HEIGHT FUNCTIONS OVER FUNCTION FIELDS

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY ATSUSHI MORIWAKI

For details of this talk, see [1], [2], [3] and [4].

1. Function fields

First of all, we fix two kinds of functions fields, namely, an arithmetic function field and a geometric function field.

- An arithmetic function field is a finitely generated extension field of Q.
- A geometric function field is a finitely generated extension field of an algebraically closed field.

2. Height function on $\mathbb{P}^1(\mathbb{Q})$

First, let us review a height of a rational number. Roughly speaking, it measures the complexity of rational numbers, and you may agree with the following:

The complexity of rational numbers =

The magnitude of numerators and denominators

Hence, for $a/b \in \mathbb{Q}$ $(a, b \in \mathbb{Z} \text{ and } a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z})$, the complexity h of a/b should be

$$h = \log \max\{|a|, |b|\}.$$

This gives rise to a height function h^{arith} on

$$\mathbb{P}^{1}(\mathbb{Q}) = \{(a:b) \mid a, b \in \mathbb{Q}, (a,b) \neq (0,0)\},\$$

namely, for x = (a : b) with $a, b \in \mathbb{Z}$ and $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$,

$$h^{\text{arith}}(x) = \log \max\{|a|, |b|\}.$$

3. Height function on $\mathbb{P}^1(\mathbb{Q}(t))$

For this purpose, we need to ask again what

the complexity of polynomials

3.1. **Geometric case.** (Complexity = Degree)

For x = (f(t) : g(t)) with $f(t), g(t) \in \mathbb{Z}[t]$ and f(t), g(t) relatively prime,

$$h^{\text{geom}}(x) = \max\{\deg(f(t)), \deg(g(t))\}.$$

 h^{geom} is NOT an extension of h^{arith} when we view \mathbb{Q} as a subfield of $\mathbb{Q}(t)$.

3.2. Arithmetic case. (Complexity = Degree + Largeness of coefficients) For $f = \sum_i a_i t^i \in \mathbb{Q}[t]$, we set

$$|f|_{\infty} = \max_{i} \{|a_i|\}.$$

Then, as before, we may consider

$$\max\{\deg(f(t)),\deg(g(t))\} \\ + \log\max\{|f|_{\infty},|g|_{\infty}\},$$

which is NOT good from the geometric view point. Thus, we need a more sophisticated invariant to measure the largeness of coefficients. For this purpose, let us fix a positive (1,1)-form Ω on $\mathbb{P}^1(\mathbb{C})$ with $\int_{\mathbb{P}^1(\mathbb{C})} \Omega = 1$. Then, we set

$$v(f) = \exp\left(\int_{\mathbb{P}^1(\mathbb{C})} \log |f|\Omega\right).$$

We can see $||f||_{\infty} = v(f)$. Hence, we may define

$$h^{\mathrm{arith}}(x) = \max\{\deg(f(t)), \deg(g(t))\} + \int_{\mathbb{P}^1(\mathbb{C})} \log \max\{|f(t)|, |g(t)|\} \Omega.$$

4. A QUICK REVIEW OF ARAKELOV GEOMETRY

4.1. Arithmetic curve. Let K be a number field and O_K the ring of integers in K. Let $K(\mathbb{C})$ be the set of all embeddings $K \hookrightarrow \mathbb{C}$. Let L be a flat and finitely generated O_K -module of rank 1. For an embedding $\sigma \in K(\mathbb{C})$, the tensor product $L \otimes_K \mathbb{C}$ in terms of the embedding σ is denoted by $L \otimes_{\sigma} \mathbb{C}$. Let $\|\cdot\|_{\sigma}$ be a hermitian metric of $L \otimes_{\sigma} \mathbb{C}$. The collection $(L, \{\|\cdot\|_{\sigma}\}_{\sigma \in K(\mathbb{C})})$ is called a hermitian line bundle on $C = \operatorname{Spec}(O_K)$. For simplicity, it is denoted by \overline{L} .

