<table>
<thead>
<tr>
<th>Title</th>
<th>On the Number of Poles of the First Painleve Transcendents and Higher Order Analogues (II) (Nishikawa phenomena in Stokes graphs for higher order Painleve equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shimomura, Shun</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1316: 13-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42994</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the Number of Poles of the First Painlevé Transcendents and Higher Order Analogues II

Shun Shimomura
Department of Mathematics

下村 俊（慶應大学理工）

1. Introduction

Let \(w(z) \) be an arbitrary solution of the first Painlevé equation

\[
(PI) \quad w'' = 6w^2 + z
\]

\(('=d/dz)\). Then, \(w(z) \) is a transcendental meromorphic function, and every pole is double. The counting function for poles is defined by

\[
N(r, w) = \int_0^r \left(n(\rho, w) - n(0, w) \right) \frac{d\rho}{\rho} + n(0, w) \log r,
\]

where \(n(r, w) \) denotes the number of poles inside the disk \(|z| \leq r \), each counted according to its multiplicity. By a well-known argument in the Nevanlinna theory ([4, §2.4]), we have

\[
\lim \inf \frac{m(r, w)}{T(r, w)} = 0 \quad \text{as} \quad r \to \infty,
\]

namely,

\[
\lim \sup \frac{N(r, w)}{T(r, w)} = 1,
\]

which implies \(N(r, w) \to \infty \) as \(r \to \infty \). Here, \(m(r, w) \) and \(T(r, w) \) are, respectively, the proximity and the characteristic functions defined by

\[
m(r, w) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |w(re^{i\phi})| d\phi,
\]

\[
\log^+ x = \max\{0, \log x\},
\]

\[
T(r, w) = m(r, w) + N(r, w)
\]

(for the standard notation and basic facts in the Nevanlinna theory, see [2], [4]). For the magnitude of \(N(r, w) \), the following is known ([1], [5], [6], [9]):

\[
r^{5/2} \log r \ll N(r, w) \ll r^{5/2},
\]

which implies that the growth order of \(w(z) \)

\[
\sigma(w) = \lim \sup \frac{\log T(r, w)}{\log r}
\]
is equal to $5/2$. (We write $f(r) \ll g(r)$ (or $g(r) \gg f(r)$) if $f(r) = O(g(r))$ as $r \to \infty$.)

A sequence of higher order analogues of (PI) is given by the following:

\[(\text{PI}_{2\nu}) \quad d_{\nu+1}[w] + 4z = 0, \quad \nu \in \mathbb{N} \]

(cf. [1, §16]; [3]). Here, $d_{\nu}[w] \ (\nu = 0, 1, 2, \ldots)$ are differential polynomials in w determined by

\[(1.3) \quad d_0[w] = 1, \]
\[(1.4) \quad Dd_{\nu+1}[w] = (D^3 - 8wD - 4w')d_{\nu}[w], \quad D = d/dz, \quad \nu \in \mathbb{N} \cup \{0\}. \]

Since

\[d_2[w]/4 = -w'' + 6w^2 + C_1w + C_0, \]

where $C_j \in \mathbb{C}$ ($j = 0, 1$) are arbitrary, equation (PI$_2$) essentially coincides with (PI). In general, (PI$_{2\nu}$) is a 2ν-th order nonlinear equation; e.g. for $\nu = 2, 3$,

\[(\text{PI}_4)_0 \quad w^{(4)} = 20ww'' + 10(w')^2 - 40w^3 + z, \]
\[(\text{PI}_6)_0 \quad w^{(6)} = 28ww^{(4)} + 56w'w^{(3)} + 42(w')^2 - 280(w^2w'' + w(w')^2 - w^4) + z, \]

where the arbitrary constants corresponding to C_j of (PI$_2$) are taken to be 0. Let $w_\nu(z)$ be an arbitrary meromorphic solution of (PI$_{2\nu}$). It is interesting to evaluate the growth order of $w_\nu(z)$. The following result gives a lower estimate of it:

Theorem 1.1. For every $\nu \in \mathbb{N}$,

\[(1.5) \quad \limsup_{r \to \infty} \frac{\log N(r, w_\nu)}{\log r} \geq \frac{2\nu + 3}{\nu + 1}, \]

namely the growth order of $w_\nu(z)$ is not less than $(2\nu + 3)/(\nu + 1)$.

As an immediate consequence, we have

Corollary 1.2. Equation (PI$_{2\nu}$) admits no rational solutions.

