Numerical Radius Norm for Module Maps モジュール写像の数域半径ノルム

群馬大学・教育学部 伊藤 隆 (Takashi ITOH) Department of Mathematics, Faculty of Education, Gunma University

In the present note we will explain a couple of results related to numerical radius norm for module maps on C^* -algebras.

- (1) One is to extend the Ando-Okubo's theorem concerning Schur multipliers in the infinite dimensional setting.
- (2) The other is to characterize a completely bounded module map. This is joint with Masaru Nagisa (Chiba University).

1. Schur products and Schur multipliers

Let $M_n(\mathbb{C})$ be the $n \times n$ martix algebra over \mathbb{C} . For $a = [a_{ij}], b = [b_{ij}] \in M_n(\mathbb{C})$, the Schur product \circ is defined by

$$a \circ b = [a_{ij}b_{ij}].$$

The Schur multiplier $S_a: M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$ for $a \in M_n(\mathbb{C})$ is defined by $S_a(x) = a \circ x$. The Schur norm for $a \in M_n(\mathbb{C})$ is defined by

$$||a||_s = ||S_a|| = \sup\{||a \circ x|| \mid ||x|| = 1\}.$$

The following is due to Haagerup in which the Schur multiplier appears naturally in operator algebras.

Example [Haagerup, 5] Let G be a locally compact group, C(G) the continuous functions and R(G) the group von-Neumann algebra. For $\varphi \in C(G)$, if

$$M_{\varphi}: R(G) \ni \lambda_q \longmapsto \varphi(g)\lambda_g \in R(G)$$

is normal (σ -weak - σ -weak continuous), then

$$||M_{\varphi}||_{cb} = \sup\{||[\varphi(g_j^{-1}g_i)]||_s | g_i \in G, i \leq n, n \in \mathbb{N}\}.$$

The next result is unpublished.

Theorem A[Haagerup, 5] Let $a = [a_{ij}] \in M_n(\mathbb{C})$. Then the following are equivalent:

- 1) $||S_a|| \leq 1$.
- 2) There are $0 \le r_1, r_2 \in M_n(\mathbb{C})$ such that

$$\begin{bmatrix} r_1 & a \\ a^* & r_2 \end{bmatrix} \ge 0, \quad r_1 \circ I \le I \text{ and } r_2 \circ I \le I.$$

- 3) a has a factorization $a = b^*c$ such that $b^*b \circ I \leq I$, $c^*c \circ I \leq I$.
- 4) There are vectors $\{\xi_i\}$, $\{\eta_i\} \subset \ell_n^2$, $(i=1,\dots,n)$ such that $\|\xi_i\|$, $\|\eta_i\| \leq 1$. and $a_{ij} = (\xi_j|\eta_i)$.

We consider the numerical radius norm $w(\cdot)$ on $\mathbb{B}(\mathcal{H})$:

$$w(a) = \sup_{\xi \neq 0} \frac{|(a\xi \mid \xi)|}{\|\xi\|^2}.$$

It is easy to see that $w(a) \leq ||a|| \leq 2w(a)$.

We also consider the induced norm for S_a with respect to the numerical radius norm that will be denoted by $||S_a||_w$:

$$||S_a||_w \equiv \sup_{x \neq 0} \frac{w(a \circ x)}{w(x)}.$$

The following is due to Ando and Okubo which looks similar to Theorem A but each condisiton is finer than the above.

Theorem B[Ando-Okubo, 2] Let $a = [a_{ij}] \in M_n(\mathbb{C})$. Then the following are equivalent.

$$||S_a||_w \le 1.$$

 $2)_{\boldsymbol{w}}$ There is a $0 \leq r \in M_n(\mathbb{C})$ such that

$$egin{bmatrix} r & a \ a^* & r \end{bmatrix} \geq 0, \quad ext{and} \;\; r \circ I \leq I.$$

- a has a factorization $a = b^*db$ such that $b^*b \circ I \leq I$, $d^*d \leq I$.
- There are vectors $\{\xi_i\}\subset \ell^2_n, (i=1,\cdots,n)$ and a contraction $d\in$ $M_n(\mathbb{C})$ such that $||\xi_i|| \leq 1$ and $a_{ij} = (d\xi_j|\xi_i)$.

