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ABSTRACT. The consideration of backscattering data of Schrodinger operators $H_{v}=|D|^{2}-v$ in
$\mathrm{R}^{n}$ , when $n$ $\geq 3$ is odd, motivates the introduction of anonlinear transformation $v$ $|\mapsto Bv$ from
$L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{\mathrm{q}}(\mathrm{R}^{n})$ to $\theta(\mathrm{R}^{n})$ when $q>n$ . We define $Bv$ by considering the wave group associated to
the equation $(\theta_{t}^{2}-\Delta_{x}-v(x))K(x, t)=0$ . Simple estimates show that $Bv$ $\mathrm{i}\epsilon$ entire analytic in $v$ .
When $v$ is sufficiently small and real-valued, $Bv$ is uniquely determined ffom the backscattering
data. If $n$ $=3$ and $\nabla v$ has asmall norm in $L^{1}$ it is known also that $v$ is uniquely determined by
$Bv$ . We prove that the $N:\mathrm{t}\mathrm{h}$ order term $Bnv$ in the power series expansion of $Bv$ is $\mu N$ times
continuously differentiable for $N$ large, where $\mu_{N}/Narrow 1-n/q$ as $Narrow\infty$ .

1. INTRODUCTION
Let $\mathcal{H}$ and $\mathcal{K}$ be separable Hilbert spaces and $\mathrm{B}(\mathrm{H}, \mathcal{K})$ be the space of bounded linear operators

from 7{ to C. Denote by $\mathrm{C}^{k}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ the space of mappings
$[0, \infty)\ni t\vdash+A(t)\in B(\mathcal{H}, \mathcal{K})$

which are $k$ times continuously differentiable in the strong sense, i.e. $t\mapsto A(t)f\in \mathcal{K}$ is a $C^{k_{-}}$

mapping for every $f\in \mathcal{H}$ . Let $\mathcal{H}_{s}$ be the standard Sobolev space of functions in $\mathrm{R}^{n}$ with all
derivatives up to order $s$ in $L^{2}(\mathrm{R}^{n})$ , so that $\mathcal{H}_{0}=L^{2}(\mathrm{R}^{n})$ . When $v\in L^{q}(\mathrm{R}^{n})$ and $q\geq n/2$

it follows from the Sobolev embedding theorem that the operator $M_{v}$ , multiplication by $v$ , is
continuous from $\mathcal{H}_{2}$ to $\mathcal{H}_{0}$ . The Schr\"odinger operator $H_{v}=-\Delta-M_{v}=H_{0}-M_{v}$ is therefore a
continuous linear operator between the same spaces.
Main assumptions: It will be assumed throughout this paper that n $\geq 3$ is odd and that n $<$

q $\leq\infty$ .
In Section 2we shall present asimple proof of the following theorem.

Theorem 1. Assume $v\in L^{q}(\mathrm{R}^{n})$ (with $q$ as above). Then there is a unique
$K_{v}\in \mathrm{C}^{2}([0, \infty);B(\mathcal{H}_{2},\mathcal{H}_{0}))\cap \mathrm{C}^{0}([0,\infty);B(\mathcal{H}_{2},\mathcal{H}_{2}))$

such that
(1) $K_{v}’(t)f+H_{v}K_{v}(t)f$ $=0$,
and
(2) $K_{v}(0)f=0$ , $K_{v}’(0)f=f$

when $f\in \mathcal{H}_{2}$ .
The family of operators $K_{v}(t)$ , $t\geq 0$ will sometimes be referred to as the wave group. We are

also going to use the following properties of $K_{v}$ , where $Kv(x, y,t)$ denotes the distribution kernel
of $K_{v}(t)$ :

(3) $|x-y|\leq t$ in the support of $K_{v}(x,y,t)$ with equality when $v=0$,
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(4) $K_{v}\in \mathrm{C}^{0}([0, \infty);B(\mathcal{H}_{0},\mathcal{H}_{1}))$,

and

(5) $K_{v}\in \mathrm{C}^{1}([0, \infty);B(\mathcal{H}0, \mathcal{H}_{0}))$.

It follows from Sobolev’s embedding theorem and (4) (with $v=0$) that $K\mathrm{o}(t)$ is continuous
from $L^{2}$ to $IP$ when $2\leq p\leq 2n/(n-2)$ . Hence MVKO $\in \mathrm{C}^{0}([0, \infty);B(\mathcal{H}_{0},\mathcal{H}0))$ by Holder’s
inequality when $v\in L^{q}$ , and it follows then from (5) that $K_{v}’(t)M_{v}K_{0}(t)$ is astrongly continuous
family of bounded operators on $L^{2}(\mathrm{R}^{n})$ .

