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Abstract

In [2], R. Fehlmann and F. P. Gardiner studied an extremal prob-
lem for atopologically finite Riemann surface and established the
slit mapping theorem by showing existence of aquadratic differential
which associated with the solution of the extremal problem. In this ar-
ticle, we give acondition for non-uniqueness of such slit mappings, by
using deformation of aRiemann surface using the foliation structure
of the differential associated with the solution.

1Introduction
Suppose $S$ is afinite bordered Riemann surface with the border $\Gamma$ . In other
words, the boundary $\Gamma$ consists of afinite number of simple closed curves,
and the double of $S$ with respect to the border $\Gamma$ is of finite analytic type. Let
$T(S)$ be the Teichm\"uUer space of the interior $S^{\mathrm{o}}$ of $S$ . Let $A(S)$ be the set
of integrable holomorphic quadratic differential $\varphi$ on $S$ with the properties
that $\varphi=\varphi(z)dz^{2}$ is real along the border $\Gamma$ .

Definition 1.1 Let $E$ be a compact subset of $S^{\mathrm{o}}$ which satisfies that $S\backslash E$ is

of finitely connected and of the same genus as S. We say that $E$ with these
properties is an allowable subset of $S$ .

Next fix an element $\varphi\in A(S)$ . If each component of an allowable $E$ is
a horizontal arc of $\varphi$ or a union of a finite number of horizontal arcs and
critical points of $\varphi$ , we say that $E$ is an allowable slit with respect to $\varphi$ .

Let $E$ be an allowable subset of $S$ . Let $S(S, E)$ be the family of pairs
$(g, S_{g})$ , where $g$ is aconformal map of $S\backslash E$ into another Riemann surface
$S_{g}$ such that $g$ maps the border $\Gamma$ onto the border of $S_{g}$ and the puncture
of $S$ onto the puncture of $S_{g}$ . In particular, $(g, S_{g})\in S(S, E)$ induces an
isomorphism $\iota_{g}$ ffom the fundamental group $\pi_{1}(S)$ of $S$ onto $\pi_{1}(S_{g})$ . Let $f$

be aquasiconformal map of $S$ onto $S_{g}$ which induces the same isomorphism
$\iota_{g}$ , and $\mu$ the Beltrami differential of $f$ . We denote $f$ also by $f^{\mu}$ and the

$\mathrm{T}\mathrm{e}\mathrm{i}\mathrm{d}_{1}\mathrm{m}\mathrm{i}.\mathrm{f}\mathrm{f}\mathrm{i}$er (equivalence) class of $f^{\mu}$ in $T(S)$ by $[(\mu;g, S_{g})]$ .
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Let $\mathfrak{S}(S)$ be the family of simple closed curves in $S^{\mathrm{o}}$ which is homotopic
neither to apoint of $S$ nor to apuncture on $S$ . Let $\mathfrak{S}[S]$ be the set of
homotopy class of an element of $\mathfrak{S}(S)$ . For $\varphi\in A(S)$ and $\gamma\in \mathfrak{S}(S)$ , we
denote the height of $\gamma$ with respect to $\varphi$ by $h_{\varphi}(\gamma)$ , and that the height of
homotopy class $[\gamma]$ by $h_{\varphi}[\gamma]$ . For the details, see for instance [4].

Now it is known (cf. [4]) that, for every $(f, Sf)\in S(S, E)$ and $\varphi\in$

$A(S)\backslash \{0\}$ , there is aholomorphic quadratic differential $\varphi_{f}$ on $S_{f}$ whose
heights on $S_{f}$ are equal to the corresponding heights of $\varphi$ on $S$ . Fehlmann
and Gardiner posed the extremal problem for $(S, \varphi, E)$ , of maximizing

$M_{f}=|| \varphi_{f}||_{L^{1}(S_{f})}=\int_{S_{f}}|\varphi_{f}|$

in $S(S, E)$ , and showed the following result.

Theorem 1.2 (Fehlmann-Gardiner) Suppose that $S$ is a finite bordered
Riemann surface, and that $\varphi\in A(S)\backslash \{0\}$ . Let $E$ be an allowable subset of
S. Then there $e$$\dot{m}ts$ a point $[(\mu;g, S_{g})]\in T(S)$ associated with an element
$(g, S_{g})\in S(S, E)$ such that $M_{g}$ attains the maximum

$M= \max_{f(f,S)\in S(S,E)}M_{f}$ .

