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Analysis of quasilinear hyperbolic equations
in the space of BV functions

B RS - THH W (Koji Kikuchi)
Faculty of Engineering, Shizuoka University

Abstract. In the case that f is linear growth and quasiconvez we treat a system of
second order quasilinear hyperbolic equations

RTe .

T (t:9) = VUt =0, i=12,..,N

a=1

(0.1)

in a bounded domain {2 C R" with initial and boundary conditions

ou
ot

(0.3) u(t,z) =0, =z € 0Q.

Approximate solutions to (0.1)-(0.3) are constructed in Rothe’s method and it is proved
that a subsequence of them converges to a function v and that, if u satisfies the energy
conservation law, then it is a weak solution to (0.1)-(0.3) in the space of functions having
bounded variation.

(0.2) u(0,2) = uo(z), —(0,z)=1ve(z), =z€Q,

1 Introduction
There are several works on the following nonlinear hyperbolic equation

(1.1) 82 i—?—- {(1 + |Vu(t,z)|*)” 1/2i}=0 re
8t2 =1 Oz Oz Z; ’ ’

which is in [5, 9, 10] referred to as an equation of motion of vibrating membrane. This
equation does not always have a classical solution globally in time; furthermore it is
proved in [8] that in the two dimensional case (1.1) does not always have a classical
solution globally in time even though the initial data is smooth and small. Thus a time
global solution should be found in a weak sense. When a C? class function u satisfies
(1.1), multiplying u; to (1.1) and integrating with respect to =, we obtain the energy

conservation law
/9 lus(t, z)|*dz + _/9 v/1+ [Vu|?dz = const.

Th t | /1 +9ulds is finite for w € W(1), and thus thi
e area functional u — A + |Vu|?dz is finite for u € (), and thus this space

is expected to be the appropriate function space for weak solutions to (1.1). But it is not
reflexive and thus does not guarantee the weak compactness of bounded sets. While, the
relaxed functional of the area functional in the L'(f}) norm

" I . . . . . 1, . L . 1
A(u, ) = mf{h}gglfL V1 + |V, |2dz; {u;} ¢ WH(Q), S‘}i{& u; = u in L'(Q)}
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is finite whenever the distributional derivative Du is an R"™ valued finite Radon measure
in €. Such a function is called a function of bounded variation in €, or simply a BV
function in Q (compare to, for example, [1, 3, 7]). The vector space of all BV functions in
{2 is denoted by BV(§). It is a Banach space equipped with the norm || v ||pv=||u |1 (g
+|Du|(Q2).} For a bounded set B in BV (), there exist a subsequence {un,} C B and a
function u € BV(Q) such that u, — u strongly in L*(Q}) and Du,, — Du in the sense of
distributions. Thus BV(Q) satisfies a kind of compactness for bounded sets. These facts
suggest that equation (1.1) should be treated in the class of BV functions.

In [5, 9, 10] equation (1.1) is investigated in the space of BV functions. All of these
works have obtained basically that a sequence of approzimate solutions to (1.1) converges
to a function u in L*((0,T); L*(Q) N BV(Q)), and that, if u satisfies the energy con-
servation law, it is a weak solution to (1.1) in the space of BV functions, which is in
the sequel referred to as a BV solution. In [5] approximate solutions are constructed by
Ritz-Galerkin method, while in [9, 10] by Rothe’s method. In [5] a further technical as-
sumption is required, while in [9, 10] it is removed. In [5, 9] the boundary condition is not
essentially discussed, while in [10] it is discussed. We more comment on the last point.
Seemingly the main theorem of [9] asserts that the function u satisfies the boundary con-
dition; however Dirichlet boundary condition is in fact implicitly assumed in the energy
conservation law (compare to [10, Section 1]). The approximation method employed in
[9, 10] suggests that the most appropriate weak formulation of Dirichlet condition (0.3)
is not to suppose the trace vanishes but to replace A(u, ) with A(u,Q), the value of the
measure of {1 defined by A(y,-), where u is regarded as the null extension of u to a domain
 containing Q (for details, refer to [10], in Section 2 we briefly review the definition of a
BV solution to (1.1)). Remark that this weaker formulation of (0.3) makes the condition
of energy conservation law weaker. In [10] it is proved that the same result still holds
even if we only suppose this weaker condition.

Rothe’s approximation method employed in [9, 10] is a method of semidiscretization
in time variable. Hence in this method we should solve elliptic equations with respect
to space variables, and the most effective method of solving an elliptic equation in the
BV space is a direct variational method; indeed in [9, 10] elliptic equations are solved by
minimizing variational functionals. In this respect this method is essentially the same as
the method of minimizing movements. The minimizing movement theory is proposed by
E. De Giorgi [6] and in terms of this theory the result in [9, 10] can be said, if a generalized
minimizing movement corresponding to (1.1) satisfies energy conservation law, then it is
a BV solution.

The purpose of this article is to establish the same result for vectorial cases. In the
sequel the set of all N by n matrices with real elements is simply denoted by R™. Let
f be a real valued function defined on R™ and suppose that it is asymptotically linear:

(A1) there exist constants m and M such that
(1.2) mlp| < f(p) < M(1 + |p]).

