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Abstract. An operator means abounded linear operator on aHilbert space H. We
obtained the basic property between Specht ratio $S(1)$ and generalized Kantorovich con-
stant $K(p)$ in [13], that is, Specht ratio $S(1)$ can be expressed by generalized Kantorovich
constant $K(p):5(1)=e^{K’(1)}$ . We shall investigate several product type and difference type

inequalities associated with Alog $A$ by applying this basic property to several Kantorovich
type inequalities.

\S 1 Introduction.

An operator $A$ is said to be positive operator (denoted by $T\geq 0$) if $(Ax, x)\geq 0$ for all $x$

in $H$ and also $A$ is said to be strictly positive operator (denoted by $A>0$ ) if $A$ is invertible
positive operator.

Definition 1. Let $h>1$ . $S(h,p)$ is defined by

(1.1) $S(h,p)= \frac{h^{\frac{\mathrm{p}}{\Pi\Gamma-\overline{1}}}}{e1\mathrm{o}\mathrm{g}h^{\frac{\mathrm{p}}{hP-1}}}$ for any real number $p$

and $S(h,p)$ is denoted by $S(p)$ briefly. Especially $5(1)=S(h, 1)= \frac{h^{\frac{1}{h-1}}}{e1\mathrm{o}\mathrm{g}h^{\frac{1}{h-1}}}$ is said to be

Specht ratio and $5(1)>1$ is well known.
Let $h>1$ . The generalized Kantorovich constant $K(h,p)$ is defined by

(1.1) $K(h,p)= \frac{(h^{p}-h)}{(p-1)(h-1)}(\frac{(p-1)}{p}\frac{(h^{p}-1)}{(h^{\mathrm{p}}-h)})^{p}$ for any real number $p$

and $K(h,p)$ is denoted by $K(p)$ briefly.

Basic Property [13]. The following basic property among $S(1),$ $5(1)$ and $\mathrm{K}’(0)$ holds:

(1.3) $S(1)=e^{K’(1)}=e^{-K’(0)}$ $( \mathrm{i}.\mathrm{e},5(1)=\exp[\lim_{parrow 1}K’(p)]=\exp[-\lim_{parrow 0}K’(p)])$

(1.4) $K(\mathrm{O})=K(1)=1$ (i.e., $p \lim_{arrow 0}K(p)=\lim_{parrow 1}\mathrm{K}(\mathrm{p})=1$ )

(1.3) $S(1)= \lim_{parrow 1}K(p)^{\frac{1}{p-1}}=\lim_{parrow 0}K(p)^{\frac{-1}{\mathrm{p}}}$ .

We cite Figure 1relation between $K(p)$ and $5(\mathrm{p})$ before the References.
In fact $K’(p)$ can be written as follows
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$(^{*})$
$K’(p)= \frac{(\frac{(p-1)}{p}\frac{(h^{p}-1)}{(h^{p}-h)})^{p}}{(h-1)(h^{p}-1)}\{\frac{h^{p}(h^{p}-1+p-hp)\log h+(h^{p}-1)(h^{p}-h)\log\frac{(p-1)(h^{\mathrm{p}}-1)}{p(h^{\mathrm{p}}-h)}}{p-1}\}$ .

By using L.HopitaTs theorem to $(^{*})$ , we have

$\lim_{parrow 1}K’(p)=\frac{h-1}{h1\mathrm{o}\mathrm{g}h}\frac{1}{(h-1)^{2}}\{h\log h(h\log h+1-h)+(h-1)h\log h\log[\frac{h-1}{h1\mathrm{o}\mathrm{g}h}]\}$

$= \frac{h}{h-1}\log h-1+\log[\frac{h-1}{h1\mathrm{o}\mathrm{g}h}]$

$= \log[\frac{h^{\frac{1}{h-1}}}{e1\mathrm{o}\mathrm{g}h^{\frac{1}{h-1}}}]$

$=\log S(1)$

so that we have $S(1)=e^{K’(1)}$ and also $5(1)=e^{-K’(0)}$ by the same way.