Remark The Haagerup's theorem is derived from the Ando-Okubo's theorem, because

$$||S_a|| = ||S_{\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}}||_w.$$

To show 1) \Rightarrow 2), $||S_a|| \leq 1$ implies

$$||S\begin{bmatrix}0 & a\\0 & 0\end{bmatrix}||_w \le 1.$$

By the implication
$$1)_w \Rightarrow 2)_w$$
, there exists $0 \le r = \begin{bmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{bmatrix} \in M_n(\mathbb{C})$ such that

$$\begin{bmatrix} r_{11} & r_{21} & 0 & a \\ r_{12} & r_{22} & 0 & 0 \\ 0 & 0 & r_{11} & r_{21} \\ a^* & 0 & r_{12} & r_{22} \end{bmatrix} \geq 0.$$
 This implies that
$$\begin{bmatrix} r_{11} & a \\ a^* & r_{22} \end{bmatrix} \geq 0.$$

2. Module maps on operator systems

Let $\varphi: M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$. Then the followings are equivalent:

There exists $a \in M_n(\mathbb{C})$ such that $\varphi = S_a$.

2)
$$\varphi(\lambda x \mu) = \lambda \varphi(x) \mu$$
 for $x \in M_n(\mathbb{C})$,

$$\lambda = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & & \lambda_n \end{bmatrix} \text{ and } \mu = \begin{bmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & & \mu_n \end{bmatrix} \in M_n(\mathbb{C})$$

(i.e. ℓ_n^{∞} -module map)

Let A be a C^* -algebra and V an operator system in $\mathbb{B}(\mathcal{H})$, i.e., V is a self-adjoint subspace in $\mathbb{B}(\mathcal{H})$ with the identity. Let T be a bounded linear map from $(V, \|\cdot\|)$ to $(\mathbb{B}(\mathcal{H}), \|\cdot\|)$ We denote by $T \otimes \mathrm{id}_n$ the linear map

$$\mathbf{M}_n(V) \ni [x_{ij}] \longmapsto [T(x_{ij})] \in \mathbf{M}_n(\mathbf{B}(\mathcal{H})).$$

If $\sup_n ||T \otimes \mathrm{id_n}||$ is bounded, then we say T is completely bounded and denote the supremum by $||T||_{cb}$. If $T \otimes \mathrm{id_n}$ is positive for all n, then we say T is completely positive.

We denote by $||T||_w$ the operator norm of T viewed as a bounded linear map from $(V, w(\cdot))$ to $(\mathbb{B}(\mathcal{H}), w(\cdot))$, i.e.,

$$||T||_{w} = \sup\{w(T(x)) \mid w(x) \le 1, \ x \in V\}.$$

Every completely bounded map from an operator space to $\mathbb{B}(\mathcal{H})$ is also completely bounded with respect to numerical radius norm. We use the following notation:

$$||T||_{wcb} = \sup_{n \in \mathbb{N}} ||T \otimes \mathrm{id}_n||_{\mathbf{w}}.$$

We call that an action of A on \mathcal{H} is locally cyclic if, for any n and $\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{H}$, there exists a vector $\eta \in \mathcal{H}$ such that

$$\xi_i \in \text{the norm closure of } \{a\eta \mid a \in A\}.$$

We remark that, for $x=(x_{ij})\in \mathbf{M}_n(V)\subset \mathbf{B}(\mathcal{H}^n)$ and $a=(a_{kl})\in M_{nm}(A)$, we can see

$$a^* \cdot x \cdot a = (\sum_{k,l} a_{ki}^* \cdot x_{kl} \cdot a_{lj}) \in \mathbf{M}_m(V) \subset \mathbf{B}(\mathcal{H}^m)$$

and we get

$$w(a^* \cdot x \cdot a) \le ||a||^2 w(x).$$

The condition(locally cyclic) implies that $\|\cdot\|_{w} = \|\cdot\|_{wcb}$.

