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SMOOTHNESS OF HIGHER ORDER TERMS IN A BACKSCATTERING
TRANSFORMATION

ANDERS MELIN

ABSTRACT. The consideration of backscattering data of Schrodinger operators Hy = |D|* —v in
R"™, when n > 3 is odd, motivates the introduction of a nonlinear transformation v — By from
Limp(R™) to D'(R™) when ¢ > n. We define Bv by considering the wave group associated to
the equation (87 — A, —v(z))K(z,t) = 0. Simple estimates show that By is entire analytic in v.
When v is sufficiently small and real-valued, Bv is uniquely determined from the backscattering
data. If n = 3 and Vv has a small norm in L' it is known also that v is uniquely determined by
Bv. We prove that the N:th order term Bnv in the power series expansion of Bv is pux-times
continuously differentiable for N large, where uyn /N — 1 —n/q as N — oo.

1. INTRODUCTION
Let # and K be separable Hilbert spaces and B(H, K) be the space of bounded linear operators
from # to K. Denote by C*([0, 00); B(H,K)) the space of mappings
[0,00) 2t — A(t) € B(H,K)

which are k times continuously differentiable in the strong sense, i.e. t — A(t)f € K is a Ck-
mapping for every f € H. Let H; be the standard Sobolev space of functions in R™ with all
derivatives up to order s in L?(R"), so that Hp = L?(R"). When v € LY(R") and q > n/2
it follows from the Sobolev embedding theorem that the operator M,,, multiplication by v, is
continuous from H3 to Hg. The Schrédinger operator H, = —A — M, = Hy — M, is therefore a
continuous linear operator between the same spaces.

Main assumptions: It will be assumed throughout this paper that n > 3 is odd and that n <
q < 00.

In Section 2 we shall present a simple proof of the following theorem.
Theorem 1. Assume v € LY(R") (with q as above). Then there is a unigue
K, € C*([0, 00); B(Hz, Ho)) N C°([0, 00); B(Hz, Hz))

such that

(1) Kz’)'(t)f + Hva(t)f =0,
and

(2) Ky(0)f =0, Ky(0)f =f
when f € Ha.

The family of operators K,(t), ¢ > 0 will sometimes be referred to as the wave group. We are
also going to use the following properties of K,,, where K,(z,y,t) denotes the distribution kernel
of K,(t):

(3) |z —y| <t in the support of K,(z,y,t) with equality when v =0,
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(4) K, € C°([0, 00); B(Ho, H1)),
and
(5) K, € C'([0,00); B(Ho, Ho)).

It follows from Sobolev’s embedding theorem and (4) (with v = 0) that Ky(t) is continuous
from L? to L? when 2 < p < 2n/(n — 2). Hence M,Kj € C°([0, 00); B(Ho,Ho)) by Holder’s
inequality when v € L9, and it follows then from (5) that K (t)M,Ky(t) is a strongly continuous
family of bounded operators on L#(R").

Let Lomp(Q) be the space of functions in LP(R") with compact support contained in {2, where
Q C R" are open bounded sets. Assume that v € Limp(R™). It follows from property (3) that
for every 2 there is a constant T = T'(?, supp(v)) such that M, Ky(t)f =0 when f € Lgomp(ﬂ)
and t > T. Another application of property (3) shows that the union of the supports of the
K! (t)M,Ko(t)f when t ranges from 0 to oo is contained in a compact set which depends on {2
and supp(v) only. It follows that the operator G = G, defined by

(6) Gf = [O " K1 ()M Ko(t)f dt

is a continuous linear operator on L%, (R™). Since v € L? the operator M,G is continuous
from L2, to L', and hence also from C§°(R") to £'(R"). Let (M,G)(z,y) denote its distri-
bution kernel. A linear change of variables in R™ x R"™ allows us to consider the distribution
(M,G)(y, 2z —y). Since this distribution is compactly supported in y, we may define its integral
with respect to that variable, formally written as [ v(y)G(y,2z — y)dy. This procedure gives

rise to a nonlinear mapping from Li,mp(R™) to D'(R"), and we adopt the following definition:
Definition 2. The backscattering transform Bv of v € Li,mp(R") is defined by

Bu(z) = v(z) - 2° / v()G(y, 2z - y) d,
where G is defined by (6).