Let $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{p}(\Omega)$ be the space of functions in $L^{p}(\mathrm{R}^{n})$ with compact support contained in $\Omega$ , where
$\Omega\subset \mathrm{R}^{n}$ are open bounded sets. Assume that $v\in L_{\mathrm{c}o\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ . it follows from property (3) that
for every $\Omega$ there is aconstant $T=T(\Omega, \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v))$ such that $M_{v}K_{0}(t)f=0$ when $f\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}(\Omega)$

and $t\geq T$ . Another application of property (3) shows that the union of the supports of the
$K_{v}’(t)M_{v}K_{0}(t)f$ when $t$ ranges from 0to $\infty$ is contained in acompact set which depends on $\Omega$

and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(v)$ only. It follows that the operator $G=G_{v}$ defined by

(6) $Gf= \int_{0}^{\infty}K_{v}’(t)M_{v}K_{0}(t)fdt$

is acontinuous linear operator on $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}(\mathrm{R}^{n})$. Since $v\in L^{2}$ the operator $M_{v}G$ is continuous
from $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}$ to $L^{1}$ , and hence also from $C_{0}^{\infty}(\mathrm{R}^{n})$ to $\mathcal{E}’(\mathrm{R}^{n})$ . Let $(M_{v}G)(x,y)$ denote its distri-
bution kernel. Alinear change of variables in $\mathrm{R}^{n}\mathrm{x}\mathrm{R}^{n}$ allows us to consider the distribution
$(M_{v}G)(y, 2x-y)$ . Since this distribution is compactly supported in $y$ , we may define its integral
with respect to that variable, formally written as $\int v(y)G(y, 2x-y)dy$ . This procedure gives
rise to anonlinear mapping from $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ to $D’(\mathrm{R}^{n})$ , and we adopt the following definition:

Definition 2. The badcscattering transform $Bv$ of $v\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ is defined by

$Bv(x)=v(x)-2^{n} \int v(y)G(y, 2x-y)dy$ ,

where $G$ is defined by (6).

Our terminology is motivated by the following. In the case when $v$ is real-valued, compactly
supported and satisfies some weak regularity conditions we have ascattering matrix correspond-
ing to the two unitary groups $e^{-|tH_{v}}$.a $\mathrm{d}$

$e^{-\dot{\iota}tH_{0}}$ . Its anti-diagonal part is afunction depending
on the parameters $(k,\theta)$ where $k\in \mathrm{R}_{+}$ and $\theta\in S^{n-1}$ . Viewing these as polar coordinates in
frequency space and taking the inverse Fourier transform we get adistribution in Rn. The real
part of that distribution is after suitable normalization equal to the backscattering transform $Bv$

defined above apart from asmooth term which is due to bound states that may occur when $v$

becomes large. We refer to Lagergren [L] (in the case when $n=3$ and $H_{v}$ has no bound states)
and to aforthcoming paper by the author to aproof of these facts in arbitrary odd dimension
(see also [M]). The advantage of this approach is that it gives arepresentation of badcscattering
data without reference to wave operators, and that there is no need to let the time parameter
(in $K_{v}(t)$ ) tend to infinity when studying the local behaviour of the backscattering transform as
long as the potentials are compactly supported. In other words, we take advantage of the finite
speed of propagation in the wave equation, and in particular the validity of Huygen’s principle in
odd dimension. (For more extensive discussions on an approach to badcscattering closely related
to Lax-Phillips theory of scattering we refer to Uhlmann [U] and Wang [W].)

Inverse backscattering deals with the recovery of $v$ from the badcscattering data. (See [ER1]
and [ER2].) In view of the previous discussions the recovery of $v$ from $Bv$ is closely related to
the inverse backscattering problem. Since the leading part of $Bv$ equals $v$ one is tempted, at
least when considering small potentials, to view the backscattering transformation as anonlinear
perturbation of the identity. The problem is then to find suitable spaces of functions to work
within. In the case when $n=3$ it turns out (see [L]) that the completion of $C_{0}^{\infty}$ in the norm
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$||\nabla v||_{L^{1}}$ i $\mathrm{s}$ aspace for which $v\vdasharrow Bv$ is ahomeomorphism in aneighbourhood of the origin. A
natural candidate in the $n$-dimensional case, when $n>3$ is odd, is the completion of $C_{0}^{\infty}$ in the
norm $||\nabla^{n-2}v||_{L^{1}}$ .