Proposition 1 Let A be a unital C^* -algebra, V an A-bimodule operator system and T a bounded A-bimodule map from V to $\mathbb{B}(\mathcal{H})$. If the action of A on \mathcal{H} is locally cyclic, then we have

$$||T||_{w} = ||T||_{wcb}.$$

Let A be a unital C*-algebra and V an A-bimodule operator system in $\mathbb{B}(\mathcal{H})$. Set

$$N = \{ egin{pmatrix} x & y \ z & w \end{pmatrix} \mid x, w \in \mathbf{B}(\mathcal{H}), y, z \in V \}.$$

Then N is an A-bimodule operator system by the action

$$a \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix} \cdot b = \begin{pmatrix} axb & ayb \\ azb & awb \end{pmatrix} \quad \text{for } a, b \in A.$$

Theorem 2 Let A be a unital C^* -algebra, V an A-bimodule operator system in $\mathbb{B}(\mathcal{H})$ and T a completely bounded A-bimodule map from V to $\mathbb{B}(\mathcal{H})$. Then we have

$$\begin{split} \|T\|_{wcb} \\ = \inf\{\|S\| \mid \begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : N \longrightarrow \mathbf{M}_2(\mathbf{B}(\mathcal{H})) \\ & \qquad \qquad A\text{-bimodule completely positive} \,\} \\ = \inf\{\|S\| \mid \begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : N \longrightarrow \mathbf{M}_2(\mathbf{B}(\mathcal{H})) \\ & \qquad \qquad completely positive\} \end{split}$$

where

$$\begin{pmatrix} S & T \\ T^* & S \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} S(x) & T(y) \\ T(z^*)^* & S(w) \end{pmatrix},$$

$$for \quad \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in N = \{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \mid x, w \in \mathbf{B}(\mathcal{H}), y, z \in V \}.$$

To show this, we need the Wittstock's Hahn Banach type theorem for completely bounded maps. The key operator space N_0 is that

$$N_0 = \left\{ egin{bmatrix} a+x & y \ z & a-x \end{bmatrix} \mid a \in A, x \in \mathbf{B}(\mathcal{H}), y, z \in V
ight\}$$

and we consider

$$arphi_0\left(egin{bmatrix} a+x & y \ z & a-x \end{bmatrix}
ight)=a+rac{1}{2}(T(y)+T(z^*)^*).$$

We can see that φ_0 is a completely positive A-bimodule map. Using the Wittstock's Hahn-Banach theorem [13], we get the unital completely positive A-bimodule map φ from N to $\mathbb{B}(\mathcal{H})$ which is an extension of φ_0 .

Set

$$S(x) = 2\varphi \left(\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \right)$$

Then we have a desired map.

Remark V. I. Paulsen and C. Y. Suen [9] introduced the norm |||T||| for a completely bounded map T from a C*-algebra A to $\mathbf{B}(\mathcal{H})$ as follows:

$$|||T||| = \inf\{||S|| \mid \begin{pmatrix} S & T \\ T^* & S \end{pmatrix} : \mathbf{M}_2(A) \longrightarrow \mathbf{M}_2(\mathbf{B}(\mathcal{H}))$$
 completely positive $\}$.