In this article we consider system (0.1) of quasilinear hyperbolic equations. Similarly
to the scalar case, if we have a classical solution u to (0.1), multiplying u; to (0.1) and

!Given a vector valued Radon measure p, we write its total variation as {u|.



integrating with respect to z, we obtain the following energy conservation law
/ lus(t, 2)[Pdz + /Q f(Vu(z))dz = const.
Q

If

(A2) f is quasiconvex, i.e.,

—E*%—D_S/D f(po + Ve(z))dz > f(p)

for each bounded domain D C R", for each p, € R™, and for each ¢ € [W, (D))",

the relaxed functional of the functional u — /Q f(Vu(z))dz in the [L'(2)]Y norm, which
is denoted by J, is finite for u = (ut,u?,...,u") € [BV(Q)]N and is expressed as

(13) I ®) = [ F(Tue)ds + [ fol gDl

where Du = D®u + D*u (absolutely continuous part and singular part with respect to
L"), D*u = L™ L Vu, and fo(p) is defined as, for p € R",

(1.4) foolp) = limsup £(2)p
p—0 p

(see, for example, [1, Theorem 5.47]). However similarly to the scalar case the most ap-
propriate weak formulation of Dirichlet condition (0.3) is to replace J(u, ) with J(u, §2).
The functional J(u, ) is expressed as

(1.5) J(u, Q) = J(u, Q) + /a eolyu x A,

where 7 denotes the inward pointing unit normal to 89 and H* denotes the k-dimensional

Hausdorff measure.
Naturally several technical assumptions should be required.

(A3) f € CHR™).
(A4) there exists a constant C such that |f,(p)| < C

(A5) lim ol B) : p exists and this convergence is uniform with respect to p in a compact
p p -
subset in R™Y.

Moreover we should require a strictness of quasiconvexity of f. It is presented in Section
4 (assumption (A6)).

In [9, 10] the main theorem is obtained by the use of varifold theory, more precisely,
by corresponding each BV function to a varifold based on its graph and the broken part,
passing to a limit in the topology of the class of general varifolds, and investigating the
structure of the limit varifold. The purpose of this article is to establish the same fact
for vectorial cases. However the graph of a vector valued BV function cannot in general



61

correspond to a varifold as in the scalar case. For this reason the varifold theory is not
available in vectorial cases and we should give up observations to geometrical structures
of the graph. As a result we are forced to define a BV solution in a somewhat weakened
sense.

Suppose that ug € [L2(2) N BV (Q)]Y and v € [L3(Q)]V. In this article we employ
the following as a definition of a BV solution to (0.1) with (0.2) and (0.3).

Definition 1.1 A function u is said to be a BV solution to (0.1)-(0.3) in (0,T) x Q if
and only if .

i) u € L*((0,T); BV(Q)), we L*((0,T) x Q)
ii) u(0,2) = ue(x)
iii) for any ¢ € C3([0,T) x Q),
/ (- / wn(t, )dz + / £o(Vai) : Voo(t, 2)de}dt = / o(2)$(0, 2)dz

iv) for any ¥ € C}([0,T)),

/ {- / us (V' (t)u + P(t)ue)dz + 3 t)/ £o(Vu) : Vudz

dD*u
+ 90 [ ol

|
= $(0) [ vo(e)uo(a)d

)d|D*ul + 9(2) /foo (yu ® 7)dH™'}dt

ThlS definition is possibly too weak. But, at least, for (1.1), (0.2), (0.3) (N =1 and

=4/1 + |p|?) it is equivalent to the definition of a weak solution to uz; + dA(u) 3 0.
We brleﬂy review the definition of a BV solution to (1.1) in Section 2. In Section 3 our
main theorem is presented (Theorem 3.3) and give a proof except for the convergence
of nonlinear terms, which is proved in Section 4 in a measure theoretic way having a
background of Young measure theory.?

2 Backgrounds of the definition of a BV solution

In this section we review the definitions of a BV solution to (1.1) with (0.2), (0.3) that
are discussed in [9, 10]. |
This equation is derived as the Euler-Lagrange equation of the action integral

(2.1) /;T(%/ﬂ lus(t, z)|2dz — /Q\/l + |Vu|?dz)dt

The relaxiation A of the area functional is expressed as

Alu, Q) = /Q 1+ [Vu(z)2de + | D*u|(Q)

Note that varifold theory also has a background of Young measure theory.
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(see [1, 7]). However this is not always Gateaux differentiable on BV (Q) and thus we

cannot calculate —A(u + g, Q)|.=o directly. The area functional A(u, ) coincides with
the n-dimensional Hausdorff measure of the reduced boundary 9*E, of the epigraph

E.={(z,y);z € Q,y > u(z)}

(refer to [3], [7] for details about the reduced boundary), and we should only calculate
a variation of H(0*E,). Noticing that the equation describes the longitudinal vibration,
we could calculate the variation by the use of a one parameter family of diffeomorphisms
of U := 0 x R each of which is written as U 3 (z,y) — (z,y + ep(z,y)) € U, where
¢ is the parameter and ¢ is a given function on U. If ¢ € C3(U), the function ¢ —
A(u + ep(z,u), ) is differentiable and its derivative at € = 0 is expressed by the use of
vg, = dDxg,/d|Dxg,| (xg. denotes the characteristic function of E, and it belongs to
BV (U)): '

d ¢ n n
A+ ep(e,u)leoo = [ [(Vatp - vhVET + Wk PJaH (e, = (vh, V)

(compare to [9, Theorem 2.2]).
In [9], taking account of these facts, a BV solution to (1.1), (0.2), (0.3) is given as

follows:

Definition 2.1 A function u is said to be a BV solution to (1.1), (0.2), (0.3) in (0, T') x
Qif

i) u € L=((0,T); BV(Q)), u; € L*(0,T) x Q)

ii) S—%i\l‘%u(t) = up in L*(Q)

iii) yu = 0 for L'-a.e. t € (0,T)

iv) for any ¢ € C§([0,T") x U),

T
[ 1= [utotmn + oo e+ [ (=T vy, B,

o, Ppuldt Yt = [ vo(2)e(0, 2, uo(2))do.