Amore modest version of the inverse backscattering problem would be to compare the singu-
larities of $Bv$ with those of $v$ (see [J] and [OPS]). This paper will focus on some aspects of this
question. As we shall see, $Bv$ is an entire analytic function of $v$ when viewed as an element of
$D’(\mathrm{R}^{n})$ . Thus

$Bv= \sum_{1}^{\infty}B_{N}v$

with convergence in $D’(\mathrm{R}^{n})$ , where $B_{N}v$ is the part of $Bv$ that is homogeneous of degree $N$ in
$v$ . The main result of this paper, Theorem 8, says that the smoothness of $B_{N}v$ increases with
$N$ . In fact, we are going to prove that $B_{N}v\in C^{\mu_{N}}(\mathrm{R}^{n})$ for $N$ large where
(7) $\mu_{N}/Narrow 1-n/q$ as $Narrow\infty$ .
Also, $\sum_{\mu_{N}\geq k}B_{N}v$ is convergent in $C^{k}(\mathrm{R}^{n})$ for every $k$ . This means that we may for every $k$

write $B$ as asum of amap which is apolynomial in $v$ and amap which is continuous from
$L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}$ to $C^{k}$ . Astudy of the finer regularity properties of $Bv$ may therefore be reduced to the
individual terms $B_{N}v$ . Part of these results, which will be proved in the last section, may be
summed up in the following theorem.
Theorem 3. The backscattering transfo rmation $B$ may for any nonnegative integer $k$ be written
as a sum $B=B_{\mathrm{p}\mathrm{o}1}+B_{\mathrm{s}\mathrm{m}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}}$ , where $B_{\mathrm{p}\mathrm{o}1}$ is a polynomial mapping and $B_{\mathrm{s}\mathrm{m}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}}$ is continuous
from $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ to $C^{k}(\mathrm{R}^{n})$ .

2. PROOF OF THEOREM 1 AND PROPERTIES OF THE WAVE GROUP

Proof of the uniqueness part of Theorem 1. We have to prove that $f(t)\equiv 0$ if
$f\in C^{2}([0, \infty);\mathcal{H}_{0})\cap C^{0}([0, \infty);\mathcal{H}_{2})$ , $f(\mathrm{O})=f’(0)=0$ ,

and
$f’\langle t)+H_{v}f(t)=0$ .

Set
$G(t)=||f’(t)||^{2}+((I+H_{0})f(t), \mathrm{f}(\mathrm{t}))$

and
$g_{\epsilon}(t)=((I+H_{0})(I+\epsilon H_{0})^{-1}f(t),f(t))$

when $0\leq\epsilon$ . When $\epsilon>0$ we have
$g_{\epsilon}’(t)=2{\rm Re}((I+H_{0})(I+\epsilon H_{0})^{-1}f(t), f’(t))$

which converges in $L_{1\mathrm{o}\mathrm{c}}^{1}(\mathrm{R}+)$ to the continuous function
$h(t)=2\mathrm{R}\epsilon((I+H_{0})f(t), f’(t))$

when $\epsilon$ $arrow 0$ . Since $g_{\epsilon}$ converges to $g_{0}$ in $L_{1\mathrm{o}\mathrm{c}}^{1}(\mathrm{R}_{+})$ when $\epsilonarrow 0$ it follows that go is a $C^{1}$ function
in $\mathrm{R}_{+}$ and that $g_{0}’=h$ . Hence $G\in C^{1}(\mathrm{R}_{+})$ and

$G’(t)=2{\rm Re}(f’(t), f’(t))+h(t)=2{\rm Re}(f’(t)+(I+H_{0})f(t),f’(t))$

$=2{\rm Re}((\mathrm{I}+v)f(t),f’(t))$ .
Since $v\in L^{q}$ and $(I+H_{0})^{-1/2}$ is continuous fro$\mathrm{m}$

$L^{2}$ to $IP$ when $\frac{1}{2}-\frac{1}{n}\leq\frac{1}{p}\leq\frac{1}{2}$ we may estimate
the norm in $L^{2}$ of $vf$ by aconstant times the norm in $L^{2}$ of $(I+H_{0})^{1/2}f$ . Hence, there is a
constant $C$ such that

$G’(t)\leq CG(t)$ , $t>0$ ,
and since $G(0)=0$ we may conclude that $G$ vanishes identicaly. $\square$
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We need some simple preparations in order to construct $K_{v}$ . In the case when $v$ is real one
must have $K_{v}(t)=t\sigma(t^{2}H_{v})$ , where $\sigma$ is the unique entire analytic function which satisfies
$\sigma(t^{2})=(\sin t)/t$ when $t\in \mathrm{R}$ . Since we allow $v$ to be complex-valued, and since we are going to
need rather precise information about $K_{v}$ , we shall construct it by considering convolutions of
operator valued functions on $\mathrm{R}_{+}$ .
Convolutions of operator valued functions. Let $\mathcal{H}$ and $\mathcal{K}$ be separable Hilbert spaces and recall
that $\mathrm{C}^{k}([0, \infty);\mathrm{B}(\mathrm{H}, \mathcal{K}))$ denotes the space of mappings

$[0, \infty)\ni t\vdash+A(t)\in B(\mathcal{H}, \mathcal{K})$

which are $k$-times continuously differentiable in the strong sense. We equip this space with the
topology defined by the semi-norms

$||A||_{T,f}= \sum_{0\leq j\leq k}\max_{0\leq t\leq T}||A^{(j)}(t)f||$
, $T\geq 0$, $f\in \mathcal{H}$ .