We remark that (1.5) is an immediate consequence of (1.3) by L’Hospital theorem. An-
other nice relation between $K(p)$ and $5(1)$ is in [26].

Let $A$ be strictly positive operator satisfying $MI\geq A\geq mI>0$ , where $M>m>0$ .
Put $h= \frac{M}{m}>1$ . The celebrated Kantorovich inequality asserts that

(1.6) $\frac{(1+h)^{2}}{4h}(Ax, x)^{-1}\geq(A^{-1}x, x)\geq(Ax, x)^{-1}$

holds for every unit vector $x$ and this inequality is just equivalent to the following one

(1.7) $\frac{(1+h)^{2}}{4h}(Ax, x)^{2}\geq(A^{2}x, x)\geq(Ax, x)^{2}$

holds for every unit vector $x$ . We remark that $K(h,p)$ in (1.2) is an extension of $\frac{(1+h)^{2}}{4h}$

in (1.6) and (1.7) , in fact, $K(h, -1)–K(h, 2)= \frac{(1+h)^{2}}{4h}$ holds.

Many papers on Kantorovich inequality have been published. Among others, there is a
long research series by Mond-Pecaric, we cite [21][22] and [23] for examples.

We state the Jensen inequality as follows, ( $\mathrm{c}.\mathrm{f}$ . [Theorem 4, $1],[3,4],[\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.1$ , 17])

Jensen inequality. Let $f$ be an operator concave function on an interval $I$ . If $\Phi$ is
normalized positive linear $\mathrm{m}\mathrm{a}\mathrm{p},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}$

$f(\Phi(A))\geq\Phi(f(A))$

for every self adjoint operator $A$ on aHilbert space $H$ whose spectrum is contained in $I$ .

On the other hand, the relative operator entropy $S(X|\mathrm{Y})$ for $X>0$ and $\mathrm{Y}>0$ is defined
in [7] as an extension of the operator entropy $S(X|I)=-X\log X$
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(1.8) $S(X|\mathrm{Y})=X^{\frac{1}{2}}[\log(X^{\frac{-1}{2}}\mathrm{Y}X^{\frac{-1}{2}})]X^{\frac{1}{2}}$ .

By using this $S(X|\mathrm{Y})$ , we define $T(X|\mathrm{Y})$ for $X>0$ and $\mathrm{Y}>0$ ;

(1.8) $T(X|\mathrm{Y})=(X\#\mathrm{Y})X^{-1}S(X|\mathrm{Y})X^{-1}(X\#\mathrm{Y})$

where $X\#\mathrm{Y}$
$=X^{\frac{1}{2}}(X^{\frac{-1}{2}}\mathrm{Y}X^{\frac{-1}{2}})^{\frac{1}{2}}X^{\frac{1}{2}}$ . The power mean $X\% PY=X^{\frac{1}{2}}(X^{\frac{-1}{2}}\mathrm{Y}X^{\frac{-1}{2}})^{p}X^{\frac{1}{2}}$ for

$p\in[0,1]$ is in [16] as an extension of X$Y. We shall verify that $T(X| \mathrm{Y})=\lim_{\mathrm{p}arrow 1}(X\# p\mathrm{Y})’$ in

Proposition 3.2 and we remark that $S(X| \mathrm{Y})=\lim_{parrow 0}(X\# p\mathrm{Y})’$ shown in [7].

Next we state the following several Kantorovich type inequalities.

Theorem A. Let $A$ be strictly positive operator on a Hilbert space $H$ satisfying

$MI\geq A\geq mI>0_{f}$ where $M>m>0$ and $h= \frac{M}{m}>1$ and $\Phi$ be a normalized positive

linear map on $B(H)$ . Let $p\in(0,1)$ . Then the following inequalities hold:

(i) $\Phi(A)^{p}\geq\Phi(A^{p})\geq K(p)\Phi(A)^{p}$

(ii) $\Phi(A)^{p}\geq\Phi(A^{p})\geq\Phi(A)^{p}-g(p)I$

where $g(p)=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{p}\overline{1}}]\underline{B}$ and $K(p)$ is defined in (1.2).

