<table>
<thead>
<tr>
<th>Title</th>
<th>On Uniqueness of The Solutions of The Obstacle Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sasai, Rie</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1314: 63-70</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42969</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On Uniqueness of The Solutions of
The Obstacle Problem

Rie Sasai
Graduate School of Science, Hiroshima University

Abstract

In [2], R. Fehlmann and F. P. Gardiner studied an extremal problem for a topologically finite Riemann surface and established the slit mapping theorem by showing existence of a quadratic differential which associated with the solution of the extremal problem. In this article, we give a condition for non-uniqueness of such slit mappings, by using deformation of a Riemann surface using the foliation structure of the differential associated with the solution.

1 Introduction

Suppose \(S \) is a finite bordered Riemann surface with the border \(\Gamma \). In other words, the boundary \(\Gamma \) consists of a finite number of simple closed curves, and the double of \(S \) with respect to the border \(\Gamma \) is of finite analytic type. Let \(T(S) \) be the Teichmüller space of the interior \(S^o \) of \(S \). Let \(A(S) \) be the set of integrable holomorphic quadratic differential \(\varphi \) on \(S \) with the properties that \(\varphi = \varphi(z)dz^2 \) is real along the border \(\Gamma \).

Definition 1.1 Let \(E \) be a compact subset of \(S^o \) which satisfies that \(S \setminus E \) is of finitely connected and of the same genus as \(S \). We say that \(E \) with these properties is an allowable subset of \(S \).

Next fix an element \(\varphi \in A(S) \). If each component of an allowable \(E \) is a horizontal arc of \(\varphi \) or a union of a finite number of horizontal arcs and critical points of \(\varphi \), we say that \(E \) is an allowable slit with respect to \(\varphi \).

Let \(E \) be an allowable subset of \(S \). Let \(\mathcal{F}(S,E) \) be the family of pairs \((g,S_g) \), where \(g \) is a conformal map of \(S \setminus E \) into another Riemann surface \(S_g \) such that \(g \) maps the border \(\Gamma \) onto the border of \(S_g \) and the puncture of \(S \) onto the puncture of \(S_g \). In particular, \((g,S_g) \in \mathcal{F}(S,E) \) induces an isomorphism \(\iota_g \) from the fundamental group \(\pi_1(S) \) of \(S \) onto \(\pi_1(S_g) \). Let \(f \) be a quasiconformal map of \(S \) onto \(S_g \) which induces the same isomorphism \(\iota_g \), and \(\mu \) the Beltrami differential of \(f \). We denote \(f \) also by \(f^\mu \) and the Teichmüller (equivalence) class of \(f^\mu \) in \(T(S) \) by \([\mu;g,S_g]\).
Let $\mathcal{S}(S)$ be the family of simple closed curves in S° which is homotopic neither to a point of S nor to a puncture on S. Let $\mathcal{S}[S]$ be the set of homotopy class of an element of $\mathcal{S}(S)$. For $\varphi \in A(S)$ and $\gamma \in \mathcal{S}(S)$, we denote the height of γ with respect to φ by $h_\varphi(\gamma)$, and that the height of homotopy class $[\gamma]$ by $h_\varphi[\gamma]$. For the details, see for instance [4].

Now it is known (cf. [4]) that, for every $(f, S_f) \in \mathfrak{F}(S, E)$ and $\varphi \in A(S) \setminus \{0\}$, there is a holomorphic quadratic differential φ_f on S_f whose heights on S_f are equal to the corresponding heights of φ on S. Fehlmann and Gardiner posed the extremal problem for (S, φ, E), of maximizing

$$M_f = \|\varphi_f\|_{L^1(S_f)} = \int_{S_f} |\varphi_f|$$

in $\mathfrak{F}(S, E)$, and showed the following result.