Our terminology is motivated by the following. In the case when v is real-valued, compactly
supported and satisfies some weak regularity conditions we have a scattering matrix correspond-
ing to the two unitary groups e **#* and e~##°. Its anti-diagonal part is a function depending
on the parameters (k,8) where ¥ € R; and # € S*~}. Viewing these as polar coordinates in
frequency space and taking the inverse Fourier transform we get a distribution in R". The real
part of that distribution is after suitable normalization equal to the backscattering transform Bv
defined above apart from a smooth term which is due to bound states that may occur when v
becomes large. We refer to Lagergren [L] (in the case when n = 3 and H, has no bound states)
and to a forthcoming paper by the author to a proof of these facts in arbitrary odd dimension
(see also [M]). The advantage of this approach is that it gives a representation of backscattering
data without reference to wave operators, and that there is no need to let the time parameter
(in K,(t)) tend to infinity when studying the local behaviour of the backscattering transform as
long as the potentials are compactly supported. In other words, we take advantage of the finite
speed of propagation in the wave equation, and in particular the validity of Huygen’s principle in
odd dimension. (For more extensive discussions on an approach to backscattering closely related
to Lax-Phillips theory of scattering we refer to Uhlmann (U] and Wang [W].)

Inverse backscattering deals with the recovery of v from the backscattering data. (See [ER1]
and [ER2].) In view of the previous discussions the recovery of v from Bv is closely related to
the inverse backscattering problem. Since the leading part of Bv equals v one is tempted, at
least when considering small potentials, to view the backscattering transformation as a nonlinear
perturbation of the identity. The problem is then to find suitable spaces of functions to work
within. In the case when n = 3 it turns out (see [L]) that the completion of C§° in the norm
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|IVvlf,: is a space for which v — Bv is a homeomorphism in a neighbourhood of the origin. A
natural candidate in the n-dimensional case, when n > 3 is odd, is the completion of C§° in the
norm ||V~ 2y|j,,.

A more modest version of the inverse backscattering problem would be to compare the singu-
larities of Bv with those of v (see [J] and [OPS]). This paper will focus on some aspects of this
question. As we shall see, Bv is an entire analytic function of v when viewed as an element of
D'(R™). Thus

Bv = iBNv
1

with convergence in D’(R"), where Byv is the part of Bv that is homogeneous of degree N in
v. The main result of this paper, Theorem 8, says that the smoothness of Byv increases with
N. In fact, we are going to prove that Byv € C#¥ (R™) for N large where

(7 un/N =1—n/q as N — oo.

Also, 3, > Bnv is convergent in C*(R™) for every k. This means that we may for every k
write B as a sum of a map which is a polynomial in v and a map which is continuous from
Lgomp to C*. A study of the finer regularity properties of Bv may therefore be reduced to the
individual terms Byv. Part of these results, which will be proved in the last section, may be
summed up in the following theorem.

Theorem 3. The backscattering transformation B may for any nonnegative integer k be written
as a sum B = By + Bsmooth, Where Byg) is a polynomial mapping and Bsmooth 18 continuous
from Limp(R™) to C¥(R™).

