\cdot)) \) to \((\mathcal{B}(\mathcal{H}), w(\cdot)) \), i.e.,

\[
||T||_w = \sup\{w(T(x)) | w(x) \leq 1, x \in V\}.
\]

Every completely bounded map from an operator space to \(\mathcal{B}(\mathcal{H}) \) is also completely bounded with respect to numerical radius norm. We use the following notation:

\[
||T||_{wcb} = \sup_{n \in \mathbb{N}} ||T \otimes \text{id}_n||_w.
\]

We call that an action of \(A \) on \(\mathcal{H} \) is locally cyclic if, for any \(n \) and \(\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{H} \), there exists a vector \(\eta \in \mathcal{H} \) such that

\[
\xi_i \in \text{the norm closure of } \{a\eta | a \in A\}.
\]

We remark that, for \(x = (x_{ij}) \in \mathcal{M}_n(V) \subset \mathcal{B}(\mathcal{H}^n) \) and \(a = (a_{kl}) \in M_{nm}(A) \), we can see

\[
a^* \cdot x \cdot a = (\sum_{k,l}a_{ki}^* \cdot x_{kl} \cdot a_{lj}) \in \mathcal{M}_m(V) \subset \mathcal{B}(\mathcal{H}^m)
\]

and we get

\[
w(a^* \cdot x \cdot a) \leq ||a||^2 w(x).
\]

The condition (locally cyclic) implies that \(|| \cdot ||_w = || \cdot ||_{wcb} \).
Proposition 1 Let A be a unital C^*-algebra, V an A-bimodule operator system and T a bounded A-bimodule map from V to $\mathcal{B}(\mathcal{H})$. If the action of A on \mathcal{H} is locally cyclic, then we have

$$||T||_w = ||T||_{wcb}.$$

Let A be a unital C^*-algebra and V an A-bimodule operator system in $\mathcal{B}(\mathcal{H})$. Set

$$N = \{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} | x, w \in \mathcal{B}(\mathcal{H}), y, z \in V \}.$$

Then N is an A-bimodule operator system by the action

$$a \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix} \cdot b = \begin{pmatrix} axb & ayb \\ azb & awb \end{pmatrix} \text{ for } a, b \in A.$$

Theorem 2 Let A be a unital C^*-algebra, V an A-bimodule operator system in $\mathcal{B}(\mathcal{H})$ and T a completely bounded A-bimodule map from V to $\mathcal{B}(\mathcal{H})$. Then we have

$$||T||_{wcb} = \inf \{ ||S|| | \begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : N \rightarrow M_2(\mathcal{B}(\mathcal{H})) \}$$

$$A\text{-bimodule completely positive} \}$$

$$= \inf \{ ||S|| | \begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : N \rightarrow M_2(\mathcal{B}(\mathcal{H})) \}$$

$$\text{completely positive} \}$$

where

$$\begin{pmatrix} S & T \\ T^* & S \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} S(x) & T(y) \\ T(z^*)^* & S(w) \end{pmatrix},$$

for $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in N = \{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} | x, w \in \mathcal{B}(\mathcal{H}), y, z \in V \}$.
To show this, we need the Wittstock's Hahn Banach type theorem for completely bounded maps. The key operator space N_0 is that

$$N_0 = \left\{ \begin{bmatrix} a+x & y \\ z & a-x \end{bmatrix} \mid a \in A, x \in \mathcal{B}(\mathcal{H}), y, z \in V \right\}$$

and we consider

$$\varphi_0 \left(\begin{bmatrix} a+x & y \\ z & a-x \end{bmatrix} \right) = a + \frac{1}{2}(T(y) + T(z^*)^*).$$

We can see that φ_0 is a completely positive A-bimodule map. Using the Wittstock's Hahn-Banach theorem [13], we get the unital completely positive A-bimodule map φ from N to $\mathcal{B}(\mathcal{H})$ which is an extension of φ_0. Set

$$S(x) = 2\varphi \left(\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \right)$$

Then we have a desired map.

Remark V. I. Paulsen and C. Y. Suen [9] introduced the norm \(|||T||| \) for a completely bounded map T from a C*-algebra A to $\mathcal{B}(\mathcal{H})$ as follows:

$$|||T||| = \inf \{ \|S\| \mid \begin{bmatrix} S & T \\ T^* & S \end{bmatrix} : \mathcal{M}_2(A) \rightarrow \mathcal{M}_2(\mathcal{B}(\mathcal{H})) \text{ completely positive} \}.$$

By the injectivity of $\mathcal{B}(\mathcal{H})$, we can get

$$|||T||| = ||T|| _{wcb}.$$

We set $\mathcal{A}(^*) = \{ x^* \in \mathcal{B}(\mathcal{H}) \mid x \in \mathcal{A} \}$.