Viewing Theorem 1.1 combined with (1.2), we pose the following:

Conjecture. The growth order of $w_\nu(z)$ is equal to $(2\nu + 3)/(\nu + 1)$.

We sketch the proof of Theorem 1.1, illustrating the particular case $\nu = 2$. The full proof is found in [8].

2. Sketch of the proof of Theorem 1.1 for (PI$_4$)

The basic idea is the same as in the proof for (PI) (cf. [7]). Suppose the contrary:

\[(2.1) \quad \limsup_{r \to \infty} \frac{\log N(r, w_2)}{\log r} < \frac{7}{3}, \]
namely, for some $\varepsilon > 0$, $N(r, w_2) \ll r^{7/3-\varepsilon}$, from which it follows that
\begin{equation}
(2.2) \quad n(r) = n(r, w_2) \ll r^{7/3-\varepsilon},
\end{equation}
because
\[N(2r, w_2) \geq \int_{r}^{2r} (n(\rho, w_2) - n(0, w_2)) \frac{d\rho}{\rho} \geq (n(r, w_2) + O(1)) \log 2.
\]
Starting from (2.1), we will derive a contradiction. Let $\{a_j\}_{j=1}^{\infty}$ (or $\{a_j\}_{j=1}^{q}, q \in \mathbb{N}$) be the sequence of all distinct poles of $w_2(z)$ arranged as $|a_1| \leq \cdots \leq |a_j| \leq \cdots$. It is easy to check that, around each pole a_j,
\[w_2(z) = c(j)(z - a_j)^{-2} + O(1),\]
where $c(j) = 1$ or 3. By this fact combined with (2.2), we write $w_2(z)$ in the form
\begin{equation}
(2.3) \quad w_2(z) = \Phi(z) + \varphi(z),
\end{equation}
where $\varphi(z)$ is an entire function; and in (2.4), if $a_1 = 0$ the term $(z - a_1)^{-2} - a_1^{-2}$ should be replaced by z^{-2}. Under (2.2), we have the following lemmas whose proofs are similar to those of [7, Lemmas 1.1 and 1.2].

Lemma 2.1. For every $r > 1$, there exists z_r satisfying
\[0.7r \leq |z_r| \leq r, \quad \sum_{|a_j|<2r} |z_r - a_j|^{-2} \ll r^{1/3-\varepsilon/2}, \quad \sum_{|a_j|<2r} |z_r - a_j|^{-3} \ll r^{1/2-\varepsilon}.
\]

Lemma 2.2. Let r be an arbitrary number satisfying $r > 1$. Then,
\[\sum_{|a_j| \geq 2r} |(z - a_j)^{-2} - a_j^{-2}| \ll r^{1/3-\varepsilon}, \quad \sum_{|a_j| \geq 2r} |z - a_j|^{-3} \ll 1
\]
for $|z| \leq r$, and
\[\sum_{0<|a_j|<2r} |a_j^{-2}| \ll r^{1/3-\varepsilon}.
\]

By a well-known argument of the Nevanlinna theory, it is shown that $\varphi(z)$ is a polynomial. Note that $|\Phi(z)| \leq \sum_{|a_j|<2r} + |\sum_{|a_j| \geq 2r}|$. By Lemmas 2.1 and 2.2, for every $r > 1$, there exists $z_r, 0.7r \leq |z_r| \leq r$ satisfying
\begin{equation}
(2.5) \quad |\Phi(z_r)| \ll r^{1/3-\varepsilon/2}, \quad |\Phi'(z_r)| \ll r^{1/2-\varepsilon},
\end{equation}
\[|\Phi''(z_r)| \ll r^{2/3-\varepsilon}, \quad |\Phi^{(4)}(z_r)| \ll r^{1-3\varepsilon/2}.
\]
(2.6) \(w_2(z_r) \ll (|w_2^{(4)}(z_r)| + |w_2(z_r)||w_2''(z_r)| + |w_2'(z_r)|^2 + |z_r|)^{1/3} \)
\ll |w_2^{(4)}(z_r)|^{1/3} + |w_2(z_r)||w_2''(z_r)|^{1/3} + |w_2'(z_r)|^{2/3} + |z_r|^{1/3}.