2. PROOF OF THEOREM 1 AND PROPERTIES OF THE WAVE GROUP
Proof of the uniqueness part of Theorem 1. We have to prove that f(t) = 0 if

f € C*([0,00); Ho) N C°([0, 00); H2), ~ £(0) = £'(0) = 0,

and
f'(t) + Hyf(t) = 0.
Set
G(®) = Il @)1 + (I + Ho) £ (1), £ (1))
and

9e(t) = ((I + Ho)(I + eHo) ' f(t), £(t))
when 0 < £. When £ > 0 we have
9:(t) = 2Re((I + Ho)(I +Ho) ™ £(t), f'(t))
which converges in Li (R+) to the continuous function
" h(t) = 2Re((I + Ho)f (%), f'(t))

when ¢ — 0. Since g, converges to go in L} (R+) when £ — 0 it follows that go is a C? function
in Ry and that gj = h. Hence G € C}(R) and
G'(t) = 2Re(f"(2), f'(t)) + h(t) = 2Re(f"(t) + (I + Ho)f(t), f'(2))
= 2Re((1 +v)f (1), f'(2)).
Since v € L? and (I + Hy)~/2 is continuous from L? to LP when 3—i< % < % we may estimate
the norm in L? of vf by a constant times the norm in L? of (I + Hg)'/2f. Hence, there is a
constant C such that
G'(t) < CG(t), t>0,
and since G(0) = 0 we may conclude that G vanishes identically. o
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We need some simple preparations in order to construct K,. In the case when v is real one
must have K,(t) = to(t?H,), where o is the unique entire analytic function which satisfies
o(t?) = (sint)/t when t € R. Since we allow v to be complex-valued, and since we are going to
need rather precise information about K, we shall construct it by considering convolutions of
operator valued functions on R.

Convolutions of operator valued functions. Let H and K be separable Hilbert spaces and recall
that C*([0, c0); B(H, K)) denotes the space of mappings

[0,00) Dt A(t) € B(H,K)
which are k-times continuously differentiable in the strong sense. We equip this space with the
topology defined by the semi-norms
Al = Y max |AD@)f], T20 feH.

0<t<T
PR

<5<
Under this topology C¥([0, 00); B(#H, K)) becomes a Fréchet space. We say that an element A
in C*([0, 00); B(#)) is simple if A(t) = f(t)Ao where Ay € B(H,K) is independent of ¢ and
f € C¥([0,00)). The finite linear combinations of simple elements form a dense subspace of
C*([0, 00); B(H,K)), and if A € C*([0, 00); B(H,K)), then the integral f(f A(s)ds is an element
in C*¥*1([0, 00); B(H, K)) with derivative A(t).
Assume that A € C°([0,00); B(K, L)) and that B € C%([0, 00); B(H, K)), where H,K and L
are Hilbert spaces. Define

t t
(A+B)(t) = /O A(t — 8)B(s) ds = /0 A(s)B(t — 5) ds.

Then A * B € C°([0, 00), B(#, L)). The convolution is associative, i.e.
(8) (A*B)*C=Ax*(B=*C)

when A, B and C take values in appropriate spaces so that the convolutions are defined. For
reasons of continuity and linearity it suffices to prove this when A, B and C are simple, and
then it follows from the corresponding properties for convolution of scalar valued functions. We
shall use the fact that if A € C!([0,00); B(K, L)) and B € C%([0,00); B(H,K)), then Ax B €
C1([0, 00); B(H, L)) and
(AxB) = A'x B+ A(0)B.
When A € C° B € C! we have instead (A * B)' = A * B' + AB(0).
If f and g are locally integrable function on [0,00) we define their convolution by

t
(hmm=Aowmnn

In this formula we may replace g by G where G € C°([0, 00); B(#,K)). Then we get an element
f * G in the same space of operator valued functions. The obvious laws of associativity hold so
that in particular C%([0, o0); B(#, K)) becomes a module with respect to the convolution algebra
of locally integrable functions on [0, 0o).

Since it will be important for us also to consider fractional derivatives of operator valued
functions we need one more definition. Set

B = B(Ho, Ho) = B(L?, L?)
and define
Xo = C°([0, 00); B).
In order to define X, when a > 0 we introduce

Xa(t) =t*"1/T(a), t>0.
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Then X, * Xp = Xa+b- If A € Xy we say that A € X, if A= x,* B, where B€ Xy. fa=kisa
positive integer this implies that A € C¥([0,00); B) and B = A®). Ifa =k + b where 0 <b < 1
then AK®) = Xo * B and B = C' where C = xj_p * A®) e X,. 1t follows that B is uniquely
determined by A and we write B = A(®). The following lemma is immediate from the definitions.

