<table>
<thead>
<tr>
<th>Title</th>
<th>ON JOINT SPECTRA OF NON-COMMUTING HYPONORMAL OPERATORS (Structure of operators and related current topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Soltysiak, Andrzej</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1312: 25-26</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42934</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON JOINT SPECTRA OF NON-COMMUTING HYPONORMAL OPERATORS

A. SOŁTYSIAK (POLAND, A. MICKIEWICZ UNIV.)

Let H be a complex Hilbert space and let $B(H)$ denote the Banach algebra of all (bounded linear) operators on H.

For n-tuple $T = (T_1, \ldots, T_n)$ of operators on H a spectral set $\gamma(T)$ is defined as follows:

$$\gamma(T) = \{ (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n : \sum_{j=1}^{n} (T_j - \lambda_j)^2 \text{ is not invertible in } B(H) \}.$$

(Here we write as usual $T_j - \lambda_j$ instead of $T_j - \lambda_j \text{id}_H$.) This set was introduced by McIntosh and Pryde ([1, 2]) and has proved useful not only in the spectral theory of self-adjoint operators but also in comparing various types of joint spectra of commuting families of operators (see [3]). One advantage of the set $\gamma(T)$ over other joint spectra is that it can be easily computed. In [4] it was shown that this set is also useful in the multiparameter spectral theory of normal operators.

We recall some necessary definitions. An operator $T \in B(H)$ is hyponormal (cohyponormal) if $\|T^*x\| \leq \|Tx\|$ ($\|Tx\| \leq \|T^*x\|$ respectively) for all $x \in H$. Clearly if an operator T is hyponormal, then T^* is cohyponormal. Moreover an operator T is normal if it is both hyponormal and cohyponormal.

Let $T = (T_1, \ldots, T_n)$ be an n-tuple of operators. A point $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ is not in the left (joint) spectrum of T if there exist operators $U_1, \ldots, U_n \in B(H)$ such that $\sum_{j=1}^{n} U_j (T_j - \lambda_j) = \text{id}_H$. The left spectrum of T will be denoted by $\sigma_l(T)$. The right spectrum, $\sigma_r(T)$, is defined analogously. The Harte spectrum of T (in $B(H)$), denoted by $\sigma_H(T)$, is the union of the left and right joint spectra, i.e.

$$\sigma_H(T) = \sigma_l(T) \cup \sigma_r(T).$$

All these spectra are compact (possibly empty) subsets of \mathbb{C}^n. Notice that for a single operator T the Harte spectrum $\sigma_H(T)$ coincides with the usual spectrum $\sigma(T)$. It is well-known that

$$\sigma_l(T) = \{ \lambda \in \mathbb{C}^n : \inf_{\|x\|=1} \sum_{j=1}^{n} \| (T_j - \lambda_j)x \| = 0 \}$$

1991 Mathematics Subject Classification. 47A13, 47B20.

Key words and phrases. left, right, and Harte's spectra, spectral set, hyponormal operator.

Typeset by A4A4S-TeX
(the approximate point spectrum) and
\[\sigma_r(T) = \{ \lambda \in \mathbb{C}^n: \sum_{j=1}^{n} ((T_j - \lambda_j)(H)) \neq H \} \]
(the defect spectrum). Let us introduce the following notation. For a single operator \(T \) symbols \(\text{Re} T \) and \(\text{Im} T \) will denote as usual its real and imaginary part. Hence \(T = \text{Re} T + i \text{Im} T \). If \(T = (T_1, \ldots, T_n) \) is an \(n \)-tuple of operators, then \(\text{Re} T = (\text{Re} T_1, \ldots, \text{Re} T_n) \), \(\text{Im} T = (\text{Im} T_1, \ldots, \text{Im} T_n) \), and \(II(T) = (\text{Re} T, \text{Im} T) \).

Letter \(p \) will denote the polynomial map \(p(z_1, \ldots, z_{2n}) = (z_1 + iz_{n+1}, \ldots, z_n + iz_{2n}) \).

We present a generalisation of one of the results proved in [4] to \(n \)-tuples of (not necessarily commuting) hyponormal operators. The result is as follows:

Theorem. If \(T = (T_1, \ldots, T_n) \) is an arbitrary \(n \)-tuple of hyponormal (cohyponormal) operators, then
\[\sigma_l(T) = p(\gamma(II(T))) \]
(and respectively
\[\sigma_r(T) = p(\gamma(II(T))) \].

It is easy to see that one cannot replace in the theorem the left spectrum (or the right spectrum) by the Harte spectrum if the operators \(T_j \) are not normal.

References