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On a distribution property of the residual order of
a(mod p), III

Leo Murata* and Koji Chinen'

ME BE (FREEAY  REEE)
A BF (KRTEXSE T2

1 Introduction

Let N be the set of all natural numbers, P the set of all prime numbers. And p
always denotes a prime number, 7(z) the number of primes not exeeding z.

For a fixed natural number a > 2, we can define two functions, I, and D,, from
P to N:

IL: p — IL(p)=|(Z/pZ)* :(a (mod p))|
(the residual index of @ (mod p)),
Dy: p +— Du(p) =4 (mod p))
(the residual order of a (mod p) in (Z/pZ)*),
where (Z/pZ)* denotes the set of all invertible residue classes modulo p, and | : |

the index of the subset.
We have a simple relation

I.(p) Da(p) =p -1,
but both of these functions fluctuate quite irregularly. More than 200 years ago, C.

F. Gauss calculated these numbers and he already noticed that

(a) The movement of I1¢ is much more modest than Dy,
(b) Iio(p) = 1 happens rather frequently.
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So he studied only about the distribution property of I,(p) and conjectured that

Hp € P : Iio(p) = 1} = oo,

which is now a part of so-called Artin’s conjecture for primitive root.
Let us define the set, for a natural number n,

Ny(z;n) = {p < 2 ; L(p) =n},
then we already knows that

Theorem A ([5],[6]) We assume the Generalized Riemann Hypothesis(GRH).
Then

tu(ain) = €2 nlo) + 0 (ZE7EL)
log®z

where C7 13 a computable constant depends only on a and n.
and

Corollary 1 We assume GRH. When a is square-free and a # 1 (mod 4), the
map I, is surjective from P to N.

And on the map D,, we have
Theorem B The map D, is almost surjective from P to N.

Where “almost surjective” means “except for only finite members of n’s”.
But we notice a big difference between these two surjectivities. For any n € N,

the set
D;'({n}) = {p € P; D,(p) =n}
contains only a finite number of elements. In fact, if D,(p) = n, then
n+l1<p<La™
On the contrary, Theorem A shows that (under GRH),
ID'{n)) = {peP; L(p) =n} ~ C™ times of P.

So, the map I,(p) covers N very thickly, while the map D,(p) covers N very thinly.

Here we want to study distribution properties of D,(p). Then taking into account
of the above facts, we think we should take a subset S of N which contains infinitely
many elements, and consider the inverse image

D;Y(S)={p<z; Di(p) € S}.

In this note, in Section 2 we take S = {a residue class in N} (joint work of K.
Chinen and L. Murata), and in Section 3 we take S = P (joint work of C. Pomerance
and L. Murata).
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2 The case S = a residue class in N

This part is a sequel of our previous works [ 1], 2]. See also [ 3 ],[ 7 ].

2.1 A residue class mod 4

Let us take S as a residue class mod 4. Namely we define, for [ = 0,1, 2, 3,
Qa(z:4,) = {p<z; D(p)=! (mod 4)}.

Then, in our previous paper, we proved

Theorem 1 ([ 7]) We assume a € N is not a perfect h-th power with h > 2, and
put
— 2 .
a=aa;, a): square free.

When a; = 2 (mod 4), we define a} by
a1 = 2a}.
We assume GRH. And we define an absolute constant C by

2p

o= I (-gwi5=n):

=3 (mod 4)

Then, for l = 1,3, we have an asymptotic formula

x
et = 8 7(0) +0 ()

and the leading coefficients (=the natural density) & (I = 1,3) are given by
the following way:

