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Let (X, g) be a complete, conformally compact, n-dimensional Riemannian manifold, » 2> 2,
with constant negative curvature (which may be supposed to be —1) near infinity. The metric g
is of the form g = p~2h, where p € C®(X), plax =0, dplax # 0, p > 0 in X, h is a Riemannian
metric on X of class C°(X). Denote by Ax the Laplace-Beltrami operator on (X, g) and define
the resolvent

R(s) = (Ax —s(n—1-23))"1: L}(X) = L*(X), Res>»1,
where L2(X) = L?3(X, dVoly). Then,
R(s) : LZy(X) = Lie(X)

extends meromorphically to the whole complex plane C. This fact was proved by Mazzeo-
Melrose (7] for a larger class of manifolds (see also [2]). The poles of this continuation are called
resonances and the multiplicity of a resonance sg € C is defined as the rank of the operator

/ (n -1~ 28)R(s)ds,
7(s0)

where y(sg) is a circle centered at sp containing no other poles. Denote by Rx the set of all
resonances repeated according to the multiplicity, and set

Nx(r)=f{seRx:|s|<r}, r>1.
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Guillopé and Zworski [2] proved that Nx(r) = O(r™+!). Moreover, in the case of n = 2 they
obtained a better bound Nx(r) = O(r2) (see [3]) as well as a lower bound Nx(r) > r2/C,C >0,
under a natural assumption (see [4]). Our main result is the following

Theorem 1. For any conformally compact manifold (X,g) as above, the following upper
bound holds:
Nx(r) < Cr" (1)

with a constant C > 0.

Note that such a bound is proved by Patterson-Perry [10] for a class of quotions T'\H" with
n even via the properties of the dynamical zeta function. Perry [11] has recently obtained sharp
lower bounds of the form Nx(r) > r™/C for such quotions.

Sharp upper bounds on the number of resonances have been obtained in the case of Euclidean
scattering. Melrose [8] first obtained a bound of the form (1) for obstacle scattering in odd
dimensions. Later on he used this bound in an essential way to prove the Weyl asymptotic for
the scattering phase in this case (see [9]). Zworski [20] obtained such a sharp upper bound for
potential scattering in odd dimensions, as well as an asymptotic of the number of resonances for
a class of radial potentials (see [19]). Vodev [14] proved a sharp upper bound like (1) for metric
perturbations of the Lapalcian and extended this result to more general compactly supported
perturbations. not necessarily self-adjoint and elliptic still in odd dimensions (see [15]). He
also obtained sharp upper bounds on the number of resonances in even dimensions (see [18]).
Sjéstrand and Zworski [13) proved sharp upper bounds on the number of resonances for a large
class of self-adjoint compactly supported perturbations in odd dimensions using the complex
scaling method. In the case of semi-classical problems Sjostrand [12] obtained a semi-classical
analogue of the bound (1).

The bound (1) follow from the following upper bounds.

Proposition 2. For V0 < e € 1 3C, > 0 so that
H{seRx:7/2<|8| <r,s€Ce} < Cer™, 7>1, (2)
where C, :=C\{seC:w—£5argsgw+e}.
Proposition 3. For V0<e <1 3C. > 0 so that
f{seRx:|s|<rs€ C < C.r", r>1, (3)
where C,:= {s € C:7/2+¢e < args < 37/2 —¢}.

Note that the bound (3) has been announced in [5] where a short sketch of the proof is
presented. '

Idea of proof of Proposition 2. To prove (2) we modify the parametrix for the resolvent
constructed by Guillopé-Zworski [2] (who followed the more general construction of Mazzeo-
Melrose [7]). Denote

(H", go) := (R~ x By, y~2(da” + ™)



with Laplace-Beltrami operator given by
n—1
Agn = —y2a§ + (n = 2)ydy + y*Ay, Dp=-— Z 631..
j=1

Denote L?(H") := L?(H";dVol,,). Following [2], given any integer N > 1, we construct
operators

Ful(s) :yNIAH") -y VHAH"), Pn(s) : yVLAED) - gV LAHD),

‘defined for Re s > —N+(n—1)/2 and depending meromorphically on s with poles at —k, k € N,
so that
(Apn —s(n—1~3))Fn(s) =xo+Pn(s), . 4)

where xo = p()p(y), ¢ € CPR™), ¥ € C*(R), $(y) = 1 for y < 2do, Y(y) = 0 for
y > 380, 0 < &y < 1. Moreover, the operator vy~ NPy (s)y" is trace class on LZ(H"). Given
a compact operator A, denote by uk(A) its characteristic values, i.e. the eigenvalues of (4* A)1/2,

Lemma 4. There ezists 0 < 7 <1 (independent of s and N) so that if &g is taken small
enough (independent of s and N), for s € C,, |s| < wN, we have

ly=NPn (S)yN“c(Lz(Hn)) < etV (5)

ue (VP (s)yN ) £e®Nk? for k> CaN™! (6)

with constants Cy,Ca,C3 > 0 independent of s, N and k. Moreover, for s € C, |s| < %N,
Res > 4o N/2, we have
ly ¥ P ()" llczzqany < e”Y, (7

with a constant Cy > 0 independent of N and s.