Lemma 4. Assume A € X, and B € X, then Ax B € X4} and

(9) , (A x B)letd) = 4@ 4 ),

If0<a<bthen Xy C X,, and if A € X; then A® = xp_o % A®),

Mapping properties of Ko. It is easily verified that the conditions (1)-(5) are satisfied by
(10) Ko(t) = (sint|D|)/|D| where D = 8/i and |D| = HY/%.

This is a convolution operator, and its distribution kernel ko(z,t) is supported in the wave
cone || = t. We notice that Ko(t) extends to a continuous operator on S'(R™). We have
Ky (t) = cos(t|D|), and Ko € X since Ko(0) = 0. If 0 < a < 1 then

(11) K = x1a* Ky
From this follows that

(12) K () = | D" ha(¢| D)),
where

i
ha(t) = /0 (t— 5)=° cos sds/T'(1 — a)

is a bounded function. Since |[D|™! is convolution by a constant times |z|*~" it follows from
formula (10) and the Hardy-Littlewood-Sobolev (HLS) mequa.hty (see [H], Sec. 4.5) that Ky(t)
is continuous from LP to L? and from L? to L¥ when > € [3,3 + ;] and p' is the conjugated

exponent, i.e. 1 i 57 = 1. It follows from Hélder’s mequa.hty then that the operators

(13) Y_(t) = Ko(t)My, Yi(t) = M,Ko(t)

are continuous in L2, and from some simple estimates one deduces that Y € C%([0, 00); B) = X,
Define § = §, € (0, 1] by

(14) §=1-=.

Lemma 5. We have Yi € Xj, and there is a constant C = Cy,, which depends on g and n only,
such that

YOl < Clvllge, t>o0.

Proof. Since |D|®~! is convolution by a constant times |z|'~%~" it follows from (12) and the
HLS-inequality that KéJ) is continuous from L7 to L? and from L2 to L™, where

1 1-6 1 1

1 ———
- =

2 n 2 gq

It follows then from Holder’s inequality that M, K, (6) (t) and K (9) (¢) M, are continuous operators
in L2, and as such they are strongly continuous in t The operator norm may be estimated from
above by C||v||z,. The lemma follows since

Yo = x5+ (M,KP), Yy = x5 % (KO M,).
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The construction of K,. Let ¢ € (n,00] and v € LI(R") be as before. Define Ky inductively
when N > 1 by

(15) KN =Y_x KN——I-
Since Y_ € X; by Lemma 5, and since Ky € X, it follows by induction over N that
(16) Ky € XNs+1, N2>1.

An application of Lemma 4 and Lemma 5 shows that
IO < O )
< Cllvllaxa # IEGHN D) < Cllolidox « xa * 1B
= Colfioxa * IKRE 0 < - < ol o G
< CVlo|Mxw * x1 = CV|lvl Foxw+1.

Since Kl(\',') = X14Né—a * KS"'NJ), when 0 < a < 1+ N§, it follows that Ky € X, when
0 <a <1+ N4, and one has the estimate

(17) 1K@ )]l < CNeHNOD-a|y| ¥ /P2 + N(1+6) —a), 0<a<1+Nd.
We now define
[0 o]
(18) Ky=)_ Kn.
0

It follows from (17) with a = 1 that the sum converges in C*([0,00); B). Hence condition (5) is
fulfilled and (3) holds since |z — y| = ¢ in the support of the distribution kernel Ko(z,y,?).

Lemma 6. We have (K, — Ko)(I + Hy)™! € X».
Proof. Set P = M,(I + Ho)™. Then P is bounded on L*(R") and
M,Ko(I + Hp)™! = PKy € X;
since Ky € X;. Since
Ki(I + Ho)™ = Ko » (MyKo(I + Hp) ™) = Ko * (PKy),

it follows from Lemma 4 that

(19) K\(I+ Hy) ! € Xa.