Theorem 1.2 (Fehlmann-Gardiner) Suppose that S is a finite bordered Riemann surface, and that $\varphi \in A(S) \setminus \{0\}$. Let E be an allowable subset of S. Then there exists a point $[(\mu; g, S_g)] \in T(S)$ associated with an element $(g, S_g) \in \mathfrak{F}(S, E)$ such that M_g attains the maximum

$$M = \max_{(f, S_f) \in \mathfrak{F}(S, E)} M_f.$$

Moreover, for this point $[(\mu; g, S_g)] \in T(S)$, $E_g = S_g \setminus g(S \setminus E)$ is an allowable slit with respect to φ_g.

The point $[(\mu; g, S_g)] \in T(S)$ in Theorem 1.2 is called an extremal point of the extremal problem for (S, φ, E), the map g an extremal slit mapping associated with it, and the associated differential φ_g the structure differential for g.

We show in this note the following theorem which gives a condition for extremal points, and hence extremal slit mappings, not to be unique.

Theorem 1.3 Suppose R is a finite bordered Riemann surface, and that $\psi \in A(R) \setminus \{0\}$. Let E_ψ be an allowable slit of R with respect to ψ such that

1. there is a component of E_ψ which contains a zero point p_0 of ψ of order $m \geq 3$ and at least two of horizontal arcs ℓ_1, ℓ_2 with an end point at p_0, and that

2. each of the angles between ℓ_1, ℓ_2 are larger than $\frac{2\pi}{m+2}$.

Then, there is a finite bordered Riemann surface \tilde{R}, a pair $(h, \tilde{R}) \in \mathfrak{F}(R, E_\psi)$, and a holomorphic quadratic differential $\tilde{\psi} \in A(\tilde{R}) \setminus \{0\}$, such that
(i) $E_{\tilde{\psi}} = \tilde{R} \setminus h(R \setminus E_{\psi})$ is an allowable slit of \tilde{R} with respect to $\tilde{\psi}$,

(ii) the heights of $\tilde{\psi}$ on \tilde{R} is the same as the corresponding heights of ψ on R,

(iii) the point $[(\mu; h, \tilde{R})] \in T(R)$ is different from the origin $[(0; id, R)]$ of $T(R)$.

We call the conditions 1. and 2. for E_{ψ} in the Theorem 1.3 the refolding conditions, and the point p_0 a refolding point.

Corollary 1.4 Suppose S is a finite bordered Riemann surface and that $\varphi \in A(S) \setminus \{0\}$. Let E be an allowable subset of S, and $[(\mu; g, S_g)] \in T(S)$ the extremal point of the extremal problem for (S, φ, E). If the allowable slit E_g of S_g with respect to the structure differential φ_g satisfies the refolding conditions, then there exists another extremal point of the extremal problem for (S, φ, E) different from $[(\mu; g, S_g)]$.

Proof. Take the triple (S_g, φ_g, E_g) as the triple (R, ψ, E_{ψ}) in the Theorem 1.3. Then we obtain a finite bordered Riemann surface \tilde{R}, a pair $(h, \tilde{R}) \in \mathfrak{F}(S_g, E_g)$, and a holomorphic quadratic differential $\tilde{\psi} \in A(\tilde{R}) \setminus \{0\}$ such that

(i) $E_{\tilde{\psi}}$ is an allowable slit of \tilde{R} with respect to $\tilde{\psi}$,

(ii) the heights of $\tilde{\psi}$ on \tilde{R} is the same as the corresponding heights of φ_g on S_g (and hence of φ on S), and

(iii) the point $[(\mu; h, \tilde{R})] \in T(S_g)$ is different from the origin $[(0; id, S_g)]$ of $T(S_g)$.

Then, we know (cf. [2]) that, from (i) and (ii), the point $[(\mu; h \circ g, \tilde{R})] \in T(S)$ is an extremal point of the extremal problem for (S, φ, E). By (iii), the point $[(\mu; g, S_g)]$ is different from the point $[(\mu; h \circ g, \tilde{R})]$. Thus we have the assertion.

2 Example

In this section we give an example of the triple (S, φ, E) which satisfies the assumptions of Corollary 1.4.