The right hand side inequalities of (i) and (ii) in Theorem Afollow by [Corollary 2.6, 18]

and [23] and the left hand side one of (i) follows by Jensen inequality since $f(A)=A^{p}$ is
operator concave for $p\in[0,1]$ . More general forms than Theorem Aare in [17] and related

results to Theorem Aare in [19][20].

Theorem B. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such that

$M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m=mim\mathit{2}$ , $M=M_{1}M_{2}$ and
$h= \frac{M}{m}=\underline{M}\mapsto M>1$ . Let $p\in(0,1)$ . Then the following inequalities hold:

mlm2

(i) $(A*B)^{p}\geq A^{p}*B^{p}\geq K(p)(A*B)^{p}$

(ii) $(A*B)^{p}\geq A^{p}*B^{p}\geq(A*B)^{p}-g(p)I$

where $g(p)=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{\mathrm{p}}\overline{1}}]\underline{R}$ and $K(p)$ is defined in (1.2).

The right hand side inequalities of (i) and (ii) follow by [Theorem 16, 25] and the left
hand side one of (i) follows by [10] and [Theorem 1, 25].

Theorem C. Let $A,B$ , $C$ and $D$ be strictly positive operators on a Hilbert space $H$ such

that $M_{1}I\geq A\otimes B\geq m_{1}I>0$ and $M_{2}I\geq C\otimes D\geq m_{2}I>0$ . Put $m=\vec{M_{1}}m$ , $M= \frac{M}{m}\mathrm{a}1$ and
$h= \frac{M}{m}=-M\mapsto M>1$ . Let $p\in(0,1)$ . Then the following inequalities hold:

mlm2
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(i) $(A*B)\# p(C*D)\geq(A\#{}_{p} C)*(B\# pD)\geq K(p)(A*B)\#_{\mathrm{P}}(C*D)$

(ii) $(A*B)\# p(C*D)\geq(A\#{}_{p} C)*(B\# pD)$ $\geq(A*B)\# p(C*D)-g(p)I(A*B)$

where $g(p)=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{\mathrm{p}}\overline{1}}]\underline{\epsilon}$ and $K(p)$ is defined in (1.2).

The right hand side inequalities of (i) and (ii) follow by [Corollary 4.4,18] and the left
hand side inequality of (i) follows by [Theorem 4.1, 2] and also it follows by acorollary of
[Theorem 5, 5].

Theorem D. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such
that $M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m}{M}\mathrm{A}1^{l}M=\frac{M}{m}\mathrm{a}1$ and
$h= \frac{M}{m}=\frac{M_{1}M_{2}}{m_{1}m_{\mathit{2}}}>1$ . Let $p\in(0,1)$ and also let 0be normalized positive linear map on
$B(H)$ . Then the following inequalities hold:

(i) $\Phi(A)\# p\Phi(B)\geq\Phi(A\#_{\mathrm{P}}B)\geq K(p)\Phi(A)\# p\Phi(B)$

(i) $\Phi(A)\# p\Phi(B)\geq\Phi(A\# pB)\geq\Phi(A)\# p\Phi(B)-g(p)\Phi(A)$

where $\mathrm{g}\{\mathrm{p}$) $=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{\mathrm{p}}\overline{1}}]\underline{B}$ and $K(p)$ is defined in (1.2).

The right hand side inequalities of (i) and (ii) follow by [Corollary 3.5,18] and the left

hand side one of (i) follows by [1] and [16].

The following result is contained in [Corollary 4.11, 18] together with [Corollary 8, 5].