Let us introduce

(20) Vw=Y_*---xY_, Wy=Y,%--%Y,,
where the number of factors equals N. Then

(21) Ky=VNaxKi=K; *xWyx_;, N2>2

It follows from Lemma 4 and Lemma 5 that Vy_1, Wx_1 € X(y_1)s- Hence (19) and (21) imply
that

Kn(I+ Ho) ™' = Vv_1 + (Ki(T + Ho) ™) € X(v—1)s420 N 22
Arguments similar to those leading to (17) give the estimate
(22) (B (I + Ho) ) N0 < Vol foxn, N 21

The lemma is an immediate consequence of these estimates, since (22) implies that Kn(I +
Hp)™! = x2 * Zy when N > 1, where Y"3° Zy is convergent in C°([0, 00), B). O
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It follows from the previous lemma that
K, € C*([0, 00); B(Hz, Ho))
and that (2) holds. We need also to verify (1) and that

(23) Kv € CO([Oa 00);3(%2’7{2)),
or, equivalently, that
(24) (I + Ho)K,(I + Ho)™! € C%([0, o0); B).

We notice that
KN-1M, =VN € Xn5, MyKn_1=Wn € Xn5, N 2>1,
since Y1 € X;. Hence we have

(25) Py € X5, where Py = (Wx — Vy)(I + Hp) L.
Lemma 7. Assume N > 1. Then

(26) Ky(t) =Vn — KnHy, (onHz)

and

(27) (I + Ho)Kn(t)(I + Ho) ™ = Kn(t) + Pn(t).

Proof. The estimates (17) and (22) (and their polarized versions) show that both sides of (26)
and (27), viewed as mappings from S(R") to S'(R™) depend continuously on v € L9. It suffices
therefore to prove the lemma when v € C§°(R™). Consider first K; = (KgM,) * Ko. Since
Ky € C?([0, 00); B(Ha, Ho)), Ko(0) =0, K4(0) = I and K = —KqH, it follows that

K} = KoM, — K1Hy = V; — K1 H,.
If N > 2 we write Ky = (Kny_2M,) * K; and get
Ky = (Kn-2M,) * K = (Kn_aM,) x (KoM,) — (Kn_2M,) * (K1 Ho)
= Ky_1My — KyHo = Vy — Ky Hp.
This proves (26). Since Ky is its own transpose we also have
(28) Ky = M,Ky_y — HiKy = Wy — HyKy.

Hence
(Ho +I)KN = KN(HO +I) + Wy —Vy
from which (27) follows. O

We notice that (1) follows from (28). The only remaining part in the proof of Theorem
1 is therefore the assertion (24). The series Y ;° Py converges in C°([0,00); B) and its sum
(MyK, — KuM,)(I + Hp)~! is an element in Xj;. It follows from Lemma 7 therefore that

(I + Ho)Ky(t)(I + Ho) ™
= (MyK,(t) — Kv(t)Mv)(I + H‘O)_1 + Ky(t) € cO([O’ 00); B).
This completes the proof of Theorem 1.

We have already verified (3) and (5) and want to prove now that (4) holds. Since
Kny=K;*xWn_1, N2>2

a summation over N gives
Ky=Ko+ K+ K, *W,
where W = ¥_{° Wy € X;. It suffices therefore to observe that

K, = Ko * Y, € C°([0,00); B(Ho, H1)),
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since K is in that space.

