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WKB solutions near a hyperbolic
critical point

RAKFRFRBEF AN RFEER BK BB (Setsuro Fujiié)
Mathematical Institute,
Tohoku University

This report is a part of the work in progress with Jean-Francois Bony,
Thierry Ramond and Maher Zerzeri about the semiclassical distribution
of resonances created by a homoclinic orbit in the phase space.

We study the Schrédinger equation

P(z,hD)u = hEu, P(z,hD) = h®D?+ V() (0.1)

and we assume that the trapping set in p~!(0) consists of a unique ho-
moclinic orbit. Here p(z,£) = &2 + V(z) is the symbol of the operator
P(z,hD), and a point (z, £) is said to be in a trapping set if | exp tH,(z, £)|
does not tend to oo as t — *oo. Homoclinic orbit is a set of (z,£) in
p~1(0) such that exp tH,(z, ) tends to a critical point as t — o0,

Roughly speaking, the resonant state is localized near the trapping set
when h — 0, and so it suffices to consider solutions there for the study
of the semiclassical distribution of resonances. In our case, we need to
construct a WKB solution at one point on the orbit and continue it along
the homoclinic orbit. Then the quantization condition of resonances is
obtained by comparing the initial solution with that obtained after a
round continuation.

To do this, the main problem arises at the critical point because the
phase and the symbol of WKB solutions have singularities there. In this
report, we restrict ourselves to the study of the connection problem at
the critical point.

In the first part, we review the theory of [He-Sj] in the general setting.
Thier idea is to represent the solution near the critical point as Laplace



transform of a WKB solution to the time dependent Schidinger equation
and to expand the phase and the symbol asymptotically as ¢t — +oc.

In the second part, we carry out an explicit calculus for a model to
demonstrate the theory of the previous section as well as to study its
asymptotic behavior near the critical point.

1 General scheme

Let ~(t) be the homoclinic orbit in the phase space. As t — $o0, ¥(t)
converges to the critical point, which we assume to be (z,£&) = (0,0).
Let b(z, h) expi(z)/h be a microlocal WKB solution associated to a
Lagrangian manifold Ay = {(z,£);€ = 8,¥(z)}, which contains the in-
coming part of the trajectory {7(¢)}:>r with large enough . The WKB
construction does not work near the critical point, that is, the symbol
b(z, h) is singular at £ = 0 and its asymptotic expansion no longer has
sense as £ — 0 rapidly with respect to h. The aim is to continue this so-
lution to the outgoing part of the trajectory {7(t)}:.<-r passing through
the critical point and to know the asymptotic behavior there.

The following in this section is a partial review of [He-Sj]. For the
proofs and more details, see this reference.

Let (z,€) = (0,0) be the critical point. This means that z =0 is
a non-degenerate maximum of the potential V(z). Then after a linear
canonical transformation, we can asuume

V(z) = Z 2+O|a:|) (x—=0), 0<A <A< <A
_7-1

Let d(0,z) be the geodesic distance from 0 to z with respect to the
metric ds? = max(0, —V(z))dz2. Then

) =3~ Xa2 1 0(laf)

_1=1
and if we put
¢+(z) = £d(0, -'L‘) Ar = {(x,£);§ = Or+}

then AL are outgoing and incoming Lagrangian manifolds respectively.
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The main idea of [He-Sj] is to represent the solution u near the origin
as Laplace transform of a solution of the time dependent Schrodinger
equation, that is, '

u = I[a)(z, h) = /T * a(t, z, h)e#e= gy, (1.1)
4}

o0
alt,z,h) ~ Y as(t,7) (R —0),
—
with
(hD; + P — hE)(ae'*’*) ~ 0, (1.2)
and a large enough constant Ty. The phase ¢ and the terms a; of the
symbol a satisfy the eikonal and transport equations respectively:

O+ |Vo|* +V(z) =0, (1.3)

6tao + 2V¢ . Vao + (A¢ - iE)ao = 0, (14)
8ta,- + 2V¢ : Vaj + (A¢ - z'E)aj = z'Aa,-_l (] > 1) (15)
Now we construct the phase and the symbol.

Take a point pg = (29, &) # (0,0) on A_ and let (t) = exptHp(po).
We assume

(H1) {z\j};-‘;l are Z-independent.