Since the area functional A is convex, we can regard (1.1) as an evolution equation
us + 0A(u, Q) 3 0. It is proved in [9, Theorem A.1] that, if 9Q is of C? class, Definition
2.1 is equivalent to the definition of a weak solution to us + 0A(u, ) 3 0: putting

X = {¢ € L=((0,T); L*(Q) N BV(Q)); ¢ € L*((0, T) x N}

and
Xo={p€ X;vp=0for L' -ae. t € (0,T)},

we define
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Definition 2.2 A function u is said to be a BV solution to (1.1), (0.2), (0.3) in (0, T') x
Q) if 1), ii), iii), and .
iv) for any ¢ € C3((0, T); LA(2)) N &,

/OT{A(u + ¢, ) — A(u, Q) }dt > /OT /Q usps(t, z)dzdt + /Q vo(z)$(0, z)dz.

But in [10] it is pointed out that the appropriate weak formulation of Dirichlet condition
(0.3) is not to suppose the trace vanishes but to replace A(u, ) with

Alu, ) = A(u, Q) + /a  Iru(e)ldnnt.

Thus in {10] a solution is defined as

Definition 2.3 A function u is said to be a BV solution to (1.1), (0.2), (0.3) in (0, T) x
Q2 if and only if i), ii), and

v) for any ¢ € C3([0,T); L*()) N X,

[ttt 6 - A e [ [ it 2)dode + [ n(e)el0,2)ds

Further in [10] another definition is presented and proved that it is equivalent to
Definition 2.3 if 90 is of C? class (compare to Definitions 2.1 and 2.2).

Definition 2.4 A function u is said to be a BV solution to (1.1), (0.2), (0.3) in (0, T") X
Q if and only if 1), ii),

v),’ for any ¢ € C{([0,T) x U),

) ['—(Vxﬂp ) V.,Eu(,“) )VZ':(];,)

T .
/0 {- /Q us(pe(t, 2, u) + @y (1, 2, u)us)dz + ~/<'9'E.,(:,.
¥, PeldH Yt = [ vo(2)(0, 2, uo(2))de

v),’ for any ¢ € C}([0,T)),

[ [t smds v [,
+(t) /an |yuldH™'}dt = ¢(0)/Qvo(x)uo(z)dx.

/ 2 n
t'.) ’VE"(‘,)I dH

(Note that v),” of Definition 2.4 is the same condition as iv) of Definition 2.1.)

Looking at the proof of the equivalence between Definitions 2.3 and 2.4 carefully, we
find that it is obtained by testing only smooth functions and u itself. Thus, in fact, if 02
is of C? class, Definitions 2.3 and 2.4 are also equivalent to



Definition 2.5 A function u is said to be a BV solution to (1.1), (0.2), (0.3) in (0,T) x
Q if and only if 1), i),

v),” for any ¢ € C3([0,T) x ),

(¢, )dz}dt = /ﬂ vo(2)$(0, z)dz

T . Vu
/0 {‘"/n u¢s(t, z)dz +/n N+ IV'ul2V
v),” for any ¢ € ci([o,T)),

|Vul|?

[ [ w0 + wie)de + 90e) [ W@ +9(t)| D*ul(0)

+9(2) [ Fruldiyat = 9(0) [ vo(e)uo(e)de.

Implication relations among these definitions are as follows:

= Definition 2.1 =

— Definition 2.3 = Definition 2.4 = Definition 2.5.

Definition 2.2

If 9Q is of C? class, the converses except for 2.3 = 2.2 and 2.4 = 2.1 also hold.

Clearly Definition 1.1 is a vectorial generalization of Definition 2.5. Definitions 2.2 and
2.3 are based on the convexity of A, and we are unable to employ them for our problem
since our functional is not in general convex. Thus the most appropriate definition is a
generalization of Definition 2.4. However it would be hard to treat for vectorial cases and
hence we employ Definition 2.5 for the generalization.

