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HEIGHT FUNCTIONS OVER FUNCTION FIELDS

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY
ATSUSHI MORIWAKI

For details of this talk, see [1], [2], [3] and [4].

1. FUNCTION FIELDS

First of all, we fix two kinds of functions fields, namely, an arithmetic

function field and a geometric function field.

e An arithmetic function field is a finitely generated extension field of Q.
e A geometric function field is a finitely generated extension field of an

algebraically closed field.

2. HEIGHT FUNCTION ON P(Q)

First, let us review a height of a rational number. Roughly speaking, it
measures the complexity of rational numbers, and you may agree with the

following:

The complexity of rational numbers | =

The magnitude of numerators and denominators

Hence, for a/b € Q (a,b € Z and aZ + bZ = Z), the complexity h of a/b

should be
h = log max{|al, |b}.
This gives rise to a height function A%" on
PY(Q) = {(a:b)|a,b € Q,(a,b) # (0,0)},
namely, for z = (a : b) with a,b € Z and aZ + bZ = Z,

harith(x) — log ma.x{laL |bl}

3. HEIGHT FUNCTION ON P!(Q(2))

For this purpose, we need to ask again what

the complexity of polynomials
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3.1. Geometric case. (Complexity = Degree)
For z = (f(t) : g(t)) with f(t), g(¢) € Z[t] and f(t), g(t) relatively prime,

heeom () = max{deg(f(t)), deg(g(t))}-

he™ is NOT an extension of h*'*" when we view Q as a subfield of Q(%).

3.2. Arithmetic case. (Complexity = Degree + Largeness of coefficients)
For f =3%".a;it* € Q[t], we set

| Fleo = max{fas[}.
Then, as before, we may consider

max{deg(f(t)), deg(g(t))}
+ log max{| floos [9lec},

which is NOT good from the geometric view point. Thus, we need a more
sophisticated invariant to measure the largeness of coefficients. For this
purpose, let us fix a positive (1,1)-form Q on P*(C) with [, @ = L.

Then, we set
= 1 Q).
v(f) = exp (/nn(C) og |f| )

We can see || f|lo = v(f). Hence, we may define
h(z) = max{deg(f(t)), deg(g(t))}
+ [ logmax{|f(®) ls)e
P1(C)

4. A QUICK REVIEW OF ARAKELOV GEOMETRY

4.1. Arithmetic curve. Let K be a number field and Ok the ring of
integers in K. Let K(C) be the set of all embeddings K «— C. Let L
be a flat and finitely generated Ox-module of rank 1. For an embedding
o € K(C), the tensor product L ® C in terms of the embedding o is
denoted by L®,C. Let ||- ||, be a hermitian metric of L&, C. The collection
(L, {ll - llo }oex(c)) is called a hermitian line bundle on C = Spec(O K) For
simplicity, it is denoted by L.
Let s be a non-zero element of L. Then, let us consider:

log #(L/sL) = " log(lls ® 1[)-

Then, by the product;f\ormula, it does not depend on the choice of s, so
that it is denoted by deg(L). -
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4.2. General case.
X : a projective and flat integral scheme over Z such that X — Spec(Z)
is smooth over Q.
(Z,T): for a non-negative integer p, a pair (Z,T) is called an arithmetic
cycle codimension p if Z is a cycle of codimension p and T is a
current of type (p — 1,p — 1) on X(C).

ZP(X): the set of all arithmetic cycles of codimension p.

RP(X) : the subgroup of EP(X ) generated by the following elements:
(1) ((f), —[log|f|%]), where f is a non-zero rational function on an
integral closed subscheme Y of codimension p — 1 and [log | f|?]
is the current defined by

log |£1(7) = /Y o LBl

(2) (0,8(a)+0(B)), where o and 3 are currents of type (p—2,p—1)
and (p — 1, p — 2) respectively.
Note that Z°(X) = Z(X,0) and R°(X) = 0.
Here we define . N N
CH'(X) = Z7(X)/RP(X).