Then we have o
v(t) ~ Y eHity(t) (¢ — +oo),
j=1

where 7;(t) are polynomials in t and 0 < p; < pg < --- are non-zero
linear combinations of {);}7_; on N = {0,1,...}, in particular
A1. Moreover v; is independent of ¢ and parallel to the vector (z; £)
(1,0,...,0; —X;/2,0,...,0). We assume then a generic assumption

(H2) "= (1,0,,0,—A1/2,0,,0)

This means that ~y is tangent to the z;-axis at the critical point.

Let Ap be a Lagrangian manifold transverse to A_ at pp, and put A; =
exptHy(Ap). Then A; is also a Lagrangian manifold and there exists
#(t, z) such that

A= {(1"1 §)a§ = 6z¢(t’ .’B)}
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and such that ¢ satisfies the eikonal equation (1.3). Moreover, it is ez-
pandible, i.e.

o0
o(t, z) — ¢4 (z) ~ Ze"“"tqﬁj(t, z) t— +oo,
j=1
where ¢;(t,z) are C* function in z in a neighborhood of the origin and
polynomial in ¢, in the sense that

N
DtkD:(¢ - ¢+ - Z e—#jt(bj) = O(e_(l-‘N-}-l'—E)t)
Jj=1

forany NeN, ae N*, k€N, and any € > 0.

With this ¢, the solution of the transport equations (1.4), (1.5) are also
ezpandible and

a’]'(ta .'1:) ~ e—St(a‘J',O(x) + Z a.’i,k(tvx)e_"jt)7
k=1
where '
1 n
=1
Let Q be a sufficiently small neighborhood of 0 and ¢ > 0 sufficiently
small number. We define

Wi = {x €tz > lx'lxl/(#z-—)u-i'e)}.
Then we have the following proposition:

Proposition 1.1  There exists a large enough Ty such that there exists
a unique critical point t = t(x) > T, for x in W, with 8%¢/dt%(t(z),z) > 0
and no critical point larger than Ty for x in W_. Moreover, the critical
value 1(x) = ¢(t(x), z) satisfies

) Y noy
We) = ~ et + 22%’:1:5 +o(z®) (z— 0 inW,).
J:
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2 A model example

In this section, we calculate I[a] for a particular potential

V(IB) i AJ 2

and for a particular choice of the Lagrangian manifold

Ro={(@,€):6 = gha(ms —2), & = 3ha7a, -, fn = Fhazal,

which may be representative of the generic case, and we will clarify its
asymptotic behavior of I[a].
First, the phase ¢, (z), which is the Jacobi distance from 0, is given by

%@=¥f'

Next, the Hamilton flow is given by

coshA;t 3 sinh At )

exptH, = ®}_ .
Pie = F=1 ( X sinh At cosh At

and we get

1 1 1
A= {(z,€); &6 = 5/\1(331 ~2e™Mb) & = 5>\2$2, corbn= §Anxn}-

Then the phase ¢(t,z) is obtained modulo a function of ¢, but with the
eikonal equation (1.3), it is determined modulo a constant and we take

tz)*zn:—J z+)\1 —2ht,
__ 1% e 1+

For this ¢,
B = Me~ M (z; — e M),

and if z; > 0, there is a unique critical pomt t =1t(z) in t € (—o0,+00)
which satisfies

T, = e~ M), (2.1)
and the critical value is given by
Ao A g
¥(z) = B(t(z),2) = —Fat + 3 Gl (2.2

=2

107



If z; < 0, there is no critical point.
On the other hand, the transport equation (1.4) becomes

0

+
Bxl

Z/\ 27388 }a0+500=0.

j=2

{Bt + )\1(.’171 - 26_'\1t

The general solution is given by
ao(t, ) = eStal((z1 — e M) ™, zoe ™™, ... zpe ™M), (2.3)

where al(y) = al(y1,--.,¥») is an arbitrary function.
Let us compute the asymptotic expansion of I[ag] for af(y) = y°, that

is, for
ao(t,z) = (21 — e~ Mty g’ g=ME(a)t (2.4)

where we used the notations

= (T2y---,2%n), = (on,00,.. L an) = (a,d),

/

' =x5%---28, A-o= Moy + -+ Agay,
n

B@)=(S+x-a)/h=3{(a+ %)A,- ~iB} /A

=1
Notice that, in view of (1.5), ape'® is an exact solution to (1.2) in cases
where a; = 0 and 1. Substituting (2.4) in (1.1), we have