Let s be a non-zero element of L. Then, let us consider:

$$\log \#(L/sL) - \sum_{\sigma} \log(\|s \otimes_{\sigma} 1\|_{\sigma}).$$

Then, by the product formula, it does not depend on the choice of s, so that it is denoted by $\widehat{\operatorname{deg}}(\overline{L})$.

4.2. General case.

X: a projective and flat integral scheme over \mathbb{Z} such that $X \to \operatorname{Spec}(\mathbb{Z})$ is smooth over \mathbb{Q} .

- (Z,T): for a non-negative integer p, a pair (Z,T) is called an arithmetic cycle codimension p if Z is a cycle of codimension p and T is a current of type (p-1,p-1) on $X(\mathbb{C})$.
- $\widehat{Z}^p(X)$: the set of all arithmetic cycles of codimension p.
- $\widehat{R}^p(X)$: the subgroup of $\widehat{Z}^p(X)$ generated by the following elements:
 - (1) $((f), -[\log |f|^2])$, where f is a non-zero rational function on an integral closed subscheme Y of codimension p-1 and $[\log |f|^2]$ is the current defined by

$$[\log |f|^2](\gamma) = \int_{Y(\mathbb{C})} (\log |f|^2) \gamma.$$

(2) $(0, \partial(\alpha) + \bar{\partial}(\beta))$, where α and β are currents of type (p-2, p-1) and (p-1, p-2) respectively.

Note that $\widehat{Z}^0(X) = \mathbb{Z}(X,0)$ and $\widehat{R}^0(X) = 0$.

Here we define

$$\widehat{\mathrm{CH}}^p(X) := \widehat{Z}^p(X) / \widehat{R}^p(X).$$

Let $\overline{L} = (L, \|\cdot\|)$ be a C^{∞} -hermitian line bundle on X, that is, L is a line bundle on X and $\|\cdot\|$ is a C^{∞} -hermitian metric of $L_{\mathbb{C}}$ on $X(\mathbb{C})$. We define a homomorphism

$$\widehat{c}_1(\overline{L}): \widehat{\mathrm{CH}}^p(X) \to \widehat{\mathrm{CH}}^{p+1}(X)$$

in the following way: Let (Z,T) be an element of $\widehat{Z}^p(X)$. For simplicity, we assume that Z is integral. Then, taking a non-zero rational section s of $L|_Z$, we consider an arithmetic cycle of codimension p+1:

$$(\operatorname{div}(s) \text{ on } Z, -[\log(\|s\|_Z^2)] + c_1(\overline{L}) \wedge T),$$

where $[\log(\|s\|_Z^2)]$ is a current given by $\phi \mapsto \int_{Z(\mathbb{C})} \log(\|s\|_Z^2) \phi$.

Let $\overline{L}_1, \ldots, \overline{L}_{\dim X}$ be C^{∞} -hermitian line bundles on X. Then,

$$\hat{c}_1(\overline{L}_1)\cdots\hat{c}_1(\overline{L}_{\dim X})\in\widehat{\operatorname{CH}}^{\dim X}(X).$$

Moreover, we have a homomorphism

$$\widehat{\operatorname{deg}}:\widehat{\operatorname{CH}}^{\dim X}(X)\to\mathbb{R}$$

given by

$$\widehat{\operatorname{deg}}\left(\sum_{P} n_{P} P, T\right) = \sum_{P} n_{P} \log \#(\kappa(P)) + \frac{1}{2} \int_{X(\mathbb{C})} T.$$

Thus, we have the number

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\overline{L}_1)\cdots\widehat{c}_1(\overline{L}_{\dim X})),$$

which is called the intersection number of $\overline{L}_1, \ldots, \overline{L}_{\dim X}$. Note that the intersection number

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\overline{L}_1)\cdots\widehat{c}_1(\overline{L}_{\dim X}))$$

can be defined even if $X \to \operatorname{Spec}(\mathbb{Z})$ is not smooth over \mathbb{Q} .

5. Polarization and height function

K: an arithmetic function field, i.e., a field finitely generated over \mathbb{Q} .

d: the transcendental degree of K over \mathbb{Q} .

B: a projective and flat integral scheme over $\mathbb Z$ whose function field is K.

