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Abstract

Aquite simple relation between the direction and the amplitude of
the vorticity is shown to be sufficient to guarantee the regularity of the
weak solutions to the evolution Navier-Stokes equations in the three-
dimensional case. See [3]. The proof is done by applying ideas introduced
by Constantin and Fefferman [6] together to improvements due to the au-
thor and Berselli [4]. We follow this last reference in astraightforward
way.

1Introduction
Consider the evolution 3-D Navier-Stokes equations

(1.1) $\{$

$Tt\partial u+$ $(u\cdot\nabla)u-\nu\Delta u+\nabla p=0$ in $\mathrm{R}^{3}\mathrm{x}[0,T]$ ,

$\nabla\cdot$ $u=0$ in $\mathrm{R}^{3}\mathrm{x}[0, T]$ ,

$u(x, 0)=u_{0}(x)/$ in $\mathrm{R}^{3}$ ,

and define the vorticity
$\omega(x, t)=\nabla \mathrm{x}u(x, t)$ ,

and also the direction of the vorticity

$\xi(x)=\frac{\omega(x)}{|\omega(x)|}$ .

In this note we exhibit asimple relation between the amplitude $|\omega(x)|$ and the
direction of the vorticity $\xi(x)$ which implies the regularity of the solutions to the
above evolution Navier-Stokes equations. See [3]. The proof follows the method
introduced by Constantin and Fefferman in reference [6] and improvements due
to the author and Berselli [4]. Actually, the proofs follow quite directly from
that in this last reference.

We denote by $|\cdot|_{p}$ the canonical norm in the Lebesgue space $L^{p}:=L^{p}(\mathrm{R}^{3})$ ,
$1\leq p\leq\infty$ . $H^{\epsilon}:=H^{\epsilon}(\mathrm{R}^{3})$ , $0\leq s$ , denotes the classical Sobolev spaces. Scalar
and vector function spaces are indicated by the same symbol
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It is well known, see Leray [8], that given any fixed T $>0$ there exists at
least aweak solution

$u\in \mathrm{L}2(0, T;L^{2})\cap L^{2}(0, T;H^{1})$ ,

of the system (1.1) in $(\mathrm{O},\mathrm{T})$ , where $C_{w}$ indicates weak continuity. Moreover, the
following energy estimate

(1.2) $\frac{1}{2}|u(t)|_{2}^{2}+\nu\int_{0}^{t}\int_{\mathrm{R}^{3}}|\nabla u(x, \sigma)|^{2}dxd\sigma\leq\frac{1}{2}|u_{0}|_{2}^{2}$

holds, for each $t\in(0, T)$ .
Aweak solution such that

(1.3) $u\in L^{\infty}(0,T;H^{1})\cap L^{2}(0,T;H^{2})$

is called astrong solution in $[0, T]$ . Moreover, we say that $u$ is astrong solution
in $[0, T)$ if $u$ is astrong solution in $[0, t]$ , for each $t<T$ . Strong solutions are
regular, unique, and exist at least for some $T^{*}>0$ .

It is not known wether weak solutions are unique and strong solutions are
global in time. Hence many efforts have been done to obtain significant con-
ditions that guarantee the regularity of the weak solutions. For instance, in
reference [2] it is proved that if

(1.4) $\omega\in L^{p}(0,T;L^{q})$ for $\frac{2}{p}+\frac{n}{q}\leq 2$ , $1\leq p\leq 2$ ,

then the weak solution is regular. Note that $\overline{\mathrm{t}}\mathrm{h}\mathrm{e}$ limit case $p=1$ in (1.4)
corresponds to the regularity condition $u\in L^{1}(0, T;W^{1,\infty})$ , due to Beale, Kato,
and Majda [1]. On the other hand, the limit case $p=2$ is equivalent to $u\in$

$L^{2}(0,T;W^{1,n})$ . Note that this assumption is different from the classical one,
namely $u\in L^{2}(0,T;L^{\infty})$ .