First take three copies M_1, M_2, M_3 of a rectangle

$$M = \{z = x + iy \in \mathbb{C} \mid |x| \leq 2, |y| \leq 1\},$$
and let z_j be the coordinate corresponding to z on each M_j. Next on each M_j, identify two pair of parallel sides under the translations

$$z_j \rightarrow z_j + 4, \quad z_j \rightarrow z_j + 2i.$$

Then we obtain three copies T_1, T_2, T_3 of a torus T. And the quadratic differential dz^2 on M induces the holomorphic quadratic differential φ_0 on T.

Cut M_j along the segment

$$I_j = \{z_j = x_j + iy_j \mid -1 \leq x_j \leq 0, y_j = 0\},$$

and connect them cyclically. More precisely, we paste the upper edge I_1^+ of the slit I_1 and the lower edge I_2^- of the slit I_2, the upper edge I_2^+ of the slit I_2 and the lower edge I_3^- of the slit I_3, and the upper edge I_3^+ of the slit I_3 and the lower edge I_1^- of the slit I_1. Then we obtain a compact Riemann surface S of genus three.

Now let Π be the natural projection from S to the torus T, and φ the pull-back of φ_0 by Π. Finally, let E be a subset of S, consisting of the arcs ℓ_1 and ℓ_2, where each ℓ_i is one on M_i corresponding to

$$\{z \mid 0 \leq x \leq 1, y = 0\}.$$

Now we consider the extremal problem for (S, φ, E). Then the set E is an allowable slit of S with respect to φ. Hence we know the identical mapping of S gives the extremal slit map associated with the extremal problem for this triple. Moreover, we can easily see that E satisfies the refolding conditions.

Thus the assumptions in Corollary 1.4 are satisfied, and as a consequence, the extremal points of the extremal problem for (S, φ, E) are not uniquely determined in $T(S)$.

3 Proof of theorem 1.3

Assume that a component J of E_ψ contains a refolding point p_0 of ψ of order $m \geq 3$ and horizontal arcs ℓ_1 and ℓ_2, one of whose end point is p_0 and an angle between ℓ_1 and ℓ_2 is

$$\frac{2k\pi}{m+2} \quad \left(2 \leq k \leq \frac{m+2}{2}\right).$$

Here the arcs ℓ_1, ℓ_2 are segments on the real axis with an endpoint at the origin with respect to the natural parameter $\zeta = \zeta_\psi$ induced from ψ.
We take a subarc $\kappa_j \subset \ell_j$ such that p_0 is an endpoint of each κ_j and that ψ has no zeros on $\kappa_j \setminus \{p_0\}$. Let p_j be the other endpoint of κ_j for each j. Also set $K = \kappa_1 \cup \kappa_2$.

Now, cut R along κ_1 and κ_2. For each j, let κ_j^+ and κ_j^-, respectively, the right-side and the left-side edge of the slit κ_j, with respect to the orientation which corresponds to moving along the slit from p_0 to p_j. Assume that κ_1^- and κ_2^+, resp. κ_1^+ and κ_2^-, makes the angle

$$\frac{2k\pi}{m+2}, \text{ resp. } \left(1 - \frac{k}{m+2}\right)2\pi.$$

Paste κ_1^- and κ_2^+ so that points having the same absolute value with respect to ζ are identified. By the same way, paste κ_1^+ and κ_2^-. Then we obtain a finite bordered Riemann surface \tilde{R} and the natural conformal embedding $h : R \setminus K \to \tilde{R}$. This pair (h, \tilde{R}) is an element of a family $\mathcal{F}(R, K) \subset \mathcal{F}(R, E_\psi)$.

Moreover, from the construction we can extend ψ restricted on $R \setminus K$ naturally to a holomorphic quadratic differential $\tilde{\psi}$ on \tilde{R}, and $E_{\tilde{\psi}} = \tilde{R} \setminus h(R \setminus E_\psi)$ is allowable slit of \tilde{R} with respect to $\tilde{\psi}$.