Under this topology $\mathrm{C}^{k}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ becomes a $\mathrm{R}6\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}$ space. We say that an element $A$

in $\mathrm{C}^{k}([0, \infty);B(\mathcal{H}))$ is simple if $A(t)=f(t)A_{0}$ where $A_{0}\in B(\mathcal{H}, \mathcal{K})$ is independent of $t$ and
$f\in C^{k}([0, \infty))$ . The finite linear combinations of simple elements form adense subspace of
$C^{k}([0, \infty);\mathrm{B}(\mathrm{H}, \mathcal{K}))$ , and if $A\in \mathrm{C}^{k}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ , then the integral $\int_{0}^{t}A(s)ds$ is an element
in $C^{k+1}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ with derivative $A(t)$ .

Assume that $A\in \mathrm{C}^{0}([0, \infty);B(\mathcal{K}, L))$ and that $B\in \mathrm{C}^{0}([0, \infty);B(\mathcal{H}, \mathcal{K}))$, where $7t$ , $\mathcal{K}$ and $\mathcal{L}$

are Hilbert spaces. Define

$(A* \mathrm{K}\mathrm{v}(\mathrm{t})=\int_{0}^{t}A(t-s)B(s)ds=\int_{0}^{t}A(s)B(t-s)ds$ .

Then $A*B\in \mathrm{C}^{0}([0, \infty),$ $B(\mathcal{H}, L))$ . The convolution is associative, i.e.

(8) $(A*B)*C=A*(B*C)$
when $A$, $B$ and $C$ take values in appropriate spaces so that the convolutions are defined. For
reasons of continuity and linearity it suffices to prove this when $A$ , $B$ and $C$ are simple, and
then it follows from the corresponding properties for convolution of scalar valued functions. We
shall use the fact that if $A\in C^{1}([0, \infty);B(\mathcal{K}, \mathcal{L}))$ and $B\in \mathrm{C}^{0}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ , then $A*B\in$
$\mathrm{C}^{1}([0, \infty);B(\mathcal{H}, \mathcal{L}))$ and

$(A*B)’=A’*B+A(0)B$.
When $A\in \mathrm{C}^{0}$ , $B\in \mathrm{C}^{1}$ we have instead $(A*B)’=A*B’+AB(0)$ .

If $f$ and $g$ are locally integrable function on $[0, \infty)$ we define their convolution by

$(f*g)(t)= \int_{0}^{t}f(t-s)g(s)ds$ .

In this formula we may replace $g$ by $G$ where $G\in \mathrm{C}^{0}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ . Then we get an element
$f*G$ in the same space of operator valued functions. The obvious laws of associativity hold so
that in particular $\mathrm{C}^{0}([0, \infty);B(\mathcal{H}, \mathcal{K}))$ becomes amodule with respect to the convolution algebra
of locally integrable functions on $[0, \infty)$ .

Since it will be important for us also to consider fractional derivatives of operator valued
functions we need one more definition. Set

$B=B(\mathcal{H}_{0},\mathcal{H}_{0})=B(L^{2}, L^{2})$

and define
$X_{0}=\mathrm{C}^{0}([0, \infty);B)$ .

In order to define $X_{a}$ when $a>0$ we introduce
$\chi_{a}(t)=t^{a-1}/\Gamma(a)$ , $t>0$ .
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Then $\chi_{a}*\chi_{b}=\chi_{a+b}$ . If $A\in X_{0}$ we say that $A\in X_{a}$ if $A=\chi_{a}*B$ , where $B\in X_{0}$ . If $a=k$ is a
positive integer this implies that $A\in \mathrm{C}^{k}([0, \infty);B)$ and $B=A^{(k)}$ . If $a=k+b$ where $0<b<1$
then $A^{(k)}=\chi_{b}*B$ and $B=C’$ where $C=\mathrm{x}\mathrm{i}-\mathrm{b}*A^{(k)}\in X_{1}$ . it follows that $B$ is uniquely
determined by $A$ and we write $B=A^{(a)}$ . The following lemma is immediate from the definitions.

Lemma 4. Assume $A\in X_{a}$ and $B\in X_{b}$ then $A*B\in X_{a+b}$ and

(9) $(A*B)^{(a+b)}=A^{(a)}*B^{(b)}$ .
If $0\leq a\leq b$ then $X_{b}\subset X_{a}$ , and if $A\in X_{b}$ then $A^{(a)}=\chi_{b-a}*A^{(b)}$ .
Mapping properties of $K_{0}$ . It is easily verified that the conditions (1)$-(5)$ are satisfied by