Let L = (L,||-||) be a C*°-hermitian line bundle on X, that is, L is a line
bundle on X and || - || is a C*°-hermitian metric of Lc on X(C). We define
a homomorphism _

&(T) : CH°(X) — CH" ™ (X)
in the following way: Let (Z,T) be an element of Zp (X). For simplicity,

we assume that Z is integral. Then, taking a non-zero rational section s of
L|,, we consider an arithmetic cycle of codimension p + 1:

(div(s) on Z, —[log(||s||Z)] + c1(L) A T),
where [log(||s{|2)] is a current given by ¢ — [, log(|ls[|%)¢.
Let Ly,..., Lamx be C®-hermitian line bundles on X. Then,
e e —~ dim X
Cl(L]_)"'C]_(Ldij) € CH (X)

Moreover, we have a homomorphism
dim X

| EéEéﬁ (X)—R
given by

Eég (Z npP, T) = an log #(k(P)) + %/ T.
P P X

(©)
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Thus, we have the number

E%(él(zl) e '&1(—EdimX)):

which is called the intersection number of L1, ..., Lamx. -Note that the
intersection number

d/EE(él (E1) ce 51 (—L-dimX))
can be defined even if X — Spec(Z) is not smooth over Q.

5. POLARIZATION AND HEIGHT FUNCTION

K : an arithmetic function field, i.e., a field finitely generated over Q.
the transcendental degree of K over Q.

W a

a projective and flat integral scheme over Z whose function field is
K.

H : a nef hermitian line bundle on B, i.e. the Chern form ¢;(H) on
B(C) is semi-positive and deg (& (H) - (Z,0)) > 0 for every integral
1-dimensional subscheme Z on B.

(B,H) : A pair (B, H) is called a polarization of K, denoted by B.
For (¢o, ..., ¢n) € K**1\ {0}, we define

h§(¢0a R y¢n) =
> m?,x{—ordr(@)}&% (’c} (ﬁlr)d)

+ /B( o log (mf‘x{|¢z|}) e (DM

(I’s run over all prime divisors on B)
It is easy to see

hB(zdo, ..., v¢n) = KB(u, ..., n).
Thus we get
KB . P*(K) — R.

x In the case where K is a number field, hZ is the arithmetic height
function. -
* In the case where B is an arithmetic surface and H = (Op,¢| - |can)

(0O<c<1),hBisa constant multiple of the geometric height function as
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6. ANOTHER DESCRIPTION

* Fix a polarization:

( K : an arithmetic function field
d := tr.degg(K).

B : a projective and flat integral scheme
over Z whose function field is K.

-

H : a nef hermitian line bundle on B.

| B= (B, H) : a polarization of K.
* Variety and line bundle over K

{ X : a projective variety over K.

L : a line bundle on X.
* Model of (X, L)

[ X : an integral projective scheme over B
whose generic fiber of X — B is X.

j L : a hermitian line bundle on X which gives
rise to L on the generic fiber of X — B.

\
A pair (X, L) is called a model of (X, L).
x Ap for P € X(K)
For P € X(K), the Zariski closure of the image
| Spec(K) B xox
is denoted by Ap.

Then we define hZ, - : X(K) — R to be

(*.L)
deg (&1(Z],,) - & (f*(@)]y,)%)
K(P):K]

h(BX,Z) (P) =

where f is the canonical morphism X — B. Note that if (X’ ,Z’) is another
model of (X, L), then there is a constant C' with

he ) (P) = Rz (P)| <€ (VP € X(RD)
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This means that hg, 7 is uniquely determined modulo bounded functions

on X(K), so that we may write it as h5.