Now let f^μ be a quasiconformal map from R onto \tilde{R}, which is a representation of the point $[(\mu; h, \tilde{R})] \in T(R)$.

Lemma 3.1

$$h_\psi[\tilde{\gamma}] = h_\psi[(f^\mu)^{-1}(\tilde{\gamma})]$$

for every $[\tilde{\gamma}] \in \mathcal{G}[\tilde{R}]$.

Proof. We say that a simple closed curve $\tilde{\beta}$ on \tilde{R} is a $\tilde{\psi}$-polygon, if $\tilde{\beta}$ is a union of a finite number of horizontal arcs and vertical arcs of $\tilde{\psi}$. Note that for every $[\tilde{\gamma}] \in \mathcal{G}[\tilde{R}]$

$$h_\tilde{\psi}[\tilde{\gamma}] = \inf_{\tilde{\beta}} h_\tilde{\psi}(\tilde{\beta}),$$

where the infimum is taken over all $\tilde{\psi}$-polygons $\tilde{\beta}$ homotopic to $\tilde{\gamma}$ on \tilde{R}.

Now we can deform the pre-image $h^{-1}(\tilde{\beta})$ of such a $\tilde{\psi}$-polygon $\tilde{\beta}$ to a ψ-polygon β such that β is homotopic to $h^{-1}(\tilde{\beta})$ on R and

$$h_\psi(\beta) = h_\tilde{\psi}(\tilde{\beta}).$$

Hence we conclude that

$$h_\psi[(f^\mu)^{-1}(\gamma)] \leq h_\psi(\beta) = h_\tilde{\psi}(\tilde{\beta}).$$
for every $\tilde{\psi}$-polygon $\tilde{\beta}$ which is homotopic to $\tilde{\gamma}$, which in turn implies that

$$h_\psi[(f^\mu)^{-1}(\tilde{\gamma})] \leq h_{\tilde{\psi}}[\tilde{\gamma}]$$

for every $[\tilde{\gamma}] \in \mathfrak{S}[\tilde{\mathcal{R}}]$. On the other hand, we can similarly see as above that

$$h_{\tilde{\psi}}[f^\mu(\gamma)] \leq h_\psi[\gamma]$$

for every $[\gamma] \in \mathfrak{S}[\mathcal{R}]$. Thus we have the assertion.

From Lemma 3.1, we see that the holomorphic quadratic differential $\tilde{\psi} \in A(\tilde{\mathcal{R}}) \setminus \{0\}$ satisfies the condition (ii). Moreover, by definition, $E_{\tilde{\psi}}$ is an allowable slit of $\tilde{\mathcal{R}}$ with respect to $\tilde{\psi}$, and

$$\tilde{\psi} \circ h(h')^2 = \psi \text{ on } \mathcal{R} \setminus E_{\psi}.$$

Lemma 3.2 The point $[(\mu; h, \tilde{\mathcal{R}})] \in T(\mathcal{R})$ is different from the origin $[(0; id, \mathcal{R})]$ of $T(\mathcal{R})$.

Proof. Assume that

$$[(\mu; h, \tilde{\mathcal{R}})] = [(0; id, \mathcal{R})].$$

Then there would exist a conformal map $\iota : \mathcal{R} \to \tilde{\mathcal{R}}$ such that the induced isomorphism $(\iota)_* : \pi_1(\mathcal{R}) \to \pi_1(\tilde{\mathcal{R}})$ is the same as the one induced by h.

Fix a $[\gamma] \in \mathfrak{S}[\mathcal{R}]$ arbitrarily. Then Lemma 3.1 gives that

$$h_{\tilde{\psi}}[\iota(\gamma)] = h_\psi[\gamma].$$

Since $h_{\tilde{\psi}}[\iota(\gamma)] = h_{\tilde{\psi}}[\iota^2(\gamma)]$, we obtain

$$h_{\tilde{\psi}}[\iota^2(\gamma)] = h_\psi[\gamma]$$

for every $[\gamma] \in \mathfrak{S}[\mathcal{R}]$. Hence the heights mapping theorem implies that $\tilde{\psi} \circ \iota^2 = \psi$ on \mathcal{R}. In particular, the map ι maps the zeros of ψ to zeros of $\tilde{\psi}$ including multiplicities.