(10) $K\mathrm{o}(t)=(\sin t|D|)/|D|$ where $D=\partial/$:and $|D|=H_{0}^{1/2}$ .
This is aconvolution operator, and its distribution kernel $k_{0}(x,t)$ is supported in the wave
cone $|x|=t$ . We notice that $K_{0}(t)$ extends to acontinuous operator on $S’(\mathrm{R}^{n})$ . We have
$K_{0}’(t)=\cos(t|D|)$ , and $K_{0}\in X_{1}$ since $K_{0}(0)=0$ . If $0<a<1$ then

(11) $K_{0}^{(a)}=\chi_{1-a}*K_{0}’$ .
Prom this follows that

(12) $K_{0}^{(a)}(t)=|D|^{a-1}h_{a}(t|D|)$ ,

where
$h_{a}(t)= \int_{0}^{t}(t-s)^{-a}\cos sds/\Gamma(1-a)$

is abounded function. Since $|D|^{-1}$ is convolution by aconstant times $|x|^{1-n}$ it follows from
formula (10) and the Hardy-Littlewood-Sobolev (HLS) inequality (see [H], Sec. 4.5) that $K_{0}(t)$

is continuous from $IP$ to $L^{2}$ and from $L^{2}$ to I7 when $\frac{1}{p}\in[\frac{1}{2}, \frac{1}{2}+\frac{1}{n}]$ and $p’$ is the conjugated
exponent, i.e. $p\underline{1}+F1$ $=1$ . It follows from Holder’s inequality then that the operators

(13) Y.(t) $=K\mathrm{O}(t)$ , $\mathrm{Y}_{+}(t)=MvK0(t)$

are continuous in $L^{2}$ , and from some simple estimates one deduces that $\mathrm{Y}\pm\in \mathrm{C}^{0}([0, \infty);B)=X_{0}$ .
Define $\delta=\delta_{q}\in(0,1]$ by

(14) $\delta=1-\frac{n}{q}$ .

Lemma 5. We have Y\pm \in X$, and there is a constant $C=C_{q,n}$ , which depends on $q$ and $n$ only,
such that

$||\mathrm{Y}_{\pm}^{(\delta)}(t)||\leq C||v||_{L^{q}}$ , $t\geq 0$ .
Proof. Since $|D|^{\delta-1}$ is convolution by aconstant times $|x|^{1-\delta-n}$ it follows from (12) and the
HLS-inequality that $K_{0}^{(\delta)}$ is continuous ffom $L^{r}$ to $L^{2}$ and from $L^{2}$ to $L^{\mathrm{r}’}$ , where

$\frac{1}{r}=\frac{1}{2}+\frac{1-\delta}{n}=\frac{1}{2}+\frac{1}{q}$.

It follows then from Holder’s inequality that $M_{v}K_{0}^{(\delta)}(t)$ and $K_{0}^{(\delta)}(t)M_{v}$ are continuous operators
in $L^{2}$ , and as such they are strongly continuous in $t$ . The operator norm may be estimated from
above by $C||v||_{L^{q}}$ . The lemma follows $\sin \mathrm{c}$

$\mathrm{Y}_{-}=\chi\delta*(M_{v}K_{0}^{(\delta)})$ , $\mathrm{Y}_{+}=\chi_{\delta}*(K_{0}^{(\delta)}M_{v})$.
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The construction of $K_{v}$ . Let $q\in(n, \infty]$ and $v\in L^{q}(\mathrm{R}^{n})$ be as before. Define $K_{N}$ inductively
when $N\geq 1$ by

(15) $K_{N}=\mathrm{Y}_{-}*K_{N-1}$ .
Since $\mathrm{Y}_{-}\in \mathrm{x}_{\delta}$ by Lemma 5, and since $K_{0}\in X_{1}$ , it follows by induction over $N$ that

(16) $K_{N}\in X_{N\delta+1}$ , $N\geq 1$ .

An application of Lemma 4and Lemma 5shows that
$||K_{N}^{(1+N\delta)}||\leq||\mathrm{Y}_{-}^{(\delta)}||*||K_{N-1}^{(1+(N-1)\delta)}||$

$\leq C||v||_{L^{q}}\chi_{1}*||K_{N-1}^{(1+(N-1)\delta)}||\leq C^{2}||v||_{L^{q}}^{2}\chi_{1}*\chi_{1}*||K_{N-2}^{(1+(N-2)\delta)}||$

$=C^{2}||v||_{L^{q}}^{2}\chi_{2}*||K_{N-2}^{(1+(N-2)\delta)}||\leq\cdots\leq C^{N}||v||_{L^{q}}^{N}\chi_{N}*||K_{0}^{(1)}||$

$\leq C^{N}||v||_{L^{q}}^{N}\chi_{N}*\chi_{1}=C^{N}||v||_{L^{q\chi N+1}}^{N}$.