The sufficient condition (1.4) is an assumption on the amplitude of $\omega$ . In
contrast, in reference [6], regularity is proved under an hypothesis on the direc-
tion of the vorticity. Let $\theta(x, x+y, t)$ denote the angle between the vorticity $\omega$

at points $x$ and $x+y$ at time $t$ . In [6] the authors essentially prove that if

$|\sin\theta(x, x+y, t)|\leq c|y|$ ,

then the solution is necessarily smooth in $(0, T)$ .
In [4], we improve this result by showing that

(1.5) $|\sin\theta(x, x+y, t)|\leq c|y|^{1/2}$

is sufficient to guarantee the regularity of weak solutions. More precisely, we
prove that the following condition implies regularity:

For some $\beta$ $\in[1/2,1]$ and $g\in L^{a}(0,T;L^{b})$ , where

$\frac{2}{a}+\frac{3}{b}=\beta-\frac{1}{2}$ , $a \in[\frac{4}{2\beta-1},$ $\infty]$ ,

one has

(1.6) $|\sin\theta(x,x+y,t)|\leq g(t, x)|y|^{\beta}$
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in the region where the vorticity at both points x and $x+y$ is larger than an
arbitrary fixed positive constant K.

In this note we consider the case in which $\beta\in[0,1/2]$ and give asufficient
condition for the regularity of weak solutions that involves, simultaneously, the
modulus and the direction of the vorticity. We prove the following assertion.

Theorem 1.1. Let $u$ be a weak solution of (1.1) in $(0, T)$ with $u_{0}\in H^{1}$ and
$\nabla\cdot$ $u_{0}=0$ . Let $\beta\in[0,1/2]$ and assume that

(1.7) $|\sin\theta(x, x+y, t)|\leq c|y|^{\beta}$

in the region where the vorticity at both points x and $x+y$ is larger than an
arbitrary fixed positive constant K. Moreover, suppose that

(1.8) $\omega$ $\in L^{2}(0,T;L^{f})$ ,

where

(1.9) $\mathrm{r}=\frac{3}{\beta+1}$ .

Then the solution $u$ is strong in $[0, T]$ and, consequently, is regular.

The above hypotheses may be relaxed by assuming that (1.6) and (1.7) are
satisfied only for $|y|\leq\delta$ , for an arbitrary positive constant $\delta$ .

It is worth noting that in the two extreme cases, $\beta=1/2$ and $\beta$ $=0$ , the
above result coincides with two already known results. In fact, for $\beta$ $=1/2$ ,
the assumptions in Theorem 1.1 reduce just to the assumption (1.5) (note that
$\beta$ $=1/2$ implies $r=2$. Hence (1.8) is satisfied due to (1.2) $)$ . Hence, when
$\beta$ $=1/2$ , our thesis follows from [4]. On the other hand, if $\beta=0$ , the proof given
below fails. However the statement in Theorem 1.1 still holds as aconsequence
of the results proved by us in [2]. In fact, the assumption (1.4) is satisfied for
$n=q=3$ and $p=2$ (since $r=3$).

For the readers convenience we recall some results proved in [5]. By differ-
entiating the Biot-Savart law

(1.10) $u(x)=- \frac{1}{4\pi}\int_{\mathrm{R}^{3}}(\nabla\frac{1}{|y|})\mathrm{x}\omega(x+y)dy$,

we obtain the following expression for the strain matrix:

(1.11) $S[ \omega](x)=\frac{1}{2}[\nabla u(x)+(\nabla u(x))^{*}]=\frac{3}{4\pi}$ P. $\mathrm{V}.\int_{\mathrm{R}^{S}}M(\hat{y},\omega(x+y))\frac{dy}{|y|^{3}}$
,

where $\hat{y}$ is the unit vector in the direction of $y$ , and

$M( \hat{y},\omega)=\frac{1}{2}[\hat{y}\otimes(\hat{y}\mathrm{x}\omega)+(\hat{y}\mathrm{x}\omega)\otimes y\urcorner$

is asymmetric traceless matrix that defines aproper singular operator since,
for each fixed $\omega$ , its mean value on the unit sphere vanishes. Define

(1.12) $\alpha(x)=S[\omega](x)\xi(x)\cdot\xi(x)$ ,
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on the set $\{x\in \mathrm{R}^{3} : |\omega(x)|>0\}$ . From (1.11) it follows that (see [5])

(1.13) ci $(x)= \frac{3}{4\pi}$ P. $\mathrm{V}.\int_{\mathrm{R}^{\mathrm{S}}}D(\hat{y}, \xi(x+y),$
$\xi(x))|\omega(x+y)|\frac{dy}{|y|^{3}}$ ,

where

(1.14) $D(a, b, c)=(a\cdot c)$ Determinant $(a, b,c)$ .

2Proof of Theorem 1.1
Here we prove the Theorem 1.1. The proof follows that given in reference [3],
which, in turn, is an adaptation of that in [4] (to which the reader is referred
for details). For convenience we will assume that the constant $K$ in Theorem
1.1 vanishes, since the main difficulties are already present in this case. For the
general case we refer the reader to [4].