Theorem $\mathrm{E}’$ . Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such that

$M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Let $p\in(0,1)$ and also $m=m^{\frac{1}{1\mathrm{p}}}M_{2}^{\frac{-1}{1-\mathrm{p}}}$ ,
$M=M_{1}^{\frac{1}{p}}m^{\frac{-1}{21-p}}$ and $h= \frac{M}{m}=(_{\overline{m}_{1}}^{M_{\lrcorner}})^{\frac{1}{p}}(_{\vec{m_{2}}}^{M})^{\frac{1}{1-\mathrm{p}}}>1$. Then the following inequalities hold:

(i) $(A^{\frac{1}{p}}*I)^{p}(B^{\frac{1}{1-p}}*I)^{1-p}\geq A*B\geq K(p)(A^{\frac{1}{p}}*I)^{p}(B^{\frac{1}{1-\mathrm{p}}}*I)^{1-p}$

(i) $(A^{\frac{1}{p}}*I)^{p}(B^{\frac{1}{1-\mathrm{p}}}*I)^{1-p}\geq A*B\geq(A^{\frac{1}{p}}*I)^{p}(B^{\frac{1}{1-p}}*I)^{1-p}-g(p)(B*I)$

where $g(p)=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{p}\overline{1}}]\underline{R}$ and $K(p)$ is defined in (1.2).

In fact put $A_{3}=A^{p}$ and $B_{3}=B^{1-p}$ , then $M_{1}^{p}I\geq A_{3}\geq m_{1}^{p}I>0$ and $M_{2}^{1-p}I\geq B_{3}\geq$

$m_{2}^{1-p}I>0$ under the hypotneses of Theorem E. By applying Theorem $\mathrm{E}$’to A3 and $B_{3}$ ,

put $m_{3}=m_{1}^{p\frac{1}{p}}M_{2}^{(1-p)\frac{-1}{1-p}}= \frac{m}{M}[perp] 2$ , A#3 $=M_{1}^{p\frac{1}{\mathrm{p}}}m_{2}^{(1-p)\frac{-1}{1-\mathrm{p}}}=\vec{m_{2}}M$ and $h_{3}= \frac{M}{m}\mathrm{f}\mathrm{i}3=-M\mapsto M>1$ , so
mlm2

we have the following result as avariation of Theorem $\mathrm{E}$
’
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Theorem E. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such
that $M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m}{M}[perp] 2$ , $M= \frac{M}{m_{2}}$ and
$h= \frac{M}{m}=\underline{M}\mapsto M>1$ . Let $p\in(0,1)$ . Then the following inequalities hold:

mlm2

(i) $(A*I)^{p}(B*I)^{1-p}\geq A^{p}*B^{1-p}\geq K(p)(A*I)P\{B*I)^{1-p}$

(ii) $(A*I)^{p}(B*I)^{1-p}\geq A^{p}*B^{1-p}\geq(A*I)P\{B*I)^{1-p}-g(p)(B^{1-p}*I)$

where $g(p)=m^{p}[ \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{p}\overline{1}}]\underline{A}$ and $K(p)$ is defined in (1.2).

We shall investigate several product type and difference type inequalities associated with
Alog $A$ by applying the Basic Property to Theorem $\mathrm{A}$ , Theorem $\mathrm{B}$ , Theorem $\mathrm{C}$ , Theorem
$\mathrm{D}$ and Theorem $\mathrm{E}$ which are Kantorovich type inequalities.

Q2 Several product type and difference type inequalities associated with A $\log A$

In this \S 2 we shall state the following several product type and difference type inequalities

associated with A $\log$ A.

Theorem 2.1. Let $A$ be strictly positive operator on a Hilbert space $H$ satisfying

$MI\geq A\geq mI>0$ , where $M>m>0$ and $h= \frac{M}{m}>1$ and $\Phi$ be a normalized positive

linear map on $B(H)$ . Then the following inequalities hold:

(i) $[\log S(1)]\Phi(A)+\Phi(A)\log\Phi(A)$

$\geq\Phi(A\log A)$

$\geq\Phi(A)\log\Phi(A)$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)+\Phi(A)\log\Phi(A)$

$\geq\Phi(A\log A)$

$\geq\Phi(A)\log\Phi(A)$ .