Since $K_{N}^{(a)}=\chi_{1+N\delta-a}*K_{N}^{(1+N\delta)}$ , when $0\leq a<1+N\delta$ , it follows that $K_{N}\in X_{a}$ when
$0\leq a\leq 1+N\delta$ , and one has the estimate

(17) $||K_{N}^{(a)}(t)||\leq C^{N}t^{1+N(1+\delta)-a}||v||_{L^{q}}^{N}/\Gamma(2+N(1+\delta)-a)$ , $0\leq a\leq 1+N\delta$.
We now define

(18) $K_{v}= \sum_{0}^{\infty}K_{N}$ .

It follows from (17) with $a=1$ that the sum converges in $\mathrm{C}^{1}([0, \infty);B)$ . Hence condition (5) is
fulfilled and (3) holds since $|x-y|=t$ in the support of the distribution kernel $K_{0}(x,y,t)$ .

Lemma 6. We have $(K_{v}-K_{0})(I+H_{0})^{-1}\in X_{2}$ .

Proof. Set $P=M_{v}(I+H_{0})^{-1}$ . Then $P$ is bounded on $L^{2}(\mathrm{R}^{n})$ and
$MVKO(I+H_{0})^{-1}=PK_{0}\in X_{1}$

since $K_{0}\in X_{1}$ . Since
$\mathrm{K}\mathrm{N}(\mathrm{I}+H_{0})^{-1}=K_{0}*MVKO(I+H_{0})^{-1})=K_{0}*(PK_{0})$ ,

it follows from Lemma 4that

(19) $K_{1}(I+H_{0})^{-1}\in X_{2}$ .
Let us introduce

(20) $V_{N}=\mathrm{Y}_{-}*\cdots*\mathrm{Y}_{-}$ , $W_{N}=\mathrm{Y}_{+}*\cdots*\mathrm{Y}_{+}$,

where the number of factors equals $N$ . Then

(21) $K_{N}=V_{N-1}*K_{1}=K_{1}*W_{N-1}$ , $N\geq 2$ .
It follows from Lemma 4and Lemma 5that $V_{N-1}$ , $W_{N-1}\in X_{(N-1)\delta}$ . Hence (19) and (21) imply
that

$K_{N}(I+H_{0})^{-1}=VN-1*(K_{1}(I+H_{0})^{-1})\in X(N-1)\delta+2$ , $N\geq 2$ .
Arguments similar to those leading to (17) give the estimate

(22) $||(K_{N}(I+H_{0})^{-1})^{((N-1)\delta+2)}||\leq C^{N}||v||_{L^{q}}^{N}\chi_{N}$ , $N\geq 1$ .
The lemma is an immediate consequence of these estimates, since (22) implies that $K_{N}(I+$

$H_{0})^{-1}=\chi_{2}*Z_{N}$ when $N\geq 1$ , where $\sum_{1}^{\infty}Z_{N}$ is convergent in $\mathrm{C}^{0}([0, \infty),$ $B)$ . $\square$
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It follows from the previous lemma that
$K_{v}\in C^{2}([0, \infty);B(\mathcal{H}_{2}, \mathcal{H}_{0}))$

and that (2) holds. We need also to verify (1) and that
(23) $K_{v}\in C^{0}([0, \infty);B(\mathcal{H}_{2}, \mathcal{H}_{2}))$,
or, equivalently, that
(24) $(I+H_{0})K_{v}(I+H_{0})^{-1}\in C^{0}([0, \infty);B)$ .

We notice that
$KN-XMV=V_{N}\in X_{N\delta}$ , $M_{v}K_{N-1}=W_{N}\in X_{N\delta}$ , $N\geq 1$ ,

since Y\pm \in X$. Hence we have
(25) $P_{N}\in X_{N\delta}$ , where $P_{N}=(W_{N}-V_{N})(I+H_{0})^{-1}$ .
Lemma 7. Assume $N\geq 1$ . Then
(26) $K_{N}’(t)=V_{N}$ -KNHo (on $\mathcal{H}_{2}$)

and
(27) $(I+H_{0})K_{N}(t)(I+H_{0})^{-1}=K_{N}(t)+P_{N}(t)$ .
Proof. The estimates (17) and (22) (and their polarized versions) show that both sides of (26)
and (27), viewed as mappings from $S(\mathrm{R}^{n})$ to $S’(\mathrm{R}^{n})$ depend continuously on $v\in L^{q}$ . It suffices
therefore to prove the lemma when $v\in C_{0}^{\infty}(\mathrm{R}^{n})$ . Consider first $K_{1}=(K_{0}M_{v})*K_{0}$ . Since
$K_{0}\in \mathrm{C}^{2}([0, \infty);B(\mathcal{H}_{2}, \mathcal{H}_{0}))$ , $K_{0}(0)=0$ , $K_{0}’(\mathrm{O})=I$ and $K_{0}’=-K_{0}H_{0}$ , it follows that

$K_{1}’=KOMV-K_{1}H_{0}=V_{1}-\mathrm{K}\mathrm{i}\mathrm{H}\mathrm{O}$ .
If $N\geq 2$ we write $K_{N}=(K_{N-2}M_{v})*K_{1}$ and get