3. THE BACKSCATTERING TRANSFORM

Let v € Liymp(R™) where ¢ > n. Define G = G, as in (6) and recall that the backscattering
transformation B was introduced in Definition 2.
Define Bjv = v and

(29) Byo@) =2 [v@)Gr-u 25 -D)dy, N> 1,
where
o0
(30) Gy_1= / Khy_o(6) M, Ko(2) dt.
0
It is a simple consequence from these definitions and the estimates in the previous section that
oo
Bv = z Bynv
1

with convergence in D’(R"), and also that Bv is entire analytic in v when viewed as an element
of that space. ‘

The main result of this paper is a proof for the fact that the smoothness of Byv increases
with N. (We shall not discuss the smoothness of the lower order terms in the expansion of Bv.)
It follows from the theorem below that for every nonnegative integer k there is a positive integer
N; such that By € C* when N > Ni, and 3y y, B is convergent in C*(R™). Moreover,
k/Ny -+ 6=1—n/qask— oco. -

Theorem 8. Let n* be the smallest integer > n/4 and set § =1 —n/q, where ¢ > n. Assume
2(n* + k) < (N —2)8. Then A¥Byv € L} (R") when v € Limp(R"™). Moreover, if @ and Q3
are open bounded sets in R™ there is a constant C = Cy, depending on k, 1, Q2 and q only
such that

1/2
(31) ([ 1asBrv(a)ds) " < G iwlifu/
. 1

when v € Liomp(2).

We notice that Theorem 3 in the introduction is an immediate consequence of this theorem
and its polarized version, which we leave to the reader to formulate.

Proof of the theorem. Let Q; and Qg be open bounded sets in R” and let v € Lmp(2). If
f € C°(R™) then F(t) = M,Ky(t)f is a smooth function of ¢ with values in LZ,,,(R") and
FZR)(t) = MyKo(t)A¥ f. It follows when N > 2 that

[o o}
Gn_1 Ak f = / Kly_o(£)F+28)(5) .
0

Since 2(n* + k) < (N — 2)4 it follows from (17) that
Kiy_y € C?**([0,00); B),

and its derivatives up to order 2k 4+ 2n* vanish at the origin. Integrating by parts 2k + 2n* times
we get

oo *
G 1 Ak f = / K20 420 4y P (5) d.
0
Set QN1 =GN-10 AF and define

0 (142n*+2k)
GN-1k = /0 Ky_o (t)My Ko (t) dt.
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This is a continuous operator on L%omp. Let E be a properly supported pseudo-differential
operator of order —2n* which is a parametrix of A™". Since QN-1k© A" = Gy_1 ) we have

QN-15=GN-1,°E+Qn-1:°R
where R is an integral operator with a smooth and properly supported kernel (i.e. the projections
supp(R) 3 (z,y) — = and supp(R) > (r,y) — y are proper). Let ¢ € C$°(R™) and choose
¥ € C(R™) such that EM, = MyEM,. Then

(32) Qn-14M, = (GNn-1cMy) EM, + Qn-1k(RM,).

We notice that Gy—_1xMy is a continuous linear operator on L?(R™), and its distribution kernel
is compactly supported. It follows from (17) that its norm in B can be estimated from above by
oy llvﬂﬁq /N, where Ci depends on §22, g and % only. Since EM,, is a Hilbert-Schmidt operator
we get the same kind of estimate for the Hilbert-Schmidt norm of Gy_1xMyEM,, if let Cy
depend on ¢ also. Writing @n-1.RM, = G N_l(A"RM(p) we may also estimate the second
term in the right-hand side of (32) in this way. Since ¢ € C$° was arbitrary it follows that
ALGN_1(z,y) = QN-14(z,y) is in L2 (R" x R™) and we have the estimates

1/2 -
(33) ( AEGN_1(z,y)Pdzdy) < CF[lIF /!
R*xQg

when v is supported in 2, Qo C R™ is an open bounded set and 2(n* 4+ k) < (N —2)4. Here Ck
depends also on (g, Q2 and g.

It is now a straight-forward procedure to deduce the conclusion of the theorem from the
inequality above. In fact, if one chooses Qo = 20 — Qg, then Caychy’s inequality and the
definition of By gives the estimate

/ By (2)[2 dz < 2|2 /f \Gr—1(z, ) de dy,
Q R %o

and the estimates for A¥By(z) are obtained by replacing Gn-_; in the right-hand side by
22k AkGy_1(x,y) and then using (33). O
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