 \overline{H} : a nef hermitian line bundle on B, i.e. the Chern form $c_1(\overline{H})$ on $B(\mathbb{C})$ is semi-positive and $\widehat{\operatorname{deg}}(\widehat{c}_1(\overline{H})\cdot(Z,0))\geq 0$ for every integral 1-dimensional subscheme Z on B.

 (B, \overline{H}) : A pair (B, \overline{H}) is called a polarization of K, denoted by \overline{B} . For $(\phi_0, \ldots, \phi_n) \in K^{n+1} \setminus \{0\}$, we define

$$h^{\overline{B}}(\phi_0, \dots, \phi_n) := \sum_{\Gamma} \max_{i} \{-\operatorname{ord}_{\Gamma}(\phi_i)\} \widehat{\operatorname{deg}}\left(\widehat{c}_1\left(\overline{H}\big|_{\Gamma}\right)^d\right)$$

$$+\int_{B(\mathbb{C})} \log \left(\max_{i} \{ |\phi_{i}| \} \right) c_{1}(\overline{H})^{\wedge d}.$$

(Γ 's run over all prime divisors on B)
It is easy to see

$$h^{\overline{B}}(x\phi_0,\ldots,x\phi_n)=h^{\overline{B}}(\phi_0,\ldots,\phi_n).$$

Thus we get

$$h^{\overline{B}}: \mathbb{P}^n(K) \to \mathbb{R}.$$

 \star In the case where K is a number field, $h^{\overline{B}}$ is the arithmetic height function.

* In the case where B is an arithmetic surface and $\overline{H} = (\mathcal{O}_B, c|\cdot|_{\operatorname{can}})$ $(0 < c < 1), h^{\overline{B}}$ is a constant multiple of the geometric height function as

6. Another description

* Fix a polarization:

 \mathcal{K} : an arithmetic function field K: an arithmetic function field $d:=\mathrm{tr.deg}_{\mathbb{Q}}(K).$ B: a projective and flat integral scheme over \mathbb{Z} whose function field is K. $\overline{H}:$ a nef hermitian line bundle on B. $\overline{B}=(B,\overline{H}):$ a polarization of K.

* Variety and line bundle over K

 $\left\{ \begin{array}{l} X: \text{ a projective variety over } K. \\ \\ L: \text{ a line bundle on } X. \end{array} \right.$

* Model of (X, L)

 $\begin{cases} \mathcal{X}: \text{ an integral projective scheme over } B \\ \text{ whose generic fiber of } \mathcal{X} \to B \text{ is } X. \end{cases}$ $\overline{\mathcal{L}}: \text{ a hermitian line bundle on } \mathcal{X} \text{ which gives }$ rise to L on the generic fiber of $\mathcal{X} \to B$.

A pair $(\mathcal{X}, \overline{\mathcal{L}})$ is called a model of (X, L).

 $* \Delta_P \text{ for } P \in X(\overline{K})$

For $P \in X(\overline{K})$, the Zariski closure of the image

$$\operatorname{Spec}(\overline{K}) \xrightarrow{P} X \hookrightarrow \mathcal{X}$$

is denoted by Δ_P .

 $\operatorname{Spec}(\overline{K}) \stackrel{P}{\longrightarrow} X \hookrightarrow \mathcal{X}$ denoted by Δ_P . Then we define $h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{B}}: X(\overline{K}) \to \mathbb{R}$ to be

$$h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{B}}(P) := \frac{\widehat{\operatorname{deg}}\left(\widehat{c}_1(\left.\overline{\mathcal{L}}\right|_{\Delta_P}) \cdot \widehat{c}_1(\left.f^*(\overline{H})\right|_{\Delta_P})^d\right)}{[K(P):K]},$$

where f is the canonical morphism $\mathcal{X} \to B$. Note that if $(\mathcal{X}', \overline{\mathcal{L}}')$ is another model of (X, L), then there is a constant C with

$$\left| h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{B}}(P) - h_{(\mathcal{X}',\overline{\mathcal{L}}')}^{\overline{B}}(P) \right| \le C \quad (\forall P \in X(\overline{K}))$$

This means that $h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{B}}$ is uniquely determined modulo bounded functions on $X(\overline{K})$, so that we may write it as $h_L^{\overline{B}}$.