$K_{N}’=(K_{N-2}M_{v})*K_{1}’=(K_{N-2}M_{v})*(\mathrm{K}\mathrm{O}\mathrm{M}\mathrm{V})-(\mathrm{K}\mathrm{N}-2\mathrm{M}\mathrm{V})*(K_{1}H_{0})$

$=KN-XMV-K_{N}H_{0}=V_{N}-K{}_{N0}H$ .
This proves (26). Since $K_{N}$ is its own transpose we also have
(28) $K_{N}’=M_{v}K_{N-1}-HoKN=W_{N}-H_{0}K_{N}$ .
Hence

$(H_{0}+I)K_{N}=K_{N}(H_{0}+I)+W_{N}-V_{N}$

ffom which (27) follows. $\square$

We notice that (1) follows from (28). The only remaining part in the proof of Theorem
1is therefore the assertion (24). The series $\sum_{1}^{\infty}P_{N}$ converges in $C^{0}([0, \infty);B)$ and its sum
$(M_{v}K_{v}-K_{v}M_{v})(I+H_{0})^{-1}$ i$\mathrm{s}$ an element in X$. It folows from Lemma 7therefore that

$(I+H_{0})K_{v}(t)(I+H_{0})^{-1}$

$=(M_{v}K_{v}(t)-K_{v}(t)M_{v})(I+H_{0})^{-1}+K_{v}(t)\in C^{0}([0, \infty);B)$ .
This completes the proof of Theorem 1.

We have already verified (3) and (5) and want to prove now that (4) holds. Since
$K_{N}=K_{1}*W_{N-1}$ , $N\geq 2$

asummation over $N$ gives
$K_{v}=K_{0}+K_{1}+K_{1}*W$,

where $W= \sum_{1}^{\infty}W_{N}\in X_{\delta}$. It suffices therefore to observe that
$K_{1}=K_{0}*\mathrm{Y}_{+}\in C^{0}([0,\infty);B(\mathcal{H}0,\mathcal{H}_{1}))$ ,
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since $K_{0}$ is in that space.

3. THE HACKSCATTERING TRANSFORM

Let $v\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ where $q>n$ . Define $G=G_{v}$ as in (6) and recal that the backscattering
transformation $B$ was introduced in Definition 2.

Define $B_{1}v=v$ and

(29) $B_{N}v(x)=-2^{n} \int v(y)G_{N-1}(y, 2x-y)dy$ , $N>1$ ,

where

(30) $G_{N-1}= \int_{0}^{\infty}K_{N-2}’(t)M_{v}K_{0}(t)dt$.

It is asimple consequence from these definitions and the estimates in the previous section that

$Bv= \sum_{1}^{\infty}B_{N}v$

with convergence in $y(\mathrm{R}^{n})$ , and also that $Bv$ is entire analytic in $v$ when viewed as an element
of that space.

The main result of this paper is aproof for the fact that the smoothness of $B_{N}v$ increases
with N. (We shall not discuss the smoothness of the lower order terms in the expansion of $Bv.$ )
It follows from the theorem below that for every nonnegative integer $k$ there is apositive integer
$N_{k}$ such that $B_{N}\in C^{k}$ when $N\geq N_{k}$ , and $\sum_{N\geq N_{k}}B_{N}$ is convergent in $C^{k}(\mathrm{R}^{n})$ . Moreover,
$k/N_{k}arrow\delta=1-n/q$ as $karrow\infty$ .

Theorem 8, Let $n^{*}$ be the smallest integer $>n/4$ and set $\delta$ $=1-n/q$, where $q>n$ . Assume
$2(n^{*}+k)<(N-2)\delta$ . Then $\Delta^{k}B_{N}v\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}^{n})$ when $v\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\mathrm{R}^{n})$ . Moreover, $\dot{l}f\Omega_{1}$ and $\Omega_{2}$

are open bounded sets in $\mathrm{R}^{n}$ there is a constant $C=C_{k}$ , depending on $k$ , $\Omega_{1}$ , $\Omega_{2}$ and $q$ only
such that

(31) $( \int_{\Omega_{1}}|\Delta^{k}B_{N}v(x)|^{2}dx)^{1/2}\leq C_{k}^{N}||v||_{L^{q}}^{N}/N!$

when $v\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\Omega_{2})$ .
We notice that Theorem 3in the introduction is an immediate consequence of this theorem

and its polarized version, which we leave to the reader to formulate.