Now from the construction, the zero p_0 of order $m \geq 3$ breaks into two zeros \tilde{q}_1 and \tilde{q}_2 of $\tilde{\psi}$ of order $k - 2$ and $m - k$, respectively, with $2 \leq k \leq (m + 2)/2$. And the endpoints p_1 of κ_1 and p_2 of κ_2 gather to a zero \tilde{q} of $\tilde{\psi}$ on $\tilde{\mathcal{R}}$ of order 2.

Set $\tilde{K} = \tilde{\mathcal{R}} \setminus h(\mathcal{R} \setminus K)$. Then all zeros \tilde{q}, \tilde{q}_1, and \tilde{q}_2 of $\tilde{\psi}$ on \tilde{K} have the orders strictly less than m. Hence we see that

$$\iota(p_0) \not\in \tilde{K}.$$
Since the conformal embedding h maps $R \setminus K$ onto $\tilde{R} \setminus \tilde{K}$, $h^{-1} \circ \iota(p_0)$ is well defined and $h^{-1} \circ \iota(p_0) \notin K$. In particular,

$$h^{-1} \circ \iota(p_0) \neq p_0.$$

Next assume that, for a positive integer n,

$$(h^{-1} \circ \iota)^n(p_0) \neq (h^{-1} \circ \iota)^k(p_0)$$

for every k with $0 \leq k \leq n - 1$. Then, $\iota \circ (h^{-1} \circ \iota)^n(p_0) \notin \tilde{K}$, for the zero $\iota \circ (h^{-1} \circ \iota)^n(p_0)$ of ψ is of order m. Hence similarly as above, $(h^{-1} \circ \iota)^{n+1}(p_0) \notin K$. In particular,

$$(h^{-1} \circ \iota)^{n+1}(p_0) \neq p_0.$$

Also by the assumption,

$$(h^{-1} \circ \iota)^{n+1}(p_0) \neq (h^{-1} \circ \iota)^k(p_0)$$

for every k with $1 \leq k \leq n$.

Thus by the induction, we conclude that, for every positive integer n, we have

$$(h^{-1} \circ \iota)^n(p_0) \neq (h^{-1} \circ \iota)^k(p_0)$$

for every k with $0 \leq k \leq n - 1$, which implies that ψ has infinitely many distinct zeros. This is absurd, and we have shown that

$$[(\mu; h, \tilde{R})] \neq [(0; id, R)].$$

Remark As the example in Section 2, if one can see the widths of ψ on R and that of $\tilde{\psi}$ on \tilde{R}, it is easy to show the claim of Lemma 3.2. Because if $[(\mu; h, \tilde{R})] = [(0; id, R)]$ in $T(R)$, then from Lemma 3.1 and the heights theorem we can see that widths of ψ on R is equal to the corresponding widths of $\tilde{\psi}$ on \tilde{R}. For example, in the case of Section 2 we denote by \tilde{S} a Riemann surface obtained from S by deformation and denote by $\tilde{\varphi}$ an integrable holomorphic quadratic differential whose heights is the same as the corresponding heights of φ on S. Let $\gamma \in \mathcal{S}(S)$ be rounding I_1 on M_1. Then the width of $[\gamma] \in \mathcal{S}[S]$ is equal to 2. On the other hand, for this $[\gamma] \in \mathcal{S}[S]$ the corresponding width of $\tilde{\varphi}$ on \tilde{S} is equal to 4. Therefore the deformation actually change the surface in $T(S)$.

Thus we have completed the proof of Theorem 1.3.
References

Rie Sasai
Department of Mathematics
Graduate School of Science,
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
e-mail address: sasair@jeans.ocn.ne.jp