7. NORTHCOTT'S THEOREM

Theorem 1 (Northcott's theorem). We assume that \overline{H} is big, i.e., $\operatorname{rk}_{\mathbb{Z}}H^0(B, O(m^d))$ and for a sufficient large n, there is a non-zero $s \in H^0(B, H^{\otimes n})$ with $||s||_{\sup} < 1$. Then, for any M and e, the set

$${P \in X(\overline{K}) \mid h_L^{\overline{B}}(P) \le M, \quad [K(P) : K] \le e}$$

is finite.

Theorem 2 (Refinement). We assume that \overline{H} is big. Then, for a fixed e,

$$\frac{\log \#\{P \in X(\overline{K}) \mid h_L^{\overline{B}}(P) \le h, [K(P) : K] \le e\}}{h^{d+1}}$$

is bounded above as h goes to the infinity.

8. The number of algebraic cycles

In the similar techniques, we have the following:

Theorem 3 (Geometric version). Let X be a projective scheme over a finite field \mathbb{F}_q and H a very ample line bundle on X. For a non-negative integer k, we denote by $n_k(X, H, l)$ the number of effective l-dimensional cycles with

$$\deg(H^{\cdot l}\cdot V)=k.$$

Then, there is a constant C depending only on l and $\dim_{\mathbb{F}_q} H^0(X, H)$ such that

$$\log_q(n_k(X, H, l)) \le Ck^{l+1}$$

for all $k \geq 1$.

Theorem 4 (Arithmetic version). Let X be a projective and flat integral scheme over \mathbb{Z} and \overline{H} an ample C^{∞} -hermitian line bundle X. For a real number h, we denote by $n_{\leq h}(X, \overline{H}, l)$ the number of effective l-dimensional cycles with

$$\widehat{\operatorname{deg}}(\widehat{c}_1(H)^{\cdot l} \cdot V) \leq h.$$

Then, there is a constant C such that

$$\log(n_{\leq h}(X, \overline{H}, l)) \leq Ch^{l+1}$$

for all h > 1.

Remark 5. The above two theorems might give rise to new zeta functions. For example, in Theorem 3, if we set

$$Z(X, H, l)(T) = \sum_{k=0}^{\infty} n_k(X, H, l) T^{k^{l+1}},$$

then Z(X, H, l) is a convergent power series at 0. Moreover, in Theorem 4, if we set

$$\zeta(X, \overline{H}, l)(s) = \sum_{V} \exp\left(-s \cdot \widehat{\deg}(\widehat{c}_1(H)^{\cdot l} \cdot V)^{l+1}\right)$$

is a convergent Dirichlet series on $\text{Re}(s) \gg 0$, where V runs over all effective l-dimensional cycles.

9. HEIGHT FUNCTION ON AN ABELIAN VARIETY

We assume that X is an abelian variety A. Let L be a symmetric ample line bundle on A. Then, as in the usual theory of height functions, we have the canonical quadratic function

$$\hat{h}_L^{\overline{B}}: A(\overline{K}) \to \mathbb{R}.$$

Actually, it is defined by

$$\hat{h}_L^{\overline{B}}(P) := \lim_{n \to \infty} \frac{h_L^{\overline{B}}(nP)}{n^2}.$$

By Northcott's theorem, if \overline{H} is big, then

$$\hat{h}_L^{\overline{B}}(P) = 0 \iff P \in A(\overline{K})_{tor}.$$

From now on, we assume that \overline{H} is big. Here we set

$$\langle x,y\rangle_L^{\overline{B}} = \frac{1}{2}\left(\hat{h}_L^{\overline{B}}(x+y) - \hat{h}_L^{\overline{B}}(x) - \hat{h}_L^{\overline{B}}(y)\right)$$

Then, $\langle , \rangle_L^{\overline{B}}$ gives rise to an inner product $A(\overline{K}) \otimes \mathbb{R}$. For $x_1, \ldots, x_l \in A(\overline{K})$, we set

$$\delta_L^{\overline{B}}(x_1,\ldots,x_l) := \det\left(\langle x_i,x_j\rangle_L^{\overline{B}}\right).$$