(iii) 10g $5(1)+\Phi(\log A)\geq\log\Phi(A)\geq\Phi(\log A)$ ,

where $5(1)$ is defined in (1.1).

We remark that the first inequality of (i) in Theorem 2.1 is the reverse inequality of the

second one which is known by [Theorem 4, 1] and also the first inequality of (ii) is the

reverse inequality of the second one , and the first inequality of (iii) in Theorem 2.1 is the
reverse inequality of the second one which is known by Jensen inequality
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Theorem 2.2. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such that
$M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m=mim\mathit{2}$ , $M=M_{1}M_{2}$ and
$h= \frac{M}{m}=\frac{M_{1}M_{2}}{m_{1}m_{2}}>1$ . Then the following inequalities hold:

(i) $[\log S(1)](A*B)+(A*B)\log(A*B)$

$\geq A*(B\log B)+(A\log A)*B$

$\geq(A*B)\log(A*B)$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)+(A*B)\log(A*B)$

$\geq A*(B\log B)+(A\log A)*B$

$\geq(A*B)\log(A*B)$

(iii) $5(1)+(\log A)*I+I*(\log B)$

$\geq\log(A*B)$

$\geq(\log A)*I+I*(\log B)$

where $S(1)$ is defined in (1.1).

We remark that the first inequality of (i) in Theorem 2.2 is the reverse inequality of the

second one and also the first inequality of (ii) is the reverse inequality of the second one,

and the first inequality of (iii) in Theorem 2.2 is the reverse inequality of the second one.

Theorem 2.3. Let $A,B,$ $C$ and $D$ be strictly positive operators on a Hilbert space $H$

such that $M_{1}I\geq A\otimes B\geq m_{1}I>0$ and $M_{2}I\geq C\otimes D\geq m_{2}I>0$ . Put $m= \frac{m}{M}\mathrm{a}1$ , $M= \frac{M}{m}\mathrm{a}1$

and $h= \frac{M}{m}=M_{\lrcorner}M\overline{m}_{1}m_{2}\mathrm{r}>1$ . Then the following inequalities hold:

(i) $[\log S(1)](C*D)+T(A*B|C*D)$

$\geq T(A|C)*D+C*T(B|D)$

$\geq T(A*B|C*D)$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)(A*B)+T(A*B|C*D)$

$\geq T(A|C)*D+C*T(B|D)$

$\geq T(A*B|C*D)$

(iii) $[\log S(1)](A*B)+S(A|C)*B+A*S(B|D)$

$\geq S(A*B|C*D)$
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$\geq S(A|C)*B+A*S(B|D)$

where $S(X|\mathrm{Y})$ and $T(X|\mathrm{Y})$ are defined in (1.8) and (1.9) and $5(1)$ is defined in (1.1).

We remark that the first inequality of (i) in Theorem 2.3 is the reverse inequality of the
second one and also the first inequality of (ii) is the reverse inequality of the second one,

and the first inequality of (iii) in Theorem 2.3 is the reverse inequality of the second one.

Theorem 2.4. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such

that $M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m=\mathrm{r}mM_{1}$ ’
$M=M_{B}\overline{m}_{1}$ and

$h= \frac{M}{m}=\frac{M}{m}m_{2}\mapsto M1>1$ . Let $\Phi$ be a normalized positive linear map on $B(H)$ . Then the
following inequalities hold:

(i) $[\log S(1)]\Phi(B)+T(\Phi(A)|\Phi(B))$

$\geq\Phi(T(A|B))$

$\geq T(\Phi(A)|\Phi(B))$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)\Phi(A)+T(\Phi(A)|\Phi(B))$

$\geq\Phi(T(A|B))$

$\geq T(\Phi(A)|\Phi(B))$

(iii) 10g $S(1)\Phi(A)+\Phi(S(A|B))$

$\geq S(\Phi(A)|\Phi(B))$

$\geq\Phi(S(A|B))$

where $S(X|\mathrm{Y})$ and $T(X|\mathrm{Y})$ are defined in (1.8) and (1.9) and $S(1)$ is defined in (1.1).