3 Apploximate solutions and our main theorem

Suppose that ug = (ud,u2,...,ud') € [L}(Q) N BV(Q)N and vy = (v§,v3,...,v)) €
[L3(Q)]Y. For a positive number h we construct a sequence {uj;¢ = -1,0,1,..., 7 =
1,2,..., N} in the following way For £ = 0 we let u) be as above and for £ = —1 we set
ul, = uo hvi. Suppose that uj_, (£ >1,7=1,2,...,N) are already defined. Then we
define u; as the minimizer of the functlonal

dz + J(v,ud_, ..., ul Q)

v—2uj_, +up_
f}(v) /I ll 62'

in L3(2) N BV (). Suppose that ug_l (j =2,...,N) are defined. Then we define u} as
the minimizer of the functional

v—2u_, +ul - Q
/ l Yi 1 {4 2] dz+J(u},,uz I,U,uzti, -,uﬁhﬂ)

in L*(Q) N BV(Q). Now we put
we = H(ub . uf) € [L2(@) 0 BV

64



65

First we show the energy inequality

[ue - Ue—112
(31) __—_dg; + J('U.e, |’Uol dx + J(UOa )
Moreover, putting _ _
ugj) = t(u}, . ,uj Ug, ué+11, u?{-l)’

we have the following proposition.
Proposition 3.1 Foreachj=1,2,...,N andf=1,2,...

(J)ﬁ_ (J) = [¢)
/ Iu Uy _1 d(L + .](‘U(J),Q) S %/s; |v012d$+v](u0)ﬂ).

Proof. For the sake of simplicity we write
Jiw, Q) = Jup, ..., w37 v ulth Wl D).

By the minimality of f-} (u}) we have

. — 2 _ , . .
62) Fid) = L[ IRl e, 0 < (0 - 0+ 60

(1 —0)(u) —ud_ ) —ul_, +ul_,|? ; ; -
- K e ‘h‘z) et sl gy B = 0yl 4 00, T)

for 0 < 8 < 1. By an easy calculus we obtain

|“1' - 2“1—1 + uﬂ—zP - |(1 - 9)(“2 - u%-—l) - ui—l + UZ-'2I2 _ ‘
< 9((1 - B)M - ui—ltz - lué—l - “z—2|2)-

This and (3.2) imply

-0 7 12 L
i a0 |2 ‘ . o
= 9%/9 '”—‘—h—l—d + J3((1 = 0)ud + 0ud_,, T0).

Since f is quasiconvex and thus rank-one convex, JJ is convex. Hence the second term of
the right hand side of (3.3) is less than (1 — H)J’(ul, Q) + 6J}(u}_,, 1) and then we have

( )|1le Uy, | dz + 0J3(uj, T) < aiéﬁﬁidﬂomuﬁ'“m

Multiplying 6~! to the both side and letting 6 \, 0, we have

e eyd 0 d |2 g 2 _
(3.4) %/ﬂ"‘#ﬁ:ﬁll—dzug( ) _2/WJJ—2L‘tlLd + J(ui_y, ).



Noting that
TN (', 0) = J(ue, Q), T} (whor,0) = J (e, Q), and S (uj_y, Q) = I (7, 00),
we have by (3.4)

2/[“2 ol dz+Jue,ﬂ)——E/ ]u,_, Id:c+Je (uy, Q)
< lN 1/ MI—Pd + /Mdm—l-‘lz (ulY ,,9)
< %EZ/QWMJZ:N%%L lu—‘q'i%;ﬁ:id:wrJj"'l(u?’_]]‘,ﬁ)
<
o Ll il L vl )

_7'"2

I

L[ |up —up_y? ud_ — )P -
2/9 h? d$+j_§2/n 72 dz + Jy (uy, 1)
ARS| |”f;— - “.{_ ? a 1 [ |ue-y — up—s/?
< ;5_/9 : h? Ldz + Jj (up_y, Q) = 5/{2——}'{2—-——dx+‘7(u4_1,ﬁ).

Since Ji (u}, Q) = J('ugj),-ﬁ), we have the conclusilon by induction on 4. Q.E.D.
Remark. Clearly (3.1) is the case of j = N of Proposition 3.1.
Next we define approximate solutions
uh(t,z) = t(ubl uh? .. uMN) and wh(t,z) =@, T, b )

for (¢,z) € (0,00) x Q as follows: for (£ —1)h <t < £h

(35) whita) = ET D ) Bty ()
and
(3.6) : T (t, z) = uyz).

Then (3.1) shows, for each t € | J((£ — 1)k, £h),

£=0
1 1 _
Eémﬂmm%x+ﬂMUJJD§§/wwthwmm

Replacing 4, and u,_; in (3.5) and (3.6) with uy) and uml, respectively, we define u™U

and ™), and we more have by Lemma 3.1, for each ¢ € U — 1)h,2h),
=0

(3.7) /mwuxvm+ﬂ*w()n fwwm+ﬂ%ﬁ)
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INOtT€e that
Tt (¢, z) = Hah (), TR, . . T (L), T (E - k), @ (t — R)).

By the use of (3.7) we can obtain the following theorem (compare to the proof of [9,
Theorem 3.3]).

Proposition 3.2 Let T be any positive number. It holds that, for each 5 =1,2,..., N,
1) {| ut® |Loo((0,00):22(0)) } 18 uniformly bounded with respect to h

2) {Huh'm |z (01)iL2()nBV () } 8 uniformly bounded with respect to h

3) {“ﬂ‘h'(j) |z ((0,1);L2()nBV () } 8 uniformly bounded with respect to h.

Then there exist a sequence {h,} with h,, — 0 as m — 0o and a function u such that
4) @) converges to u as m — oo weakly star in [L®((0,T); L2(Q))N
ur™) converges to u; as m — oo weakly star in [L%((0, 00); L2())[V
uhm3) converges to u as m — oo strongly in [LP((0,T) x Q)N for each 1 < p < 1*
") converges to u as m — oo strongly in [L?((0,T) x Q)| for each 1 < p < 1*
w € [1((0,o0); BV(Q))]
9) for L-a.e. t € (0,00), Dut™(t,.) converges to Du(t,) as m — oo in the sense
of distributions .