Proof of the theorem. Let $\Omega_{1}$ and 02 be open bounded sets in $\mathrm{R}^{n}$ and let $v\in L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{q}(\Omega_{2})$ . If
$f\in C_{0}^{\infty}(\mathrm{R}^{n})$ then $F(t)=M_{v}K_{0}(t)f$ is asmooth function of $t$ with values in $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}(\mathrm{R}^{n})$ and
$F^{(2k)}(t)=M_{v}K_{0}(t)\Delta^{k}f$ . It follows when $N\geq 2$ that

$G_{N-1} \Delta^{k+n^{*}}f=\int_{0}^{\infty}K_{N-2}’(t)F^{(2n^{\mathrm{r}}+2k)}(t)dt$ .

Since $2(n^{*}+k)<(N-2)\delta$ it follows from (17) that
$K_{N-2}’\in \mathrm{C}^{2k+2n}$

.
$([0, \infty);B)$ ,

and its derivatives up to order $2k+2n^{*}$ vanish at the origin. Integrating by parts $2k+2n^{*}$ times
we get

$G_{N-1} \Delta^{k+n^{*}}f=\int_{0}^{\infty}K_{N-2}^{(1+2n^{*}+2k)}(t)F(t)dt$ .
Set $QN-1,k=G_{N-1}\circ\Delta^{k}$ a $\mathrm{d}$ define

$G_{N-1,k}= \int_{0}^{\infty}K_{N-2}^{(1+2n^{*}+2k)}(t)M_{v}K_{0}(t)dt$ .
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This is acontinuous operator on $L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}$ . Let $E$ be a properly supported pseud0-differential

operator of order $-2n^{*}$ which is a parmetrix of $\Delta^{n^{\mathrm{r}}}$ . Since $Q_{N-1,k}\circ\Delta^{n^{*}}=G_{N-1,k}$ we have

$Q_{N-1,k}=G_{N-1,k}\circ E+Q_{N-1,k}\circ R$

where $R$ is an integral operator with asmooth and properly supported kernel (i.e. the projections
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)\ni(x, y)arrow x$ and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)$ a $(x, y)arrow y$ are proper). Let $\varphi\in C_{0}^{\infty}(\mathrm{R}^{n})$ and choose
$\psi$ $\in C_{0}^{\infty}(\mathrm{R}^{n})$ such that $EM_{\varphi}=M\psi^{EM_{\varphi}}$ . Then

(32) $Q_{N-1,k}M_{\varphi}=(G_{N-1,k}M_{\psi})EM_{\varphi}+Q_{N-1,k}(RM_{\varphi})$ .

We notice that $G_{N-1,k}M_{\psi}$ is acontinuous linear operator on $L^{2}(\mathrm{R}^{n})$ , and its distribution kernel

is compactly supported. It follows from (17) that its norm in $B$ can b$\mathrm{e}$ estimated from above by

$C_{k}^{N}||v||_{L^{q}}^{N}/N!$ , where $C_{k}$ depends on $\Omega_{2}$ , $q$ and $\psi$ only. Since $EM_{\varphi}$ is aHilbert-Schmidt operator

we get the same kind of estimate for the Hilbert-Schmidt norm of $G_{N-1,k}M\psi EM_{\varphi}$ , if let $C_{k}$

depend on $\varphi$ also. Writing $Q_{N-1,k}RM_{\varphi}=G_{N-1}(\Delta^{k}RM_{\varphi})$ we may also estimate the second

term in the right-hand side of (32) in this way. Since $\varphi$ EE C’ was arbitrary it follows that

$\Delta_{y}^{k}G_{N-1}(x,y)=Q_{N-1,k}(x,y)$ is in $L_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}^{n}\mathrm{x}\mathrm{R}^{n})$ and we have the estimates

(33) $( \int\int_{\mathrm{R}^{\mathfrak{n}}\mathrm{x}\Omega_{0}}|\Delta_{y}^{k}G_{N-1}(x, y)|^{2}dxdy)^{1/2}\leq C_{k}^{N}||v||_{L^{q}}^{N-1}/N!$

when $v$ is supported in $\Omega_{2}$ , $\Omega_{0}\subset \mathrm{R}^{n}$ is an open bounded set and $2(n^{*}+k)<(N-2)\delta$ . Here $C_{k}$

depends also on $\Omega_{0}$ , $\Omega_{2}$ and $q$ .
It is now astraight-forward procedure to deduce the conclusion of the theorem $\mathrm{f}$ om the

inequality above. In fact, if one chooses $\Omega_{0}=2\Omega_{1}-\Omega_{2}$ , then Caychy’s inequality and the

definition of $B_{N}$ gives the estimate

$I_{\Omega_{1}}|B_{N}(x)|^{2}dx \leq 2^{n}||v||_{L^{2}}^{2}\int\int_{\mathrm{R}^{n}\mathrm{x}\Omega_{0}}|G_{N-1}(x, y)|^{2}dxdy$
,

and the estimates for $\Delta^{k}B_{N}(x)$ are obtained by replacing $G_{N-1}$ in the right-hand side by
$\square$

$2^{2k}\Delta_{y}^{k}G_{N-1}(x, y)$ and then using (33).
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