It is shown in [2], Lemma 3.1, that there exists a neighbourhood Y of X in X and an
open covering Y C U_ﬁle such that each Y; is isometric to U = {(z,y) € H" : |z|* + y? < 1}.
Following [2] we denote by ; the isometry from Y; to U, and by :j the induced pull-back
operation transforming operators acting on functions in U to operators acting on functions in
Y;. We have po L;fl = y + O(y?). Furthermore, there exists a partition of the unity in X, {>°},

suppx’ C Yj, of the form xi = @/¢/ with ¢/ € C®(8X), suppy’ C ¥; N X, T =1
so that ¢’ o ;! depends only on the variable z and P o LJTI depends only on the variable y.
Moreover, taking Y properly one can arrange that ¢ 051 =1fory < 4,970 17} =0fory > 2§
with some 0 < § < 1 independent of j. Thus the function x = E;‘i’__l x7 is equal to 1 in {p < 6}
and to zero in {p > 26} . It is clear that to each function x’ o Lj_l € C°(U) we can associate
operators .?'1’;,(3) and 'Pj’;,(s) satisfying (4) with xo replaced by x? o L_;'l. Setting

M ] M ,
Fn(s) =Y 4 Fh(s)™ Pn(s) = > uPh(e)h
j=1 j=r

we have
(Ax — s(n—1-3))Fn(s) = x + Pn(s). (8)
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Moreover, for s € C,, Res > —N + (n — 1)/2, the operator pN Fy(s)p" is bounded on L?(X),
while o~ Py (s)p" is a trace class operator on L2(X ) and, in view of Lemma 4, satisfies an
analogue of the bounds (5)-(7) with possibly new constants.
Let n € C§°(X), n=01in {p < §/2}, x = 1 on supp(1l — 7), and let sy = 2y9N/3. Using (8)
one can easily get _
p" R(s)o"™ (I - Kn(s,sn)) = Kn(s,sn), 9)

where
Kn(s,sn) = —p NPy (s)p" — p~N[Ax, n)R(sn)(1 - x)o"

~(sn(n—1-3n) —s(n—1-23)p¥nR(sn)(1 - x)p",
Kn(s,sn) = p"1R(sw)(1 - x)o" + p" Fn(s)p".
The operator Kn(s, sn) is analyticin {s € C,Res > —N+(n—1)/2} with values in the compact
operators on L?(X) and the operator Ky (s, sy) is analytic in {s € C,,Res > —N + (n — 1)/2}
with values in the bounded operators on L?(X). Moreover, in view of (7), we have
KN (sn, sn)llcqraqxy) < 1/2.
Now it follows from (9) and the appendix in [18] that the poles of oV R(s)p" in {s € C.,Re s >
—N + (n — 1)/2} are among (with multiplicities) the zeros of the function
hn(s) = det (I - (Kn(s,sn)™ — Kn(sw,sn)")(I - Kn(sn,sn)™)71)

which is well defined and analytic in this region, and Ay (sy) = 1. Thus, the bound (2) follows
from Carleman’s theorem (e.g. see [6]) and the following

Lemma 5. For s € C,|s| < 7N, we have

eCN" ,

h < 10
(e < { eClls=sn+1)® if Res > yN/2, (10)
with a constant C > 0 independent of s and N.

Idea of proof of Proposition 3. It consists of using the properties of the scattering operator
8(s) : C®(0X) — C®(8X). Recall that the Schwartz kernel of S(s) is defined by

S(8) (Moo, mig; 8) = (2s—n+ 1) lim lim p(m)~*p(m')"°R(s)(m,m’),

Moo m/—ml,
where Mmoo, M, € 8X. One can show that S(s) is a meromorphic family with poles coinciding
with the resonances and the multiplicities agree. Moreover, we have
S(s)S(n—1-8)=1, (11)

S(s) = c(s)A’a}(n_n/ 2 t smoothing operator,
where Agx is the Laplace-Beltrami operator on (89X, 8h), h being the Riemannian metric on
06X induced by the metric h, and
1T(=s+(n-1)/2)

O = R = -1/




More precisely,
c(n—1—8)(Py + Dpx) "~ V2~25(s) = I+K( ), (12)

where P, denotes the orthogonal projection on Ker Agx, and K(s) is analytic in Res >y > 1
with values in the trace class operators on L?(8X). Thus the function

h(s) = det (I + K(s))

is well defined and analytic in Res > 4. By (11) and (12) we conclude that the poles of R(s) in
Res < n—1—1, with v >> 1, are among the poles of (I + K(n — 1 — s))~1, and hence, in view
of the Proposition in the appendix of [18], among the zeros (with multiplicity) of the function
h(n—1-3) in Res < n—1—+. Thus, the bound (3) follows from Carleman’s theorem and the
following

Lemma 6. For Res > v > 1, we have
|h(s)] < eI (13)

with a constant C > 0 independent of s.
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