We remark that the first inequality of (i) in Theorem 2.4 is the reverse inequality of the
second one and also the first inequality of (ii) is the reverse inequality of the second one,

and the first inequality of (iii) in Theorem 2.4 is the reverse inequality of the second one
in [Theorem 7, 7].

Theorem 2.5. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such
that $M_{1}I\geq A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m}{}M_{2}[perp]$ , $M= \frac{M}{m}12$ and
$h= \frac{M}{m}=\underline{M}_{\mapsto M}>1$ . Then the following inequalities hold:

$rn_{1}m_{\mathit{2}}$

(i) $[\log S(1)](A*I)+A*\log B+(A*I)\log(A*I)$

$\geq(A\log A)*I+(A*I)\log(B*I)$
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$\geq A*\log B+(A*I)\log(A*I)$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)+A*\log B+(A*I)\log(A*I)$

$\geq(A\log A)*I+(A*I)\log(B*I)$

$\geq A*\log B+(A*I)\log(A*I)$

(iii) $[\log S(1)](B*I)+(B*I)\log(B*I)+(\log A)*B$

$\geq I*(B\log B)+(\log(A*I))(B*I)$

$\geq(\log A)*B+(B*I)\log(B*I)$

where $5(1)$ is defined in (1.1).

We remark that the first inequality of (i) in Theorem 2.5 is the reverse inequality of the

second one and also the first inequality of (ii) is the reverse inequality of the second one,

and the first inequality of (iii) is the reverse inequality of the second one.

We remark that Therem 2.3 is an extension of Theorem 2.2. In fact Theorem 2.3 when

$A=B=I$ becomes Tgheorem 2.2. Also Therem 2.4 is an extension of Theorem 2.1. In

fact Theorem 2.4 when $A=I$ becomes Theorem 2.1

\S 3 Parallel results to \S 2 and related remarks

We state an extension of Kantorovich inequality.

Theorem 3.1. Let $A$ be strictly positive operator satis fying $MI\geq A\geq mI>0$, where

$M>m>0$ . Put $h= \frac{M}{m}>1$ . Then the following inequalities (i), (ii) and (iii) hold for
every unit vector $x$ and follow from each other:

(i) $K(h,p)(Ax, x)^{p}\geq(A^{p}x, x)\geq(Ax, x)^{p}$ for any $p>1$ .

(ii) $(Ax, x)^{p}\geq(A^{p}x, x)\geq K(h,p)(Ax, x)^{p}$ for any $1>p>0$ .

(iii) $K(h,p)(Ax, x)^{p}\geq(A^{p}x, x)\geq(Ax, x)^{p}$ for any $p<0$ .

We remark that the latter half inequality in (i) or (iii) of Theorem 3.1 and the former

half one of (ii) axe called H\"older-McCa\hslash hy inequality and the former one of (i) or (iii)

and the latter half one of (ii) can be considered as generalized Kantorovich inequality

and the reverse inequalities to H\"older-McCarthy inequality. (i) and (iii) are in [11] and

the equivalence relation among (i),(ii) and (iii) is shown in [Theorem 3, 14] and several

extensions of Theorem 3.1 are shown, for example,[Theorem 3.2, 17]
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Related results to Theorem 3.1 and operator inequalities associated with Kantorovich
type inequaloities are in Chapter III of [12].

In this section we sum up the following results which are obtained as applications of

Basic Property and they are parallel results to \S 1 and \S 2.

Theorem 3.2 [13]. Let $A$ be strictly positive operator satisfying $MI\geq A\geq mI>0$ ,
where $M>m>0$ . Put $h= \frac{M}{m}>1$ . Then the following inequalities hold for every unit

vector $x$ :

(i) $[\log S(1)](Ax, x)+(Ax, x)$ {Ax, $x$ )

$\geq((A\log A)x, x)$

$\geq(Ax, x)$ {Ax, $x$ ).