10. Bogomolov + Mordell

Theorem 6. Let Γ be a subgroup of finite rank in $A(\overline{K})$, and Y a subvariety of $A_{\overline{K}}$. Let us fix a basis $\{\gamma_1, \ldots, \gamma_n\}$ of $\Gamma \otimes \mathbb{Q}$. If the set

$$\{x \in Y(\overline{K}) \mid \delta_L^{\overline{B}}(\gamma_1, \dots, \gamma_n, x) \le \epsilon\}$$

is Zariski dense in Y for every positive number ϵ , then Y is a translation of an abelian subvariety of $A_{\overline{K}}$ by an element of Γ_{div} , where

$$\Gamma_{\text{div}} = \{ x \in A(\overline{K}) \mid \exists n \in \mathbb{Z}_{>0} \ nx \in \Gamma \}.$$

Corollary 7 (Bogomolov's conjecture). Let Y be a subvariety of $A_{\overline{K}}$. If the set

$$\{x \in Y(\overline{K}) \mid \hat{h}_L^{\overline{B}}(x) \le \epsilon\}$$

is Zariski dense in Y for every positive number ϵ , then Y is a translation of an abelian subvariety of $A_{\overline{K}}$ by a torsion point.

Corollary 8 (Mordell-Lang conjecture). Let A be a complex abelian variety, Γ a subgroup of finite rank in $A(\mathbb{C})$, and Y a subvariety of A. Then, there are abelian subvarieties C_1, \ldots, C_n of A, and $\gamma_1, \ldots, \gamma_n \in \Gamma$ such that

$$\overline{Y(\mathbb{C})\cap\Gamma}=\bigcup_{i=1}^n(C_i+\gamma_i)$$

and

$$Y(\mathbb{C}) \cap \Gamma = \bigcup_{i=1}^{n} (C_i(\mathbb{C}) + \gamma_i) \cap \Gamma.$$

11. OUTLINE OF THE PROOF

Step 1: Prove Bogomolov's conjecture, i.e. the case where $\Gamma = 0$.

Step 2: Verify the special case of Mordell-Lang conjecture:

If Y(K) is dense in Y, then Y is a translation of an abelian subvariety.

Step 3: Poonen's idea + Step 1 + Step 2

12. POONEN'S IDEA

K: a field finitely generated over \mathbb{Q} .

 $\overline{B} = (B, \overline{H})$: a big polarization of $K(\overline{H} : big)$.

A: an abelian variety over K.

L: a symmetric ample line bundle on A.

 Γ : a subgroup of finite rank in $A(\overline{K})$ such that there is a finitely generated subgroup Γ_0 of A(K) with $\Gamma_0 \otimes \mathbb{Q} = \Gamma \otimes \mathbb{Q}$.

Let S be an infinite subset of $A(\overline{K})$. We say S is small with respect to Γ if there is a decomposition $s = \gamma(s) + z(s)$ for each $s \in S$ with the following properties:

(1) $\gamma(s) \in \Gamma$ for all $s \in S$;

(2) for any $\epsilon > 0$, there is a finite proper subset S' of S such that $\hat{h}_L^{\overline{B}}(z(s)) \leq \epsilon$ for all $s \in S \setminus S'$.

Let F be a finite extension of K. For $x \in A(\overline{K})$, we set

$$O_F(x) := {\sigma(x) \mid \sigma \in \operatorname{Gal}(\overline{K}/F)}.$$

For an integer $n \geq 2$, let $\beta_n : A^n \to A^{n-1}$ be a homomorphism given by

$$\beta_n(x_1,\ldots,x_n)=(x_2-x_1,x_3-x_1,\ldots,x_n-x_1).$$

For a subset T of S and a finite extension F of K, we set

$$\mathcal{D}_n(T,F) = \bigcup_{s \in T} \beta_n(O_F(s)^n).$$

Moreover, we denote by $\overline{\mathcal{D}}_n(T,F)$ the Zariski closure of $\mathcal{D}_n(T,F)$.