7. NORTHCOTT’S THEOREM

Theorem 1 (Northcott’s theorem). We assume that H is big, i.e., tkz H(B,
O(m?) and for a sufficient large n, there is a non-zero s € H°(B, H®") with
|sllsup < 1. Then, for any M and e, the set

{PeX(R)|hE(P)< M, [K(P):K]<e}
s finite.
Theorem 2 (Refinement). We assume that H is big. Then, for a fized e,

log #{P € X(K) | hE(P) < h,[K(P) : K] < e}
hd+1 '

1s bounded above as h goes to the infinity.

8. THE NUMBER OF ALGEBRAIC CYCLES

In the similar techniques, we have the following:

Theorem 3 (Geometric version). Let X be a projective scheme over a finite
field Fy and H a very ample line bundle on X. For a non-negative integer k,
we denote by ng(X, H,l) the number of effective l-dimensional cycles with

deg(H' V) =k.

Then, there is a constant C depending only on | and dimg, H*(X, H) such
that ‘

log,(nk(X, H,1)) < Ck™*1
forallk > 1.
Theorem 4 (Arithn_g:tic version). Let X be a projective and flat integral
scheme over Z and H an ample C™-hermitian line bundle X. For a real

number h, we denote by n<p(X, H,l) the number of effective l-dimensional
cycles with

deg(GL(H)' - V) < h.
Then, there is a constant C' such that
| log(n<n(X, H, 1)) < ChH
fbr allh > 1.
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Remark 5. The above two theorems might give rise to new zeta functions.
For example, in Theorem 3, if we set

Z(X, B,0)(T) = > m(X, H )T,
k=0
then Z(X, H,1) is a convergent power series at 0. Moreover, in Theorem 4,
if we set

(X T )(s) =Y exp (—s - deg(@u(H)* - V)'™)
v
is a convergent Dirichlet series on Re(s) > 0, where V runs over all effective

[-dimensional cycles.

9. HEIGHT FUNCTION ON AN ABELIAN VARIETY

We assume that X is an abelian variety A. Let L be a symmetric ample
line bundle on A. Then, as in the usual theory of height functions, we have
the canonical quadratic function

AB . A(K) — R.
Actually, it is defined by
. B
hE(P) := lim wﬂ

n—o0 'n,2

By Northcott’s theorem, if H is big, then
RB(P)=0 <= P e AEK)

From now on, we assume that H is big. Here we set
R - -
(@ 9)E = 5 (R (@ +y) - K (=) ~ hE(w))
Then, (, B gives rise to an inner product A(K)®R. For z,,...,z; € A(K),
we set _ .
62(zy,..., 1) := det ((x,-,mj)f) :

10. BocoMoLOV + MORDELL

Theorem 6. Let T be a subgroup of finite rank in A(K), andY a subvariety
of Az. Let us fiz a basis {m1,...,Ya} of L @ Q. If the set

(e YE) | 8(11,- . Yn,2) < €}

s Zariski dense in 'Y for every positive number €, then Y is a translation
of an abelian subvariety of Ax by an element of I'iy, where

Faiw = {(E € A(F) | dn € Z>0 nr € P}
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Corollary 7 (Bogomolov’s conjecture). Let Y be a subvariety of Ag. If
the set

{zeY(®)|hZ(2) < ¢}
is Zariski dense in'Y for every positive number €, then Y is a translation

of an abelian subvariety of Az by a torsion point.

Corollary 8 (Mordell-Lang conjecture). Let A be a complex abelian variety,
[’ a subgroup of finite rank in A(C), and Y a subvariety of A. Then, there
are abelian subvarieties Cy,...,C, of A, and 11, ...,Yn € I such that

YO NT = O(ci +7)

i=1

and
n

Y(€)nT = J(C:i(C)+ ) NT.

i=1

11. OUTLINE OF THE PROOF

Step 1: Prove Bogomolov’s conjecture, i.e. the case where I' = 0.
Step 2: Verify the special case of Mordell-Lang conjecture:

If Y(K) is dense in Y, then Y is a translation of an abelian
subvariety.