() Ifay = 1,3 (mod 4), then 6, = d = %

(IT) When a; =2 (mod 4),

(i) If a} = 1, i.e. a =2 (a square number), then

7T C 7T C

hcmTy 2Tty
(i) If o} =1 (mod 4) with o} > 1, then

1
(ii-1) if a} has a prime divisor q with ¢ =1 (mod 4), then §; = 63 = &



(ii-2) if all prime divisors q of a! satisfy ¢ = 3 (mod 4), then

_ 1_9_ -2p
E: SH(pS—pz—p—l)’

plaj

1. C ~2p
% = 5+3H(p3—p2-p-1>'

pla}

(iil) If @} =3 (mod 4), then

(iii-1) if o} has a prime divisor ¢ with ¢ =1 (mod 4), then §; = 83 = &

(iii-2) if all prime divisors q of a) satisfy ¢ =3 (mod 4), then

1. C —2p
"= _+8H(p3—p2—p—‘l)’

/
1

6
5 = 551 (mmpm)

plo}

This theorem shows that, roughly speaking, usually we have rather beautiful

distribution

$Qa(z;4,0) ~ ; m(z) «<——— unconditional

; 7
/ 4Qa(z:4,1) ~ & m(z) - S

'

‘::‘ §Qa(z;4,2) ~ 3 7(z) ;?\\

N,

7(z)

\ $Qa(2;4,3) ~ & m(z) < we need GRH

And we notice that when (a;,4) > 1 the distribution turns into a little irregular
one. Anyway it seems an interesting phenomenon, in II-(ii) and II-(iii), the densities
01 and 43 are controled by whether a} has a prime factor ¢ with ¢ = 1 (mod 4) or

not.
For numerical examples, see Section 4, Table 4.1 - Table 4.3.
Then, what happens for another modulus?

2.2 A residue class mod 5

We can not find a good probabilistic model for this problem so far, i.e. we do not

know why the natural density of Qa(z;4,1) should be equal to § ?

But here we remark that this problem has a relation to the structure of the

additive group Z/4Z.

1
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Z/4Z = {0,1,2,3} +— Q.(z;4,2/4Z) ~ 7(x)
’ﬁ}

U
{0 —> $Qa(;4,002) ~ 2r(z)
U
{0} —  Qa(z;4,0) ~ 37(z)

And in order to separate 1 and 3, we need GRH.

expect that we can get an asymptotic formula for #Q,(z; 5,0) and we need GRH to
get an asymtpotic formula for §Q,(z; 4, ) for j = 1,2,3,4. And it is true.

Here we show our result only some simple cases. Namely we assume a € N is
not a perfect h-th power with A > 2, and put

a=aa?, a;: square free,

as above, and further assume 5 { a; — as we remarked already, when 5|a;, we have
rather irregular densities.

Theorem 2 Let G be the multiplicative group of all characters modulo 5. We
define, for x € G, the numbers By and Cy by

ﬂ — 1, X € G2’
X7 1 -1, otherwise,

and

PP -p+x
%= = e

(1) If = 0, then we have an asymptotic formula unconditionally

5 T
#Qa(235,0) = 57 () + O (m) '

(II) When j # 0, we assume GRH. Then we have

) X
ﬂQa(w;5,J) = 6j W(z) +0 (logzloglogz) ’

and the leading coefficient is given by
(II-1) If a; = 1 (mod 4), then

o5 1 . p (x(p) - 1)
5j=_§_EZﬂx x(4) Cx(1+ I1 pa_pﬂ—p+x(p))'

X€EG P|2a1
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(I1I-2) If a; =2 (mod 4), then

51 . x(?) p (x(p) = 1)
6‘7‘—56—‘—1—6—;[3)( x(7) Cx(l Hp3 p2—p+X(P))

pl2a;

(I1-3) If a1 = 3 (mod 4), then

x(2) p (x(p) - 1)
;= GZBX X(])C (1+ HP3 pz—-p-i—x(p))'

r|2a1

We can prove this theorem by the similar method which we used in [ 7 ], but in
order to separate four classes — 1,2,3,4 — we need Dirichlet characters and very
complicated calculations.

We can extend this result to much more general moduli, such as ¢" with a prime

g (see [4]).

For x ¢ G?, the number C, is not a real number. The most interesting feature
of this result may be the fact that a combination of these complex numbers gives
the real density of §Q.(z; 5, 5).

For numerical examples, see Section 4, Table 4.4 - Table 4.6.

3 The case S =

Here we take a = 2, and consider the set
M(z) = {p < = ; L(p) is prime}.
On the cardinality of this set, Pomerance | 9 | proved

Theorem C We have unconditionaly

log loglog =

#M(z) < m(x) loglog x

’

and under GRH,

IM(2) < 7(z )1‘15—"15—”.