Theorem 3 Let A be a norm closed unital algebra on \mathcal{H} and T a completely bounded left $A^{(*)}$-right A-module map from $\mathbb{K}(\mathcal{H})$ to $\mathcal{B}(\mathcal{H})$. Then there exist $t = (t_{ij}) \in \mathcal{B}(\ell^2(I))$ and $\{v_i \mid i \in I\} \subset A'$ such that

$$\|t\| = \|T\|_{wcb}, \quad \sum_{i \in I} v_i^*v_i \leq 1$$

$$T(x) = \sum_{i,j \in I} v_i^* t_{ij} x v_j \quad (x \in \mathbb{K}(\mathcal{H})).$$

To see this, we may regard T as a normal completely bounded $A^{(*)}$--A-module map on $\mathcal{B}(\mathcal{H})$ Then there exist a $*$-representation π of $\mathbb{K}(\mathcal{H})$ on a Hilbert space \mathcal{K}, an isometry $w : \mathcal{H} \to \mathcal{K}$ and an operator $s \in \pi(\mathbb{K}(\mathcal{H}))'$ such that

$$\|T\|_{wcb} = \|s\|, \quad T(\cdot) = w^* s \pi(\cdot) w.$$

Since all irreducible representations of $\mathbb{K}(\mathcal{H})$ are unitarily equivalent to the identity representation, we may assume that

$$\mathcal{K} = \mathcal{H} \otimes \ell^2(I), \quad \pi(x) = x \otimes 1, \quad s = (s_{ij}1_{\mathcal{B}(\mathcal{H})})_{i,j \in I}$$

$$(s_{ij} \in \mathbb{C}), \quad w = (w_i)_{i \in I} \in \mathcal{B}(\mathcal{H}, \mathcal{H} \otimes \ell^2(I)),$$

$$T(x) = w^* s (x \otimes 1) w = \sum_{i,j \in I} w_i^* s_{i,j} x w_j \text{ for } x \in \mathbb{K}(\mathcal{H}).$$

We can replace $\{w_i\}$ by $\{v_i\} \subset A'$.

Corollary 4 [Smith, 11] Let A and B be norm closed unital algebras on \mathcal{H} and T a completely bounded left A-right B-module map from $\mathbb{K}(\mathcal{H})$ to $\mathcal{B}(\mathcal{H})$. Then there exist $\{a_i \mid i \in I\} \subset A'$ and $\{b_i \mid i \in I\} \subset B'$ such that

$$T(x) = \sum_{i \in I} a_i x b_i, \quad \|\sum_{i \in I} a_i a_i^*\| \|\sum_{i \in I} b_i^* b_i\| = \|T\|_{cb}^2$$

for $x \in \mathbb{K}(\mathcal{H})$.

We define the left action of $A \oplus B^{(*)}$ and the right action of $A^{(*)} \oplus B$ on $\mathcal{M}_\kappa(\mathbb{K}(\mathcal{H}))$ and the left $A \oplus B^{(*)}$-right $A^{(*)}$-module completely bounded.
map \tilde{T} from $\mathbb{M}_2(\mathbb{K}(\mathcal{H}))$ to $\mathbb{M}_2(\mathbb{B}(\mathcal{H}))$ as follows:

$$(a_1 \oplus b_1^*)(x \ y \ z \ w) (a_2^* \oplus b_2) = (a_1 x a_2^* \ a_1 y b_2) (b_1^* z a_2^* \ b_1^* w b_2)$$

$$\tilde{T}(x \ y \ z \ w) = \begin{pmatrix} 0 & T(y) \\ 0 & 0 \end{pmatrix}$$

where $x, y, z, w \in \mathbb{K}(\mathcal{H})$ and $a_1, a_2 \in A, \ b_1, b_2 \in B$. Then we show that $||\tilde{T}||_{wcb} = ||T||_{cb}$. Apply the previous theorem for \tilde{T}. Then we have the desired form for T.

For a Hilbert space \mathcal{H}, we choose a completely orthonormal system $\{e_i | i \in I\}$. We denote by ℓ^∞ the maximal abelian subalgebra of $\mathbb{B}(\mathcal{H})$ generated by $\{e_i \otimes e_i | i \in I\}$, where $(e_i \otimes e_j)(\xi) = (\xi|e_j)e_i$ for $\xi \in \mathcal{H}$. Let T be a bounded ℓ^∞-bimodule map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. By the module property of T, we have the $I \times I$-matrix $a = (a_{ij})$ over \mathbb{C} such that

$$T(e_i \otimes e_j) = a_{ij}(e_i \otimes e_j).$$

Since the set $\{a_{ij}\}_{i,j \in I}$ is bounded, we can define the bounded linear operator a_T from ℓ^1 to ℓ^∞ given by

$$a_T((\lambda_j)_{j \in I}) = (\sum_{j \in I} a_{ij} \lambda_j)_{i \in I} \text{ for } (\lambda_j)_{j \in I} \in \ell^1.$$

We will extend the Ando-Okubo's theorem.

Theorem 4 Let T be an ℓ^∞-bimodule bounded linear map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. Then the following are equivalent:

1. $||T||_w \leq 1$.
2. $||T||_{wcb} \leq 1$.
3. There exists a completely positive contraction S from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$ such that $\begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : \mathbb{M}_2(\mathbb{K}(\mathcal{H})) \to \mathbb{M}_2(\mathbb{B}(\mathcal{H}))$ is ℓ^∞-bimodule completely positive.
4. There exist a bounded linear operator v from ℓ^1 to ℓ^2 and $b \in \mathbb{B}(\ell^2)$ such that $a_T = v^* b v$ and $||v||^2 ||b|| \leq 1$.
5. There exist $\{\xi_i | i \in I\} \subset \mathcal{H}$ and $b \in \mathbb{B}(\mathcal{H})$ such that $||\xi_i|| \leq 1, ||b|| \leq 1, a_{ij} = (b \xi_j | \xi_i)$.

Note added in proof.

References