Since $u_{0}\in H^{1}$ , the solution is strong in $[0, \tau)$ , for some $\tau>0$ . Let $\tau\leq T$

be the maximum of these values. We will show that, under this hypothesis, $u$

is strong in $[0, \tau]$ . Hence, by acontinuation principle (note that $u(\tau)\in H^{1}$ ), $u$

is strong in $[\tau, \tau+\epsilon)$ . This shows that $\tau=T$.

By taking the curl of the first equation in (1.1) we find

(2.1) $\frac{\partial\omega}{\partial t}+(u\cdot\nabla)\omega-\nu\Delta\omega$ $=(\omega\cdot\nabla)u$ .

Multiplication of this equation by $\omega$ , and integration by parts, yield

(2.2) $\frac{1}{2}\frac{d}{dt}|\omega|_{2}^{2}+\nu|\nabla\omega|_{2}^{2}=\int_{\mathrm{R}^{3}}S[\omega](x)\omega(x)\cdot\omega(x)dx$
.

By (1.12) we get
$S[\omega]\omega\cdot\omega=|\omega|^{2}\alpha\xi\cdot\xi$,

and, by using (1.13),

$S[ \omega]\omega\cdot\omega=\frac{3}{4\pi}|\omega(x)|^{2}$ P. $\mathrm{V}.\int_{\mathrm{R}^{3}}D(\hat{y}, \xi(x+y),$
$\xi(x))|\omega(x+y)|\frac{dy}{|y|^{3}}$ .

Since, by (1.7),
$|D(\hat{y}, \xi(x+y),\xi(x))|\leq c|y|^{\beta}$ ,

it readily follows that

$|S[\omega](x)\omega(x)\cdot$ $\omega(x)|\leq\frac{3}{4\pi}|\omega(x)|^{2}I(x)$ ,

where
$I(x)= \int_{\mathrm{R}^{3}}|\omega(x+y)|\frac{dy}{|y|^{3-\beta}}$ .

Recall that here $\beta>0$ .
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The Hardy-Littlewood-Sobolev inequality in $R^{n}$ , for n $=$ 3 (cf. Stein [9,
Chap. V, Sec. 1.2]) states that if f $\in L^{r}$ , for $1<r<3$ , then

$I(x)= \int_{\mathrm{R}^{3}}\frac{f(x+y)}{|y|^{3-\beta}}dy$

belongs to $Lq$ , $1<q<\infty$ , for $1/q=1/r-\beta/3$ . Furthermore, the map $f\vdash\Rightarrow I$

is linear and continuous from $L^{r}$ into $L^{q}$ . Using this inequality, with $\beta$ and $r$ as
in (1.9) (hence $q=3$), we get

$|I(x)|_{3}\leq c|\omega|_{r}$ .

Using Holder’s inequality with exponents 3, 2, and 6, one shows that

(2.3) $| \int_{\mathrm{R}^{3}}S[\omega](x)\omega(x)\cdot\omega(x)dx|\leq c|\omega|,|\omega|_{6}|\omega|_{2}$.

Since $|\omega|_{6}\leq c|\nabla\omega|_{2}$ , from (2.3) it follows that

(2.4) $| \int_{\mathrm{R}^{3}}S[\omega](x)\omega(x)\cdot\omega(x)dx|\leq\frac{\nu}{4}|\nabla\omega|_{2}^{2}+c\nu^{-1}|\omega|_{f}^{2}|\omega|_{2}^{2}$.

From (2.2) and (2.4) we find

(2.5) $\frac{d}{dt}|\omega|_{2}^{2}+\nu|\nabla\omega|_{2}^{2}\leq c\nu^{-1}|\omega|_{r}^{2}|\omega|_{2}^{2}$ .

By the assumption (1.8), it follows that $|\omega|_{f}^{2}$ is integrable on $(0, \tau)$ . Hence, a
standard argument show that cv $\in L^{\infty}(0, \tau;L^{2})\cap L^{2}(0, \tau;H^{1})$ . It follows that
$u$ satisfies (1.3) on $(0, \tau)$ . Hence $u$ is astrong solution in the closed interval
$[0, \tau]$ . Now, we can extend $u$ , as astrong solution, to some interval $[\tau, \tau+\epsilon)$ ,
by starting from the “initial” data $u(\tau)$ , which belongs to $H^{1}$ .
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