We can improve the latter estimate as follows :

Theorem 3 ([ 8]) We assume GRH. Then we have

M (z) < ﬂx)ﬁ;—x'



Here we remark that, this estimate seems to be best possible. In fact, let us
consider the set

Lz)={p<=z; p;— 1 is also prime, p = 7 (mod8)}.

Then, it is easy to see that L(z) C M(z), and it is (not yet proved but) conjectured
that
1

() ~ O m(z) o

with a strictly positive constant C, which gives a lower bound of M (z).
For the proof, see [ 8 ].

4 Some numerical examples

Here we show some numerical examples to compare our theoretical results with
experimental results.

In the Tables 4.1 - 4.3, we compare the theoretical densities and the experimental
densities 7(z) ' 4Q,(z; 4, 7) for z = 103,104, 108, 105, 10.

Table 4.1. The densities of Q5(z;4,1)

: . . . 1111
Theoretical densities are typical (5, T 6)

10°
10%
10°
108
107

0.319277
0.327628
0.334619
0.333227
0.333320

0.156627
0.167074
0.167049
0.167155
0.166771

0.349398
0.340668
0.333055
0.332934
0.333099

0.174699
0.164629
0.165276
0.166684
0.166810

Table 4.2. The densities of Qs0(z;4,1)

. i 5 7 C 7 7 C
Theoretical densities are (—— — — & 0.06538, 51’ 18 + 3

— ~ 0.22629 ).
12’ 48 8 0 )

T

=0

=1

=2

=3

10°
10¢
10°
108
107

0.415663
0.409943
0.416684
0.416569
0.416719

0.036145
0.068460
0.065172
0.065889
0.065351

10.295181
0.290139
0.292284
0.291633

0.291584

0.253012
0.231459
0.225860

0.225910 |

0.226345
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Table 4.3. The densities of Qg(z;4,!)

1_3C oasome, 1, 143 0.20115).

Theoretical densities are (— 56 3' 6 T8

3’6

T

I=0

=1

=2

=3

108
104
105
108
107

0.331325
0.334963
0.333785
0.333151
0.333331

0.126506
0.133659
0.133577
0.132249
0.132179

0.325301
0.333333
0.332847
0.333507
0.333019

0.216867
0.198044
0.199791
0.201093
0.201471

Here are some examples where the modulus is 5. In the following tables, the

second row shows the theoretical density.

Table 4.4. The densities of Q2 (z;5,1)

lz || I=0

=1 |

[=2

l=3

=4

0.208333

0.235494

0.176925

0.233715

0.145532 |

10°
104
10°
108
107

0.193939
0.209625
0.210554
0.208179
0.208218

0.266667
0.242251
0.242048
0.236091
0.236068

0.163636
0.166395
0.174054
0.176457
0.176878

0.260606
0.235726
0.230160
0.233251
0.233708

0.120482
0.145069
0.147862
0.143472
0.144110

Table 4.5. The densities of Qg(z;5,!)

| z

[=0

I=1

=2

=3

l=4

0.208333

0.233302

0.179043

0.234686

0.144636

10°
104
108
108
107

0.204819
0.215974
0.208133
0.208571
0.208645

0.289157
0.246944
0.231283
0.232840
0.233330

0.192771
0.175224
0.181335
0.179219
0.179161

0.198795
0.231459
0.231178
0.235362
0.234770

0.114458
0.130399
0.148071
0.144007
0.144093

Table 4.6. The densities of Q3(z;5,!)

E

[=0

=1

[=2

[=3

l=4

0.208333

0.238076

0.169818

0.235252

0.148521

10°
10*
10°
108
107

0.210843
0.211084
0.208238
0.208125
0.208340

0.210843
0.238794
0.241397
0.238687
0.238100

0.186747
0.160554
0.164964
0.169448
0.169499

0.259036
0.234719
0.235036
0.234725
0.235312

0.132530
0.154849
0.150365
0.149014
0.148749
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