Moeover, for this point $[(\mu;g, S_{g})]\in T(S)$ , $E_{g}=S_{g}\backslash g(S\backslash E)$ is an allowable
slit with respect to $\varphi_{g}$ .

The point $[(\mu;g, S_{g})]\in T(S)$ in Theorem 1.2 is called an extremal point
of the extremal problem for $(S, \varphi, E)$ , the map $g$ an extremal slit mapping
associated with it, and the associated differential $\varphi_{g}$ the structure differential
for $g$ .

We show in this note the following theorem which gives acondition for
extremal points, and hence extremal slit mappings, not to be unique.

Theorem 1.3 Suppose $R$ is a finite bordered Riemann surface, and that
$\psi$ $\in A(R)\backslash \{0\}$ . Let $E_{\psi}$ be an allowable slit of $R$ with respect to $\psi$ such that

1. there is a component of $E_{\psi}$ which contains a zero point $p0$ of $\psi$ of order
$m\geq 3$ and at least two of horizontal arcs $p_{1}$ , $\ell_{2}$ uith an end point at $\mathrm{p}\mathrm{o}$ ,
and that

2. each of the angles betrneen $\ell_{1}$ , $\ell_{2}$ are larger than $\frac{2\pi}{m+2}$ .

Then, there is a finite bordered Riemann $s\underline{u}rface$
$\tilde{R}_{f}$ a pair $(h,\tilde{R})\in S(R, E\psi)$ ,

and a holomorphic quadratic differential $\psi$ $\in A(\tilde{R})\backslash \{0\}$ , such that
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(i) $E_{\tilde{\psi}}=\tilde{R}\backslash h(R\backslash E_{\psi})$ is an allowable slit of $\tilde{R}$ with respect to $\tilde{\psi}$ ,

(ii) the heights of $\tilde{\psi}$ on $\tilde{R}$ is the same as the corresponding heights of $\psi$ on
$R$, and

$(’ii\prime i)$ the point $[(\mu;h,\tilde{R})]\in T(R)$ is different from the origin $[(0;id, R)]$ of
$T(R)$ .

We call the conditions 1. and 2. for $E_{\psi}$ in the Theorem 1.3 the refolding
conditions, and the point $p_{0}$ arefolding point.

Corollary 1.4 Suppose $S$ is a finite bordered Riemann sttsface and that $\varphi\in$

$A(S)\backslash \{0\}$ . Let $E$ be an allowable subset of $S$ , and $[(\mu;g, S_{g})]\in T(S)$ the
extremal point of the extremal problem for $(S, \varphi, E)$ . If the allowable slit
$E_{g}$ of $S_{g}$ with respect to the struc rure differential $\varphi_{g}$ satisfies the refolding
conditions , then there exists another extremal point of the extremal problem
for $(S, \varphi, E)$ different ffom $[(\mu;g, S_{g})]$ .

Proof Take the triple $(S_{g}, \varphi_{g}, E_{g})$ as the triple $(R,\psi, E_{\psi})$ in the Theorem
1.3. Then we obtain afinite bordered Riemann surface $\tilde{R}$ , apair $(h,\tilde{R})\in$

$S(S_{g}, E_{g})$ , and aholomorphic quadratic differential $’\tilde{\psi}\in A(\tilde{R})\backslash \{0\}$ such that

(i) $E_{\tilde{\psi}}$ is an allowable slit of $\tilde{R}$ with respect to $\tilde{\psi}$ ,

(ii) the heights of $\tilde{\psi}$ on $\tilde{R}$ is the same as the corresponding heights of $\varphi_{g}$ on
$S_{g}$ (and hence of $\varphi$ on $S$ ), and

(iii) the point $[(\mu;h,\tilde{R})]\in T(S_{g})$ is different from the origin $[(0;id, S_{g})]$ of
$T(S_{g})$ .

Then, we know (cf. [2]) that, from (i) and (ii), the point $[(\mu;h\circ g,\tilde{R})]\in T(S)$

is an extremal point of the extremal problem for $(S, \varphi, E)$ . By (iii), the
point $[(\mu;g, S_{g})]$ is different from the point $[(\mu;h\circ g,\tilde{R})]$ . Thus we have the
assertion. $\blacksquare$

2Example
In this section we give an example of the triple $(S, \varphi, E)$ which satisfies the
assumptions of Corollary 1.4.