I[ ] —— en¢+(z)/h /T ei)q(-—2:::1e:"“l‘-}-e'”l‘)/2)16—)\1E((:t)t(:L.1 _ e—ht)a; dt
0

— xlaleiqp(z)/h /;1 eiA1(1:1—e—ht)2/2he—)‘1E(a)t($1 _ e—ht)oq dt
0

By the change of variable s = e,

e—21 T
Tlag) = xm ! gi(@)/h /0 e eih(@1=9)?/2h gB(0)=1(y, _ s)mds.  (2.5)

Now the problem is reduced to the study of the integral
o0
Jpg(z: k) = / e~ (e 9)/2k2 gpta-1(5 4 5)9ds,
0

We assume here that g is a non-negative integer. Then one gets a recur-
rence formula by an integration by parts:

Jpg = K {(p+ q— 1)Jpg-1+ (¢ — 1)Jp+2,4-2}
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from which we obtain

.y [9/2]
Jpg =k q(p)q Z € Jp+24,0;

3=0
where (p), =p(p+1):--(p+¢—1) and ¢; (j = 1,...,[g/2]) are constants
ind_ependent of k with ¢g = 1. On the other hand, one has
Jpo(z k) = ka(P)e_z2/4kzD—p(z/k)a

where D, (2) is the Weber function

6_32/4 00

— —zt—t2/2 —v-1 t. 2'
(=) s e 1™V 'd (2.6)

D,(z)
Hence we have

l9/2) .
Joq(2 k) = K2 (p)ge™=" " N~ ¢;k¥T(p + 2j) D_p2(2/k)
3=0

Now returning back to I[ag), we write it in termes of J,o with E(c/) =
E(a)|a;=0 = E(a) — ax:

—1)er 1o’ /.
I[a()] — L_A_)__eﬁll(z)/hx JE(O’),Q}(_"BI; Zh/Al)

1

1 (—ik\*® . , /2] :
N ( A ) (B(an))a, V2" 3" ¢ Ipayrajo(—s5 /ih/ M)
i=0
h\ ¢ [/2]
% (—_’h) | (B(e1))ay € 22" t ¢ / % giha(e1-0)/2h B(o!)+25-1 g
/\1 /\1 j=0 0

The asymptotic behavior of the last integral is of course reduced to the
well-known aymptotic formula of the Weber function, but we recall here
the derivation.

If z, < 0, the principal contribution comes from s = 0 and if z; > 0,
the principal terms come from s = 0 and the critical point s = z; of the
phase function \;(z; — s)?/2. Let us study the case z; > 0.

We write

/ T ih(@1—2)?/2h JE(a')42i-1 g f 4 / ¥ B+ 5,
0 0 Je
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for sufficiently small € such that 0 < € < z;.
The asymptotic expansion of I} is obtained by the stationary phase

method and it is given by

I ~ 2T B2
A1

Next, we study If. As s —= 0,
(z, — s)? ~ 22 — 21,35,

and we have ]
I{ ~ eiAwf/Zh/ e—iMz18/h GB(e)+2i-1 gy
0
By the change of variable i\;z;8/h = 0o, it is reduced to the integral of

the gamma function, and one has

idz?/2h

E(a')+25
) ¢

I ~T(E() +29) (i W

Remark that J3*! = 2% and I*' = (h/z,)%I{. Hence

[@1/2] . )
Z C_,'(I'l7 + Ig) ~ Ii) + Ig (.’81 - 0+, h/.’El - 0)
o

Thus we have obtained the following proposition:

Proposition 2.1 Let al(y) = y* and ay be given by (2.3). Then one
has as h/z; — 0 and z; — 0+, '

Taole, 1) ~ - () (B

/27!’1;]2 ' . h E(a') .
X Tmf(a )—leﬂb(z)/h + (m) F(E(a')).'tl_E(a )e'¢+(z)/h

SEXH

[He-Sj] B.Helffer, J.Sjostrand: Multiple wells in the semi-classical limit
IIT - Interaction Through Non-Resonant Wells -, Math. Nachr. 124,
(1985), 263-313.