A pair (S, K) is said to be minimized if

- (1) for any infinite subset T of S and any finite extension F of K, $\overline{\mathcal{D}}_2(T,F)=\overline{\mathcal{D}}_2(S,K)$;
- (2) $\overline{\mathcal{D}}_2([N](S), K) = \overline{\mathcal{D}}_2(S, K)$ for all integers $N \ge 1$.

Note that if an infinite subset S of $A(\overline{K})$ is small with respect to Γ , then there are an infinite subset T of S, a finite extension F of K, and a positive integer N such that ([N](T), F) is minimized.

Theorem 9 (Poonen-Moriwaki). Let S be an infinite subset of $A(\overline{K})$ such that S is small with respect to Γ . If (S,K) is minimized, then there is an abelian subvariety C of $A_{\overline{K}}$ such that $\overline{\mathcal{D}}_n(S,K) = C^{n-1}$ for all $n \geq 2$.

The above theorem is a consequence of Bogomolov's conjecture.

Three ingredients:

- 1 the above theorem
- 2 the special case of Mordell-Lang conjecture
- 3 a geometric trick to remove a measure-theoretic argument in Poonen's paper

imply the main theorem.

More precisely, we can prove it in the following way:

Replacing K by a finite extension of K, we may assume that there is a finitely generated subgroup Γ_0 of $\Gamma \cap A(K)$ with $\Gamma_0 \otimes \mathbb{Q} = \Gamma \otimes \mathbb{Q}$. We set

$$Stab(Y) = \{a \in A \mid Y + a = Y\}.$$

Considering $A/\operatorname{Stab}(Y)$, it is sufficient to show the following claim.

Claim: If $Stab(Y) = \{0\}$, then Y is a point.

We assume that dim Y > 0. Then, replacing K by a finite extension of K, we can find an infinite subset S of $Y(\overline{K})$ with the following properties:

- (1) S is small with respect to $\Gamma_{\rm div}$.
- (2) S is Zariski dense in Y.

(3) (S, K) is minimized.

Then, there is an abelian subvariety C of $A_{\overline{K}}$ with $\overline{\mathcal{D}}_n(S,K)=C^{n-1}$ for all $n\geq 2$. If $\dim C=0$, then $S\subseteq A(K)$. Thus, by the special case of Mordell-Lang conjecture, Y is a translation of an abelian subvariety B of $A_{\overline{K}}$. Then, $\operatorname{Stab}(Y)=B$. Thus, $\dim B=0$, which implies $\dim Y=0$, so that we have a contradiction.

Next we assume that $\dim C > 0$. Let us fix a positive integer n with $n > 2\dim(A)$. Let $\pi : A \to A/C$ be the natural homomorphism and $T = \pi(Y)$. Let Y_T^n be the fiber product over T in Y^n . Then, we have a morphism $\beta_n : Y_T^n \to A^{n-1}$ given by

$$\beta_n(x_1,\ldots,x_n)=(x_2-x_1,\ldots,x_n-x_1).$$

Since $O_K(s)^n \subseteq X_T^n$, let Y be the Zariski closure of $\bigcup_{s \in S} O_K(s)^n$. Then, $\beta_n(Y) \supseteq C^{n-1}$. Thus, we get

$$\dim(X_T^n) \ge \dim(C^{n-1}).$$

On the other hand, since $Stab(Y) = \{0\},\$

$$\dim(X/T) \le \dim(C) - 1.$$

Thus,

$$\dim(X_T^n) - \dim(C^{n-1}) = (n\dim(X/T) + \dim(T)) - (n-1)\dim(C)$$

 $\leq \dim(C) + \dim(T) - n$
 $\leq 2\dim(A) - n < 0.$

This is a contradiction.

REFERENCES

- [1] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. math. 140 (2000), 101-142.
- [2] A. Moriwaki, A generalization of conjectures of Bogomolov and Lang over finitely generated fields, Duke Math. J. 107, (2001), 85–102.
- [3] A. Moriwaki, The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field, J. reine angew. Math. 530 (2001), 33-54.
- [4] A. Moriwaki, Diophantine geometry viewed from Arakelov geometry, (Japanese) Sūgaku 54 (2002), no. 2, 113–129.