10) S-P\I‘%u(t) = ug in [L2(Q)V.

5)
6)
7)
8)

Remark. In the sequel {u"~} and {@"™} are often denoted by {u"} and {@"} for
simplicity.

Our main theorem is as follows (assumption (A6) is stated in Section 4):
Theorem 3.3 Suppose that f satisfies (Al) ~ (A6). Let T be a positive number. If u
as in Proposition 3.2 satisfies the energy conservation law

1 2 O l ' 2 [e)
(3.8) > /n jua(t, 2)ds + J(u(t, ), ) = 5 /Q () *dz + J (ug, )
for L'-a.e. t € (0,T), then u is a BV solution to (0.1)—(0.3) in (0,T) x Q.
Let ¢;. denote the N by N matrix defined by

L = diag(l,...1, 1+¢, 1,...,1).

jth
Using assumptions (Al) ~ (A5), we can show the following lemma (in fact assumption

(A2) is not necessary for this lemma). The proof of this lemma is not so difficult and thus
we omit it.

Lemma 3.4 1) The limitsup of (1.4) is in fact a limit. Furthermore the limit is uni-
form with respect to p in a compact subset of R™

2) y{rg)fp(g) :p = foo(p)

3) llmi foo("j,sp) - foo(p) — foo(

0 g
e— =1 [

p).




Proof of Theorem 3.3. Proposition 3.2 5) and 8) imply i) and 10) implies ii). Thus in
order to obtain the conclusion we should show iii) and iv) of Definition 1.1.
By Proposition 3.2 5) we have, for each j = 1,2,..., N,

T
llmlnf/ / @t x)lzdwdtzf /ﬂ|ut(t,w)|2dzdt.
0

Since J is lower semicontinuous by (A2), we more have by Proposition 3.2 7) and 8), for
Ll-ae. t €(0,T), ' . _
(3.9) lirg inf J@9(t,.), Q) > J(ult,-), Q).

Thus, integrating energy mequahty (3.7) and energy conservation law (3.8) over (0,7,
we have

: k() 2 _ 2
(3.10) lim /0 /nlut (t,z)Pdzdt = /0 /ﬂ lus(t, z)|*dedt

[AV)

T N o T — .

(and }111{‘% / J ('ﬂh'(”, N)dt = /0 J(u,Q)dt). In particular {uil ) } converges to u; strongly
0

in L2((0,T) x Q), and hence

: hv(j) 2 —_ 2
(3.11) }ILI{‘%/QIM (t,z)|*dz —_/n|ut(t,a:)! dzx

for L-a.e. t € (0,T). By (3.7), (3.8), and (3.9) we also obtain, for £'-a.e. t € (0,T),

(3'12) }111{‘%']( h(J)( ")s ): ‘](u(ta')aﬁ)'

Since u) is the minimizer of F;, we have

d
0 = de f;(ue+°¢)‘e—

.7 . . —
- [ R B @) gy € e, D)
)

h2

for any ¢ € C}(2). Putting

& =(0,...0, ¢, 0,...,0),
j th
we have by Federer-Vol'pert’s theorem (Theorem 3.78 of [1]) S » ., = S, and D’(ugj )4
. 14 4
&) = D*ul’). Hence by (1.3) and (1.5)

d . . _ .
I+ o0, o = [ fo(Vul)Vip(a)da.
Noting that, for (£ — 1)h < t < £h, (0u"/8t)(t) = (u¢ — ue—1)/h, we have, for any

¢ = (' 9%...,0") € [C3(Q)}Y and any ¢ € C5([0, T)),

313)/ »(t [/ up(t2) = Zt( =h2) oz dx+§;/ £ (VO (1)) Vo (z)dz]dt = 0,

i=1
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Thus, if we show, as A — 0, passing to a subsequence if necessary,
| ub(t,2) = ub(t = hya)
(3.14) / 0, / 2 o(z)dzdt
— = [ 00 [ wlt,2)p(@)dadt ~ $(0) [ wo(a)p(e)da
and for each 7 =1,2,..., N
T : T
() J . 3
(3.15) / »(t) / f0 (VED)V i (2)dzdt — /0 0 /Q Fs (V) Vi (2)dzdt,

then we have iii) of Definition 1.1 by (3.13). Proofs of (3.14) and (3.15) are presented
later.
By the minimality of Fj (u}) again we have

d . . .
0 = ZF+eul)leno

o Y L
= /5.1 ¢ chl ¢ 2U‘;d2§ + EJ?(U% + €u%, Q)l,,:o.

Since the functional Jj is convex, we have for each ¢ > 0 (resp. € < 0)

o . L d . . _
e (J7 (ug + eup, Q) — J7 (u}, ) > ;EJi(Uﬁ +eup, Q)fe=o0  (resp. <).

Thus we find

up — 2uj_y + U, wida,
hz
which immediately implies for any T' > 0, for any ¢ € C3([0,7")), and for any € # 0

(3.16) / ¢(t){f 4 (4,2) Zt( =M ahis, v)da

+§Q[J(Lj,e ,Q) — J(@), Q)] }dt > 0.