Substituting \(w_2^{(k)}(z_r) = \varphi^{(k)}(z_r) + \Phi^{(k)}(z_r) \) \((k = 0, 1, 2, 4)\) into (2.6) and using \(|\Phi^{(k)}(z_r)| \ll r^{1/3+k/6} \) (cf. (2.5)), we have

(1) \(|\varphi(z_r)| \ll r^{1/3} + |\varphi^{(4)}(z_r)|^{1/3}\)
\quad + (r^{1/9} + |\varphi(z_r)|^{1/3})(r^{2/9} + |\varphi''(z_r)|^{1/3}) + r^{1/3} + |\varphi'(z_r)|^{2/3},

which implies that \(\varphi(z) \equiv C \in \mathbb{C} \). Then, by (PI4),

\[0.7r \leq |z_r| \ll |w_2^{(4)}(z_r)| + |w_2(z_r)||w_2''(z_r)| + |w_2'(z_r)|^2 + |w_2(z_r)|^3 \ll r^{1-\epsilon}, \]

which is a contradiction. Thus Theorem 1.1 with \(\nu = 2 \) follows.

3. General case

To treat the general case, we need to know some facts related to the terms of the differential polynomial \(d_{\nu+1}[w] \). Let \([w, w', \ldots, w^{(p)}]^\iota\) denote the monomial \(w^{\iota_0}(w')^{\iota_1}\cdots(w^{(p)})^{\iota_p} \), where \(\iota = (\iota_0, \iota_1, \ldots, \iota_p) \in \mathbb{N} \cup \{0\} \cup \mathbb{N} \). For this monomial with \(\iota = (\iota_0, \iota_1, \ldots, \iota_p) \), we define the weight of it by

\[||\iota|| := \sum_{\kappa=0}^{p}(2+\kappa)\iota_\kappa. \]

Then, \(d_{\nu+1}[w] \) is written in the form:

Lemma 3.1. For every \(\nu \in \mathbb{N} \cup \{0\}, \)

\[d_{\nu+1}[w] = \gamma_{\nu+1}w^{\nu+1} + \sum_{||\iota|| \leq 2(\nu+1), \iota_0 \leq \nu} c_\iota[w, w', \ldots, w^{(2\nu)}]^\iota, \quad \iota = (\iota_0, \iota_1, \ldots, \iota_{2\nu}), \]

where \(c_\iota \in \mathbb{C}, \gamma_{\nu+1} \in \mathbb{C} \setminus \{0\}. \)

To show Theorem 1.1 for the general case, we start from the supposition that

\[N(r, w_{\nu}) \ll r^{(2\nu+3)/(\nu+1) - \epsilon}, \]

which implies that

\[n(r, w_{\nu}) \ll r^{(2\nu+3)/(\nu+1) - \epsilon} \]

for some \(\epsilon > 0 \). Let \(\{a_j\}_{j=1}^{\infty} \) (or \(\{a_j\}_{j=1}^{q} \)) be a sequence of distinct poles of \(w_{\nu}(z) \). Around \(a_j \), we have

\[w_{\nu}(z) = c(a_j)z^{-2} + O(1), \]
where \(c(a_j) = k(a_j)(k(a_j) + 1)/2 \) for some \(k(a_j) \in \{1, \ldots, \nu\} \). By (3.1), \(w_\nu(z) \) is written in the form

\[
w_\nu(z) = \sum_{a_j} c(a_j)((z - a_j)^{-2} - a_j^{-2}) + \varphi(z),
\]

where \(\varphi(z) \) is an entire function. Instead of Lemmas 2.1 and 2.2, we have the following under supposition (3.1):

Lemma 3.2. For every \(r > 1 \), there exists \(z_r \) satisfying

\[
0.7r \leq |z_r| \leq r, \quad \sum_{|a_j| < 2r} |z_r - a_j|^{-2} \ll r^{1/(\nu+1) - \varepsilon/2}, \quad \sum_{|a_j| < 2r} |z_r - a_j|^{-3} \ll r^{(3/2)/(\nu+1) - \varepsilon}.
\]

Lemma 3.3. Let \(r \) be an arbitrary number such that \(r > 1 \). Then

\[
\sum_{|a_j| \geq 2r} |(z - a_j)^{-2} - a_j^{-2}| \ll r^{1/(\nu+1) - \varepsilon}, \quad \sum_{|a_j| \geq 2r} |z - a_j|^{-3} \ll 1
\]

for \(|z| \leq r \), and

\[
\sum_{0 < |a_j| < 2r} |a_j^{-2}| \ll r^{1/(\nu+1) - \varepsilon}.
\]

Using Lemmas 3.2 and 3.3 combined with Lemma 3.1, we prove Theorem 1.1 for the general case.

References