(ii) $\frac{mh\log h}{h-1}(S(1)-1)+(Ax, x)$ {Ax, $x$ )

$\geq((A\log A)x, x)$

$\geq(Ax, x)$ {Ax, $x$ ).

(iii) $[\log S(1)]+((\log A)x, x)\geq\log(Ax, x)\geq((\log A)x, x)$ .

Theorem 3.3 [15]. Let $A_{j}$ be strictly positive operator satisfying $MI\geq A_{j}\geq mI>0$

for $j=1,2$ , $\ldots$ , $n$ , where $M>m>0$ and $h= \frac{M}{m}>1$ . Also $\lambda_{1}$ , $\lambda_{2},\ldots,\lambda_{n}$ be any positive

numbers such that $\sum_{j=1}^{n}\lambda_{j}=1$ . Then the following inequalities hold:

(i) $[ \log S(1)]\sum_{j=1}^{n}\lambda_{j}A_{j}+(\sum_{j=1}^{n}\lambda_{j}A_{j})\log(\sum_{j=1}^{n}\lambda_{j}A_{j})$

$\geq\sum_{j=1}^{n}\lambda_{j}A_{j}\log A_{j}$

$\geq(\sum_{j=1}^{n}\lambda_{j}A_{j})\log(\sum_{j=1}^{n}\lambda_{j}A_{j})$

(ii) $\frac{mh\log h}{h-1}(S(1)-1)+(\sum_{j=1}^{n}\lambda_{j}A_{j})\log(\sum_{j=1}^{n}\lambda_{j}A_{j})$

$\geq\sum_{j=1}^{n}\lambda_{j}A_{j}\log A_{j}$

$\geq(\sum_{j=1}^{n}\lambda_{j}A_{j})\log(\sum_{j=1}^{n}\lambda_{j}A_{j})$ .
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(iii) $[\log S(1)]$ $+ \sum_{j=1}^{k}\lambda_{j}\log A_{j}\geq\log(\sum_{j=1}^{k}\lambda_{j}A_{j})\geq\sum_{j=1}^{k}\lambda_{j}\log A_{j}$ .

We remark (iii) for $n=2$ of Theorem 3.3 is shown in [9].

The following interesting result is shown in [6].

Theorem F. Let $A$ be strictly positive operator satisfying $MI\geq A\geq mI>0$ . Also let
$h= \frac{M}{m}>1$ . Then the following inequality holds for every unit vector $x$ :

$S(1)\Delta_{x}(A)\geq(Ax, x)\geq\Delta_{x}(A)$ .

where $\Delta_{x}(A)$ for strictly positive operator $A$ at a unit vector $x$ is defined by $\Delta_{x}(A)=$

$\exp\langle((\log A)x, x)\rangle$ .

$\Delta_{x}(A)$ is defined in [8]. We remark that (ii) of Theorem 3.1 implies Theorem $\mathrm{F}$ via Basic

Property. In fact (ii) of Theorem 3.1 ensures

(5.1) $(Ax, x)\geq(A^{p}x, x)^{\frac{1}{p}}\geq K(h,p)^{\frac{1}{p}}(Ax, x)$ for any $1>p>0$ .

and is easily verified that $\lim_{parrow 0}(A^{p}x, x)^{\frac{1}{p}}=\Delta_{x}(A)$ and $\lim_{parrow 0}K(h,p)^{\frac{1}{p}}=\frac{1}{S(1)}$ by (1.5), so that

(5.1) implies Theorem F.

Interesting closely related results to Theorem 3.2 and Theorem 3.3 are in [24].

This paper is based on my talk at “Structure of operators and related recent topics”

which has been held at RIMS on January 23, 2003 and some results in this paper will

appear elsewhere
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