0 < Ji(wd +eud, ) — Ji(ul, T) + ¢ /

Suppose that we have, as A — 0, passing to a subsequence if necessary,
(3.17) / ;b(t) / 4 (t,2) - (t Pa®) ok (4, 2)dodt
——%/0 {—/;lui(z/) tu+¢(t)ut)dw}dt—¢(O)/ﬂv0(m)uo(x)dx

and

T
(3.18) /0 P()J (157D, D) dt — / D()J (1 eu, M)dt.
Then (3.16) implies

(3.19) / {- / us(P'(t)u + ¥(t)u:)dz }dt — d)(O)/ vo(z)uo(z)dz

+ Z[J (1% Q) — J (u, D)]}dt > 0.
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It follows from (1.3), (1.5), and Lemma 3.4 3) that

N . :
lime~ 2_: J(tu, Q) — J(u, Q)] = /n fo(Vu) : Vudz

e—0
dD*u ] — n—1
-|—/nfoo(m)d|D u| + /an foo(ru @ R)dH" .

Hence, multiplying £~} to the both side of (3.19) and letting € \, 0 and ¢ , 0, we obtain
iv) of Definition 1.1.

Now it remains to prove (3.14), (3.15), (3.17), (3.18). In this section, accepting (3.15)
and (3.18), we conclude the proof of Theorem 3.3 by showing (3.14) and (3.17). Proofs
of (3.15) and (3.18) are left to the next section.

Let ¢ be either 1y or ¢u*. First we rewrite

(3.20) /T / “?(t’”’)‘”?(t‘h”’) &(t, z)dzdt
/ /utt:v — ul(¢ ha)qﬁ(tw)dz‘dt
/ /“*”“ o)dodt — [ /“'“ o + h,z)dads
= —{/(; /nut(t,x) (t+h,x})b ¢lt,2 )diﬂdt

0 r
+2 [ [ ubs,2)8(s + hz)deds}
= —(I+ ).

Noting that u?(s,z) = vo(z) for —h < 5 < 0, we have

(3.21) II= / vo(2) = / é(s + h, z)dsdz = f vo(@ / (t, z)dtdz.

In case ¢ = Yo (¥ € C([0,T)), ¢ € C5(K)), since
Yt + k) — ()
h

strongly in L*°(0,T) and
0
[ (s +hyds = (0),

we have (3.14) by Proposition 3.2 5). In case ¢ = ¥u" (3 € C}([0,T))), we first have by
(3.21), noting further that @*(t,z) = u,(z) for 0 < t < h,

==z / w(t)dt / vo(@)us(2)dz.
Since, for 0 < t < h,

uy(z) = uo(z) + hgl(l—')—;—ﬁg—(@— = ug(z) + hul(t, z),
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we have by Proposition 3.2 1)
(3.22) lim 17 = (0) /n vo()uo(z)dz.

On the other hand we have

; - /w/ '¢(t+h)ﬂh(t+h;tx) —w(t)ﬂh(t,m)dxdt

= f ¢(t+h) ¢()/—h(t+h :c)d:z:dt—l—/ ¢(t/ (t+h’m,2_ﬁh(t’z)dxdt

_ / /zpt(t—l—ah)d&/ t+hadmdt+/ zbt)/utt-l-hx)dxdt

We see that

[ e+ omydn - w,0)

By (3.10), {ul} converges to u; strongly in L2((0,T) x Q). Let 7" be any number with
0<T'<T.f0<h<T-—T, we have

fu(- + B) = ue(- + B) | 2oy xay=Il vt = wellz2(nr+myxa) <l uf = ue || L2(0,1)x0)»

the right hand side of which converges to 0 as A — 0. It follows from Lusin’s theorem
that, as h — 0,

[l + h) = we |2 (o) x)—= 0.
Thus, writing

(- + h) — w200
<Juf(- 4 A) — us(- + ) 2201y xay + 1| ue(- + A) — well 2o, x>

we obtain that u?(- + h) — u, strongly in L2((0,7") x Q). Noting that the support of ¢
with respect to the ¢ variable is a compact subset of [0,7), we have

(3.23) ligy I = /0 ” /n we(¥r(8)u + Y(t)us)dodt.

Now (3.17) follows from (3.20), (3.22), and (3.23).
Thus the proof is complete except for proofs of (3.15) and (3.18). Q.E.D.

4 Radon measures in Q x S,

Letp be a R™ valued Radon measure. Then we write its total variation as |u| and
the Radon-Nikodym derivative of u with respect to |u| as f. In particular, u = |u|L fi.
For v € [BV(Q)]N we define an R™*! valued Radon measure ., by

py = *(=Dv, L™).

For an open set A C Q, total variation |y, | is given by

ol (A) = sup{/n(go + vdivg)dz; (9o, 9) € C*(Q, R™ ), |go|® + |gI> <1}



In this article, for the sake of simplicity, we write S:L”N"'l =5,
S’+ — {5‘: (31,_..’SnN+1) € SnN;SnN+1 > 0}

We also write
={3=(s!,---,s"VF) € §"; s"NH = 0}

Then S; = S, U So. Given a Radon measure A in 0 x S, we let || denote a Radon
measure on ) defined by

IA[(A) = M(Ax §;) for a Borel set A C Q.