First take three copies Mi, $M_{2}$ , $M_{3}$ of arectangle

$M=\{z=x+iy\in \mathbb{C}||x|\leq 2, |y|\leq 1\}$ ,

65



and let $z_{j}$ be the coordinate corresponding to z on each $M_{j}$ . Next on each
$M_{j}$ , identify two pair of parallel sides under the translations

$z_{j}arrow z_{j}+4$ , $z_{j}arrow z_{j}+2i$ .

Then we obtain three copies Ti,T2,T3 of atorus $T$ . And the quadratic
differential $dz^{2}$ on $M$ induces the holomorphic quadatic differential $\varphi_{0}$ on $T$ .

Cut $M_{j}$ along the segment

$I_{j}=\{z_{j}=x_{j}+iy_{j}|-1\leq x_{j}\leq 0, y_{j}=0\}$ ,

and connect them cyclically. More precisely, we paste the upper edge $I_{1}^{+}$ of
the slit $I_{1}$ and the lower edge $I_{2}^{-}$ of the slit $I_{2}$ , the upper edge $I_{2}^{+}$ of the slit
$I_{2}$ and the lower edge $I_{3}^{-}$ of the slit $I_{3}$ , and the upper edge $I_{3}^{+}$ of the slit $I_{3}$

and the lower edge $I_{1}^{-}$ of the slit $I_{1}$ . Then we obtain acompact Riemann
surface $S$ of genus three.

Now let $\Pi$ be the natural projection from $S$ to the torus $T$ , and $\varphi$ the
pull-back of $\varphi_{0}$ by $\Pi$ . Finaly, let $E$ be asubset of $S$ , consisting of the arcs
$\ell_{1}$ and $\ell_{2}$ , where each $\ell_{i}$ is one on $NI_{i}$ corresponding to

$\{z|0\leq x\leq 1, y=0\}$ .

Now we consider the extremal problem for $(S, \varphi, E)$ . Then the set $E$ is an
allowable slit of $S$ with respect to $\varphi$ . Hence we know the identical mapping of
$S$ gives the extremal slit map associated with the extremal problem for this
triple. Moreover, we can easily see that $E$ satisfies the refolding conditions.

Thus the assumptions in Corollary 1.4 are satisfied, and as aconsequence,
the extremal points of the extremal problem for $(S, \varphi, E)$ are not uniquely
determined in $T(S)$ .

3Proof of theorem 1.3
Assume that acomponent $J$ of $E_{\psi}$ contains arefolding point $p_{0}$ of $\psi$ of order
$m\geq 3$ and horizontal arcs $\ell_{1}$ and $\ell_{2}$ , one of whose end point is $p_{0}$ and an
angle between $\ell_{1}$ and $\ell_{2}$ is

$\frac{2k\pi}{m+2}$ $(2 \leq k\leq\frac{m+2}{2})$ .

Here the arcs $\ell_{1},\ell_{2}$ are segments on the real axis with an endpoint at the
origin with respect to the natural parameter $\langle$ $=\zeta_{\psi}$ induced from $\psi$ .
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We take asubarc $\kappa_{j}\subset l_{j}$ such that $p_{0}$ is an endpoint of each $\kappa_{j}$ and that
$\psi$ has no zeros on $\kappa_{j}\backslash \{p_{0}\}$ . Let $p_{j}$ be the other endpoint of $\kappa_{j}$ for each $j$ .
Also set $K=\kappa_{1}\cup\kappa_{2}$ .

Now, cut $R$ along $\kappa_{1}$ and $\kappa_{2}$ . For each $j$ , let $\kappa_{j}^{+}$ and $\kappa_{j}^{-}$ , respectively, the
right side and the left-side edge of the slit $\kappa_{j}$ , with respect to the orientation
which corresponds to moving along the slit ffom $p_{0}$ to $p_{j}$ . Assume that $\kappa_{1}^{-}$

and $\kappa_{2}^{+}$ , resp. $\kappa_{1}^{+}$ and $\kappa_{2}^{-}$ , makes the angle

$\frac{2k\pi}{m+2}$ , resp. $(1- \frac{k}{m+2})2\pi$ .

Paste $\kappa_{1}^{-}$ and $\kappa_{2}^{+}$ so that points having the same absolute value withre
$\mathrm{s}$ et to $\langle$ are identified. By the same way, paste $\kappa_{1}^{+}$ and $\kappa_{2}^{-}$ . Then we obtain
afinite bordered Riemann surface $\tilde{R}$ and the natural conformal embedding
$h$ : $R\backslash Karrow\tilde{R}$ . This pair $(h,\tilde{R})$ is an element of afamly $S(R, K)\subset S(R, E_{\psi})$ .