By the injectivity of $\mathbf{B}(\mathcal{H})$, we can get

$$|||T||| = ||T||_{wcb}.$$

We set
$$\mathcal{A}^{(*)} = \{x^* \in \mathbb{B}(\mathcal{H}) \mid x \in \mathcal{A}\}.$$

Theorem 3 Let A be a norm closed unital algebra on \mathcal{H} and T a completely bounded left $A^{(*)}$ -, right A-module map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. Then there exist $t = (t_{ij}) \in \mathbb{B}(\ell^2(I))$ and $\{v_i \mid i \in I\} \subset \mathcal{A}'$ such that

$$||t|| = ||T||_{wcb}, \quad \sum_{i \in I} v_i^* v_i \le 1$$

$$T(x) = \sum_{i,j \in I} v_i^* t_{ij} x v_j \qquad (x \in \mathbb{K}(\mathcal{H})).$$

To see this, we may regard T as a normal completely bounded $\mathcal{A}^{(*)} - \mathcal{A}$ -module map on $\mathbb{B}(\mathcal{H})$ Then there exist a *-representation π of $\mathbb{K}(\mathcal{H})$ on a Hilbert space \mathcal{K} , an isometry $w: \mathcal{H} \longrightarrow \mathcal{K}$ and an operator $s \in \pi(\mathbb{K}(\mathcal{H}))'$ such that

$$||T||_{wcb} = ||s||, \quad T(\cdot) = w^* s \pi(\cdot) w.$$

Since all irreducible representations of $\mathbb{K}(\mathcal{H})$ are unitarily equivalent to the identity representation, we may assume that

$$\mathcal{K} = \mathcal{H} \otimes \ell^{2}(I), \ \pi(x) = x \otimes 1, \ s = (s_{ij}1_{\mathbb{B}(\mathcal{H})})_{i,j \in I}$$
$$(s_{ij} \in \mathbb{C}), \quad w = (w_{i})_{i \in I} \in \mathbb{B}(\mathcal{H}, \mathcal{H} \otimes \ell^{2}(I)),$$
$$T(x) = w^{*}s(x \otimes 1)w = \sum_{i,j \in I} w_{i}^{*}s_{i,j}xw_{j} \text{ for } x \in \mathbb{K}(\mathcal{H}).$$

We can replace $\{w_i\}$ by $\{v_i\} \subset \mathcal{A}'$.

Corollary 4 [Smith, 11] Let \mathcal{A} and \mathcal{B} be norm closed unital algebras on \mathcal{H} and T a completely bounded left \mathcal{A} - right \mathcal{B} -module map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. Then there exist $\{a_i \mid i \in I\} \subset \mathcal{A}'$ and $\{b_i \mid i \in I\} \subset \mathcal{B}'$ such that

$$T(x) = \sum_{i \in I} a_i x b_i, \quad \| \sum_{i \in I} a_i a_i^* \| \| \sum_{i \in I} b_i^* b_i \| = \| T \|_{cb}^2$$

for $x \in \mathbb{K}(\mathcal{H})$.

We define the left action of $\mathcal{A} \oplus \mathcal{B}^{(*)}$ and the right action of $\mathcal{A}^{(*)} \oplus \mathcal{B}$ on $\mathbf{M}_{\succeq}(\mathbb{K}(\mathcal{H}))$ and the left $\mathcal{A} \oplus \mathcal{B}^{(*)}$, right $\mathcal{A}^{(*)} \oplus \mathcal{B}$ -module completely bounded

map \tilde{T} from $\mathbb{M}_2(\mathbb{K}(\mathcal{H}))$ to $\mathbb{M}_2(\mathbb{B}(\mathcal{H}))$ as follows:

$$(a_1 \oplus b_1^*) \begin{pmatrix} x & y \\ z & w \end{pmatrix} (a_2^* \oplus b_2) = \begin{pmatrix} a_1 x a_2^* & a_1 y b_2 \\ b_1^* z a_2^* & b_1^* w b_2 \end{pmatrix}$$
$$\tilde{T} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 0 & T(y) \\ 0 & 0 \end{pmatrix}$$

where $x, y, z, w \in \mathbb{K}(\mathcal{H})$ and $a_1, a_2 \in \mathcal{A}$, $b_1, b_2 \in \mathcal{B}$. Then we show that $\|\tilde{T}\|_{wcb} = \|T\|_{cb}$. Apply the previous theorem for \tilde{T} . Then we have the desired form for T.