Clearly this notation is an analogy with that of a total variations of a vector valued Radon
measure. In particular, letting A be a Radon measure in {} x S, defined as, for a BV
function v € [BV(Q)]V,

(1) fs. Be9)ir = [ B, n@)dlul (9 € CO@xF4),

then we have |A| = |g,|. For each Radon measure X in Q0 x S, there exists a probability
Radon measure vy, on S for |Al-a.e. z €  such that

frvs, B 9ir = Jifs, B dn)ddl (8 € CO@x54)

(for example, Theorem 10 of page 14 of [2]). Using these notations, we often write
= |A\| ® v» .. In particular, if X is as in (4.1), then A = |uy| ® 0z, ().
We define a function F on S, as follows: for §= (s,s"V+1) € 5,

_ f(s,,,\,Jrl).s"N"’1 if "Vt
F(g)—{ foo(s) 1f 811N+1___0

Let M be a subclass of probability Radon measures in S; which consists of all of such
measures as v in the following: there exist a sequence {v,} C [BV(Q)]", a function
v € [BV(Q)]N and a Radon measure A in  x S, such that v, — v strongly in L'(Q),
o] ® 83,,,(s) — A in the sense of Radon measures in {I x S,, and v = v, for one of
z € . Now we state assumption (A6):

(A6) /§ F(8)dv > F(/, 3dv) whenever v € M and #spt v > 2.

Note that, since f is quasiconvex, the inequality of assumptlon (A6) a.lways holds with
equality.

Let @), u be as in Proposition 3.2. Then there are one parameter farmhes of RPN+L.
valued Radon IMEASUTES ok (5) (4 . ), fiu(,) in §, which afe in the sequel simply denoted by

uk, u, respectively. Clearly u! depends on j, but in the sequel j is fixed and then we
do not specify it explicitly. By Proposition 3.2 3) there exists a constant K which is
independent of A such that
(4.2) ess. Sup |k (Q) < K.

>0
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Then (4.1) and (4.2) imply
(4.3) ess. sup I/ B(z,5)d|u?| @ danx)| < Ksup |

for any 8 € C°(f) x S;). By the use of (4.3) and standard compactness argument we
obtain the following lemma (compare to [5, Proposition 4.3)).

Lemma 4.1 There ezists a subsequence of {h} (still denoted by {h}) and a one param-
eter family of Radon measures \; in O x Sy, t € (0,00), such that, for each ¢ € L'(0,00)
and ,B € CO(ﬁ X —§+),

fim [ 900 [ et @ gt = [790) [ e, enat

h—0

The following function

!

0 if "N+l =

is continuous in S, by assumptions (A3) and (A4), while Lemma 3.4 3) implies that F' is
continuous in S,. Thus, if we have the following theorem, then we obtain (3.15), (3.18)
by Lemma 4.1 with 8(z, ) = «(8)Ve(z), B(z,3) = F(.s',s" 1), respectively, and the
proof of Theorem 3.3 is complete.

Theorem 4.2 For Ll-a.e. t € (0,00),

At = || ® Op,(a)

Before the proof of Theorem 4.2 we sum up properties of A;.

Lemma 4.3 For L'-a.e. ¢t € (0,00),

1) e = A L [S_+ Sdvs, -

2) |At|(A) > |u:|(A) for each Borel set A C Q

3) [Mdl(4) = /A Dyt Mel(@)dlpse + (1Al L Z)(A) for A C T, where Dy o] is the deriva-

tive of || with respect to |u:| and Z is the |p;|-null set defined by Z = {z; D), | \:|(z) =
oo}

4) /3_+ 8dvy, z =0 for |M|LZ-a.e. z

5) spt Va, o C So for | M|l Z-a.e. .

Proof. 1) For any g € C°(f%; R*V*) and ¢ € L*(0,00)
[ ) [o@dmdt = [~ w@) [ ¢°@)da+ [ o(@)dDuldt
= lim 0°° ol /ﬁ_ ¢°(z)dz + / ¢ (z)dDu)dt = lim / 0] /_ g(z)duldt

= lim/wzp(t)/;g( )ik d|uk|dt = hm/ wt)/ g(z) - 3dX\}dt

h—0

= [T / o(z) - 3dn(z, it = [ v(t) [ m) /§+ Sdvas)d|Adt,
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where A} = |uf| ® 81, This shows assertion 1).

2) First we consider the case that A is the intersection of an open set and f. By
assertion 1) we have, for any g € CO(A; R"NH),

|/, 9(@)dued < [ lo@)dIx] < sup [glixl(4)

Taking supremum with respect to g € C%(4; R™*!) with |g| < 1, we obtain u,(4) <

el (A).
Let A be any Borel set. For each open set O with A C O, pu(A4) < (0N 0) <
IA|(O N Q). Thus, since inf _|A}(O N Q) = |A|(A), we have u;(A) < |A|(A).
Acon@l

3) It is the direct consequence of the differentiation theory for Radon measures (see,
for example, [11, Theorem 4.7]). _
4) By assertions 1) and 3) we have, for any g(z) € C°(Q; R*"**),

0= /Z g(z)dp; = /Z o(z)( /g Sdun, )]

This shows assertion 4).