Step 3: Poonen’s idea + Step 1 + Step 2

12. POONEN’S IDEA
K : afield finitely generated over Q.
B=(B,H) : a big polarization of K (H : big).
A : an abelian variety over K.
L : a symmetric ample line bundle on A.

' : a subgroup of finite rank in A(K) such that there is a finitely gen-
erated subgroup I'p of A(K) with I, @ Q=TQ® Q.

Let S be an infinite subset of A(K). We say S is small with respect to T
if there is a decomposition s = «(s) + 2(s) for each s € S with the following

properties:
(1) y(s) e for all s € S;
(2) for any € > 0, there is a finite proper subset S’ of S such that
hB(2(s)) <eforallse S\ S
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Let F be a finite extension of K. For z € A(K), we set
= {o(z) | o € Gal(K/F)}.
For an integer n > 2, let ,Bn : A" — A" ! be a homomorphism given by
Bn(Z1,. .. Tn) = (T2 — T1, T3 — T1, ..., Tn — T1).
For a subset T" of S and a finite extension F' of K, we set

Dn(T, F) = U Bn(Or(s)")
seT
Moreover, we denote by D, (T, F) the Zariski closure of D, (T, F).

A pair (S, K) is said to be minimized if

(1) for any infinite subset T' of S and any finite extension F of K,

—1_52(T7 F) = 52(‘5’) K)1

(2) Do([N](S), K) = D1(S, K) for all integers N > 1.

Note that if an infinite subset S of A(K) is small with respect to I, then

there are an infinite subset T of S, a finite extension F' of K, and a positive
integer N such that ([N](T"), F)) is minimized.

Theorem 9 (Poonen-Moriwaki). Let S be an infinite subset of A(K) such
that S is small with respect to I'. If (S, K) is minimized, then there is an
abelian subvariety C of Az such that D,(S,K) = C" ! for alln > 2.

The above theorem is a consequence of Bogomolov’s conjecture.

Three ingredients:
1 the above theorem

2 the special case of Mordell-Lang conjecture

3 a geometric trick to remove a measure-theoretic argument in Poo-
nen’s paper
imply the main theorem.
More precisely, we can prove it in the following way:
Replacing K by a finite extension of K, we may assume that there is a
finitely generated subgroup I'po of 'N A(K) with Ty @ Q =T ® Q. We set

Stab(Y)={a€ A|Y +a=Y}.

Considering A/Stab(Y"), it is sufficient to show the following claim.

Claim: If Stab(Y) = {0}, then Y is a point.

We assume that dimY > 0. Then, replacing K by a finite extension of
K, we can find an infinite subset S of Y/(K ) with the following properties:

(1) S is small with respect to gsy.
(2) S is Zariski dense in Y.
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(3) (S, K) is minimized.
Then, there is an abelian subvariety C' of Az with D, (S, K) = C™! for
alln > 2. If dimC = 0, then S C A(K). Thus, by the special case of
Mordell-Lang conjecture, Y is a translation of an abelian subvariety B of
Ag. Then, Stab(Y) = B. Thus, dim B = 0, which implies dimY = 0, so
that we have a contradiction.

Next we assume that dimC > 0. Let us fix a positive integer n with
n > 2dim(A). Let # : A — A/C be the natural homomorphism and
T = n(Y). Let Y be the fiber product over T in Y™. Then, we have a
morphism f, : Y2 — A™! given by

Bn(T1y ..., 2Tn) = (T2 — T1, - - -, Tn — T1).

Since Ok(s)™ C X%, let Y be the Zariski closure of |J,cg Ok(s)". Then,
Bn(Y) 2 C™~1. Thus, we get

dim(X%) > dim(C™™?).
On the other hand, since Stab(Y") = {0},
dim(X/T) < dim(C) — 1.

Thus,
dim(X?) — dim(C™!) = (ndim(X/T) + dim(T))
—(n —1)dim(C)
< dim(C) + dim(T) — n
< 2dim(A) -n < 0.
This is a contradiction.
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