For a Hilbert space \mathcal{H} , we choose a completely orthonormal system $\{e_i \mid i \in I\}$. We denote by ℓ^{∞} the maximal abelian subalgebra of $\mathbb{B}(\mathcal{H})$ generated by $\{e_i \otimes e_i \mid i \in I\}$, where $(e_i \otimes e_j)(\xi) = (\xi|e_j)e_i$ for $\xi \in \mathcal{H}$. Let T be a bounded ℓ^{∞} -bimodule map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. By the module property of T, we have the $I \times I$ -matrix $a = (a_{ij})$ over \mathbb{C} such that

$$T(e_i \otimes e_j) = a_{ij}(e_i \otimes e_j).$$

Since the set $\{a_{ij}\}_{i,j\in I}$ is bounded, we can define the bounded linear operator a_T from ℓ^1 to ℓ^∞ given by

$$a_T((\lambda_j)_{j\in I}) = (\sum_{j\in I} a_{ij}\lambda_j)_{i\in I} \quad \text{ for } (\lambda_j)_{j\in I} \in \ell^1.$$

We will extend the Ando-Okubo's theorem.

Theorem 4 Let T be an ℓ^{∞} -bimodule bounded linear map from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$. Then the following are equivalent:

- (1) $||T||_w \leq 1$.
- (2) $||T||_{wcb} \leq 1$.
- (3) There exists a completely positive contraction S from $\mathbb{K}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H})$

such that $\begin{pmatrix} S & T \\ T^* & S \end{pmatrix}$: $\mathbf{M}_2(\mathbb{K}(\mathcal{H})) \longrightarrow \mathbf{M}_2(\mathbb{B}(\mathcal{H}))$ is ℓ^{∞} -bimodule completely positive.

- (4) There exsit a bounded linear operator v from ℓ^1 to ℓ^2 and $b \in \mathbf{B}(\ell^2)$ such that $a_T = v^*bv$ and $||v||^2||b|| \leq 1$.
 - (5) There exist $\{\xi_i \mid i \in I\} \subset \mathcal{H}$ and $b \in \mathbb{B}(\mathcal{H})$ such that

$$\|\xi_i\| \le 1, \ \|b\| \le 1, \ a_{ij} = (b\xi_j|\xi_i).$$

Note added in proof.

C.-Y. Suen has already shown Theorem 2 in a similar setting in the paper: Induced completely bounded norms and inflated Schur product, Acta Sci. Math.(Szeged) 66, (2000), 273-286.

References

- [1] T. Ando, On the structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34(1973), 11-15.
- [2] T. Ando and K. Okubo, *Induced norms of the Schur multiplier operator*, Linear Algebra Appl. 147(1991), 181–199.
- [3] K. E. Gustafson and D. K. M. Rao, *Numerical Range*, Universitext, Springer-Verlag 1996.
- [4] U. Haagerup, *Injectivity and decomposition of completely bounded maps*, Lecture Notes in Math., Springer-Verlag, 1132(1985), 170–222.
- [5] U. Haagerup, Decomposition of completely bounded maps on operator algebras, unpublished manuscript.
- [6] T. Itoh and M. Nagisa, Schur products and module maps on $B(\mathcal{H})$, Publ. RIMS Kyoto Univ. 36, (2000), 253–268.
- [7] T. Itoh and M. Nagisa, Numerical Radius Norm for Bounded Module Maps and Schur Multipliers, preprint.
- [8] V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Math. Ser. 146, Longman Sci. & Tech. 1986.
- [9] V. I. Paulsen and C. Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory 13(1985), 87-101.
- [10] G. Pisier, Similarity problems and completely bounded maps, 2nd, expanded edit., Lecture Notes in Math. 1618, Springer-Verlag 2001.
- [11] R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102, (1991), 156-175.

- [12] M. Takesaki, *Theory of operator algebras I*, Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, 2002.
- [13] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal. 40, (1981), 127-150.