5) By 4), in particular, we ha,ve/_s_ s"N*ldy,, o = 0 for |\,| L Z-a.e. z. Since s"N*! >0,
+
we have s"V*t! = 0 for vy, ;-a.e. for |A;|L Z-a.e. z. Thus assertion 5) holds. Q.E.D.

Lemma 4.4 For L*-a.e. t € (0,00), |A\:L F|(A) > (Jus] L F(ii2))(A) for each Borel set
AcCQ

Proof. Lemma 4.3 3) implies, for L!-a.e. t € (0, 00),
Al L (ﬁ \Z) = |m|L Dlmip‘t‘-

Hence by Lemma 4.3 1), for L-a.e. t € (0, 00),

due= [ [ 3dvsaDyalAilds

az T Iz J5, 0 tlAeldpe
For such a ¢, since Z is a |4¢|-null set, we have, for |u,|-a.e. z € Q,
(4.4) fil@) = [ §dvs, Dy M(@).
Sy

At each point (¢, z) such that (4.4) holds, the homogeneity and quasiconvexity of F' imply
@5)  FE)=F(f, 52Dy [ F@dns Dl M)

+ +
By Lemma 4.3 3) again we obtain, for each Borel set A C Q,
wo) [ [, F@ DM@ < [, [ F@dinadine]

Thus the conclusion follows from (4.5) and (4.6). Q.E.D.
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Proof of Theorem 4.2. We write A\* = |uf| ® G 0(5)- Noting that F is continuous in S.,
we let f(z,8) = F(5) in Lemma 4.1. Then we easily obtain that, for L!-a.e. t € (0, 00),

(4.7) limsup [A* L F|(Q) > |A: L F|(Q).

h—0

On the other hand (3.12) means
(“8) tim [\ L FI(@) = (el L P() (@)

for L'-a.e. ¢t € (0,00). Let t be a number at which all of Lemma 4.4, (4.7), and (4.8)
hold. Such a number exists L! almost everywhere, and in the sequel we fix it. Then we
have [\ L F|(Q) = ({pe| L F(i@:))(Q). This and Lemma 4.4 again imply

49) AL P = |l L F ().
By the definition of |, L F| and |u,| L F(4;), for each Borel set A C 1,

(4.10) J Fla(@)diu] = [ / F(3)dvs, zd.

In particular, letting A = Z, we find / F(3)dvy,, = 0 for || L Z-a.e. 2. The definition
of F and (1.2) imply |F(3)| > m|s’|. Lemma 4.3 5) implies |s'| =1 on spt vy, , for [A| L Z-
a.e. z. Thus we have |\|(Z) = /Z/§+ dvy, «d|Xs] < m'I/Z/_S_+ F(3)dvy, .d|\:| = 0. By

Lemma 4.3 4) we conclude
(4.11) IAel = el L Dy Aol

It follows from (4.10) and (4.11) that F(ii(c)) = /g F(3)duno D Mel(2) for |uel-a.e.
— + —
z € §). Replacing fZ:(z) with the right hand side of (4.4), we obtain, for |u:|-a.e. z € §,

(4.12) ( /g Fdin) = /g F(3)dve

Since f satisfies (A6) and v, . € M, we have by (4.12) that, for |u|-a.e. z € 0, spt vy,
consists of only one point. Let 3, be the unique element of spt vy, ,. Then (4 4) implies
fit(z) = Dju,l|Ae|(z)3z, which immediately yields D,,j|A:|(2) = 1 and fiy(z) = S5, for |pe]-
a.e. € (. By (4.11) we deduce |)\;| = |u:| on V. Hereby we obtain by Lemma 4.3 2)
that, for each 8 € C°(Qh x §,),

[ s Bl 8)dre= B, @)l

This implies the conclusion. Q.E.D.

References

(1] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free
discontinuity problems, Oxford Science Publication, 2000.



[2] L. C. Evans, Weak convergence methods for nonlinear partial differential equations,

CBMS, vol. 74, Amer. Math. Soc., 1990.

[3] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC
Press, 1992.

[4] D. Fujiwara, A. Inoue, and S. Takakuwa, A varifold solution of nonlinear wave equa-
tion of a membrane, Proc. Japan Acad. Sci. 60 (1984), 113-116.

[6] D. Fujiwara and S. Takakuwa, A varifold solution to the nonlinear equation of motion
of a vibrating membrane, Kodai Math. J. 9 (1986), 84-116, correction, ibid. 14 (1991),
310-311.

[6] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems
for PDE and Applications, Masson, 1993, pp. 81-98.

[7] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Boston-
Basel-Stuttgart, 1984.

[8] A.Hoshiga, The asymptotic behaviour of the radially symmetric solutions to quastlin-
ear wave equations in two space dimensions, Hokkaido Math. J. 24 (1995), 575-615.

[9] K. Kikuchi, An analysis of the nonlinear equation of motion of a vibrating membrane
in the space of BV functions, J. Math. Soc. Japan 52 (2000), 741-766.

[10]

, A remark on Dirichlet boundary condition for the nonlinear equation of
motion of a vibrating membrane, Nonlinear Analysis 47 (2001), 1039-1050.

[11] L. Simon, Lectures on geometric measure theory, Proceeding of the Centre for Math-
* ematical Analysis, vol. 3, Australian National University, Canberra, 1983.