Moreover, from the construction we can extend $\psi$ restricted on $R\backslash K$

naturally to aholomorphic quadratic differential $\tilde{\psi}$ on $\tilde{R}$ , and $E_{\overline{\psi}}=\tilde{R}\backslash$

$h(R\backslash E_{\psi})$ is allowable slit of $\tilde{R}$ with respect to $\tilde{\psi}$ .
Now let $f^{\mu}$ be aquasiconformal map from $R$ onto $\tilde{R}$ , which is arepresen-

tation of the point $[(\mu;h,\tilde{R})]\in T(R)$ .

Lemma 3.1

$h_{\tilde{\psi}}[\tilde{\gamma}]=h_{\psi}[(f^{\mu})^{-1}(\tilde{\gamma})]$

for ever$ry[\tilde{\gamma}]\in \mathfrak{S}[\tilde{R}]$ .

$Pro\mathrm{o}/$. We say that asimple closed curve $\tilde{\beta}$ on $\tilde{R}$ is a $\psi\sim$-polygon, if 4is a
union of afinite number of horizontal arcs and vertical arcs of $\tilde{\psi}$ . Note that
for every $[\tilde{\gamma}]\in\tilde{\circ}[\tilde{R}]$

$h_{\tilde{\psi}}[ \tilde{\gamma}]=\inf_{\tilde{\beta}}h_{\tilde{\psi}}(\tilde{\beta})$,

where the infimum is taken over all $\tilde{\psi}$-polygons $\beta\sim$ homotopic to $\tilde{\gamma}$ on $\tilde{R}$.
Now we can deform the pre irnage $h^{-1}(\tilde{\beta})$ of such $\mathrm{a}.\tilde{\psi}$-polygon $\beta\sim$ to a

$\psi$-polygon $\beta$ such that $\beta$ is homotopic to $h^{-1}(\tilde{\beta})$ on $R$ and

$h_{\psi}(\beta)=h_{\tilde{\psi}}(\tilde{\beta})$ .
Hence we conclude that

$h_{\psi}[(f^{\mu})^{-1}(\gamma)]\leq h_{\psi}(\beta)=h_{\overline{\psi}}(\tilde{\beta})$
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for every $\tilde{\psi}$-polygon $\beta\sim$ which is homotopic to $\tilde{\gamma}$ , which in turn implies that

$h_{\psi}[(f^{\mu})^{-1}(\tilde{\gamma})]\leq h_{\tilde{\psi}}[\tilde{\gamma}]$

for ever $[\tilde{\gamma}]\in \mathfrak{S}[\tilde{R}]$ .
On the other hand, we can similary see as above that

$h_{\check{\psi}}[f^{\mu}(\gamma)]\leq h_{\psi}[\gamma]$

for every $[\gamma]\in \mathfrak{S}[R]$ . Thus we have the assertion. $\blacksquare$

Prom Lemma 3.1, we see that the holomorphic quadratic differential $\tilde{\psi}\in$

$A(\tilde{R})\backslash \{0\}$ satisfies the condition (ii). Moreover, by definition, $E_{\overline{\psi}}$ is an
allowable slit of $\tilde{R}$ with respect to $\tilde{\psi}$ , and

$\tilde{\psi}\circ h(h’)^{2}=\psi$ on $R\backslash E_{\psi}$ .

Lemma 3.2 The point $[(\mu;h,\tilde{R})]\in T(R)$ is differentfrom the origin $[(0;id, R)]$

of $T(R)$ .

Proof. Assume that

$[(\mu;h,\tilde{R})]=[(0;id, R)]$ .

Then there would exist aconformal map $\iota$ : $Rarrow\tilde{R}$ such that the induced
isomorphism $(\iota)_{*}:$ $\pi_{1}(R)arrow\pi_{1}(\tilde{R})$ is the same as the one induced by $h$ .

Fix a $[\gamma]\in \mathfrak{S}[R]$ arbitrarily. Then Lemma 3.1 gives that

$h_{\tilde{\psi}}[\iota(\gamma)]=h_{\psi}[\gamma]$ .

Since $h_{\overline{\psi}\circ\iota(\iota)^{2}},[\gamma]=h_{\overline{\psi}}[\iota(\gamma)]$ , we obtain

$h_{\overline{\psi}\circ\iota(\iota’)^{2}}[\gamma]=h_{\psi}[\gamma]$

for every $[\gamma]\in \mathfrak{S}[R]$ . Hence the heights mapping theorem implies that $\tilde{\psi}\circ$

$\iota(\iota’)^{2}=\psi$ on $R$. In particular, the map $\iota$ maps the zeros of $\psi$ to zeros of $\tilde{\psi}$

including multiplicities.
Now ffom the construction, the zero $p_{0}$ of order $m\geq 3$ breaks into two

zeros $\tilde{q}_{1}$ and $\tilde{q}_{2}$ of $\tilde{\psi}$ of order $k-2$ and $m-k$, respectively, with $2\leq k\leq$

$(m+2)/2$. And the endpoints $p_{1}$ of $\kappa_{1}$ and $p_{2}$ of $\kappa_{2}$ gather to azero $\tilde{q}$ of $\tilde{\psi}$

on $\tilde{R}$ of order 2.
Set $\tilde{K}=\tilde{R}\backslash h(R\backslash K)$ . Then all zeros $\tilde{q},\tilde{q}_{1}$ and $\tilde{q}_{2}$ of $\tilde{\psi}$ on $\tilde{K}$ have the

orders strictly less than $m$ . Hence we see that

$\iota(p_{0})\not\in\tilde{K}$ .
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es

Since the conformal embedding $h$ maps $R\backslash K$ onto $\tilde{R}\backslash \tilde{K}$ , $h^{-1}\circ\iota(p_{0})$ is $\mathrm{w}\mathrm{e}\mathbb{I}$

defined and $h^{-1}\circ\iota(p_{0})\not\in K$ . In particular,

$h^{-1}\circ\iota(p_{0})\neq p_{0}$ .

Next assume that, for apositive integer $n$ ,

$(h^{-1}\circ\iota)^{n}(p_{0})\neq(h^{-1}\circ\iota)^{k}(p_{0})$

for every $k$ with $0\leq k\leq r\iota$ $-1$ . Then, $\iota$

$\circ(h^{-1}\circ\iota)^{n}(p_{0})\not\in\tilde{K}$, for the zero
to $(h^{-1}\circ\iota)^{n}(p_{0})$ of $\tilde{\psi}$ is of order $m$ . Hence similarly as above, $(h^{-1}\mathrm{o}\iota)^{n+1}(p\mathrm{o})\not\in$

$K$ . In particular,

$(h^{-1}\circ\iota)^{n+1}(p_{0})\neq p_{0}$ .

Also by the assumption,

$(h^{-1}\circ\iota)^{n+1}(p_{0})\neq(h^{-1}\circ\iota)^{k}(p_{0})$

for every $k$ with $1\leq k$. $\leq n$ .
Thus by the induction, we conclude that, for every positive integer $n$ , we

have

$(h^{-1}\circ\iota)^{n}(p_{0})\neq(h^{-1}\circ\iota)^{k}(p_{0})$

for every $k$ with $0\leq k\leq n-1$ , which imples that $\psi$ has infinitely many
distinct zeros. This is absord, and we have shown that

$[(\mu;h,\tilde{R})]\neq[(0;id, R)]$ .

$\bullet$

Remark As the example in Section 2, if one can see the widths of $\psi$ on
$R$ and that of $\tilde{\psi}$ on $\tilde{R}$ , it is easy to show the claim of Lemma 3.2. Because
if $[(\mu;h,\tilde{R})]=[(0;\mathrm{i}\mathrm{d}, R)]$ in $T(R)$ , then ffom Lemma 3.1 and the heights
theorem we can see that widths of $\psi$ on $R$ is equal to the corresponding
widths of $\tilde{\psi}$ on $\tilde{R}$ . For example, in the case of Section 2we denote by $\tilde{S}$

aRiemann surface obtained ffom $S$ by deformation and denote by $\tilde{\varphi}$ an
integrable holomorphic quadratic differential whose heights is the same as
the corresponding heights of $\varphi$ on $S$ . Let $\gamma\in 6(S)$ be rounding $I_{1}$ on $M_{1}$ .
Then the width of $[\gamma]\in \mathfrak{S}[S]$ is equal to 2. On the other hand, for this
$[\gamma]\in \mathfrak{S}[S]$ the corresponding width of $\tilde{\varphi}$ on $\tilde{S}$ is equal to 4. Therefore the
deformation actually change the surface in $T(S)$ .

Thus we have completed the proof of Theorem 1.3
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