<table>
<thead>
<tr>
<th>Title</th>
<th>On a distribution property of the residual order of a (mod p) (III) (Diophantine Problems and Analytic Number Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murata, Leo; Chinen, Koji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1319: 139-147</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43059</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On a distribution property of the residual order of $a(mod\ p)$, III

Leo Murata* and Koji Chinen†

村田 玲音 (明治学院大学 経済学部)
知念 宏司 (大阪工業大学 工学部)

1 Introduction

Let \mathbb{N} be the set of all natural numbers, \mathbb{P} the set of all prime numbers. And p always denotes a prime number, $\pi(x)$ the number of primes not exceeding x.

For a fixed natural number $a \geq 2$, we can define two functions, I_a and D_a, from \mathbb{P} to \mathbb{N}:

$\begin{align*}
I_a : p &\mapsto I_a(p) = |(\mathbb{Z}/p\mathbb{Z})^\times : a \ (mod\ p)| \\
&\quad (the\ residual\ index\ of\ a \ (mod\ p)), \\
D_a : p &\mapsto D_a(p) = \#(a \ (mod\ p)) \\
&\quad (the\ residual\ order\ of\ a \ (mod\ p)\ in\ (\mathbb{Z}/p\mathbb{Z})^\times),
\end{align*}$

where $(\mathbb{Z}/p\mathbb{Z})^\times$ denotes the set of all invertible residue classes modulo p, and $| : |$ the index of the subset.

We have a simple relation

$I_a(p) \cdot D_a(p) = p - 1,$

but both of these functions fluctuate quite irregularly. More than 200 years ago, C. F. Gauss calculated these numbers and he already noticed that

(a) The movement of I_{10} is much more modest than $D_{10},$
(b) $I_{10}(p) = 1$ happens rather frequently.

*Department of Mathematics, Faculty of Economics, Meiji Gakuin University, 1-2-37 Shirokanedai, Minato-ku, Tokyo 108-8636, Japan. E-mail: leo@eco.meijigakuin.ac.jp
†Department of Mathematics, Faculty of Engineering, Osaka Institute of Technology. Omiya, Asahi-ku, Osaka 535-8585, Japan. E-mail: YHK033028@nifty.ne.jp
So he studied only about the distribution property of \(I_a(p) \) and conjectured that
\[
\#\{p \in \mathbb{P} : I_{10}(p) = 1\} = \infty,
\]
which is now a part of so-called Artin's conjecture for primitive root.

Let us define the set, for a natural number \(n \),
\[
N_a(x; n) = \{p \leq x ; I_a(p) = n\},
\]
then we already knows that

Theorem A ([5],[6]) *We assume the Generalized Riemann Hypothesis (GRH).*

Then
\[
\#N_a(x; n) = C_a^n \pi(x) + O\left(\frac{x \log \log x}{\log^2 x}\right),
\]
where \(C_a^n \) is a computable constant depends only on \(a \) and \(n \).

and

Corollary 1 *We assume GRH. When \(a \) is square-free and \(a \not\equiv 1 \pmod{4} \), the map \(I_a \) is surjective from \(\mathbb{P} \) to \(\mathbb{N} \).*

And on the map \(D_a \), we have

Theorem B *The map \(D_a \) is almost surjective from \(\mathbb{P} \) to \(\mathbb{N} \).*

Where "almost surjective" means "except for only finite members of \(n \)'s".

But we notice a big difference between these two surjectivities. For any \(n \in \mathbb{N} \), the set
\[
D_a^{-1}(\{n\}) = \{p \in \mathbb{P} ; D_a(p) = n\}
\]
contains only a finite number of elements. In fact, if \(D_a(p) = n \), then
\[
n + 1 \leq p \leq a^n.
\]

On the contrary, Theorem A shows that (under GRH),
\[
I_a^{-1}(\{n\}) = \{p \in \mathbb{P} ; I_a(p) = n\} \sim C_a^{(n)} \text{ times of } \mathbb{P}.
\]

So, the map \(I_a(p) \) covers \(\mathbb{N} \) very **thickly**, while the map \(D_a(p) \) covers \(\mathbb{N} \) very **thinly**.

Here we want to study distribution properties of \(D_a(p) \). Then taking into account of the above facts, we think we should take a subset \(S \) of \(\mathbb{N} \) which contains **infinitely** many elements, and consider the inverse image
\[
D_a^{-1}(S) = \{p \leq x ; D_a(p) \in S\}.
\]

In this note, in Section 2 we take \(S = \{\text{a residue class in } \mathbb{N}\} \) (joint work of K. Chinen and L. Murata), and in Section 3 we take \(S = \mathbb{P} \) (joint work of C. Pomerance and L. Murata).
2 The case $S = a$ residue class in N

This part is a sequel of our previous works [1],[2]. See also [3],[7].

2.1 A residue class mod 4

Let us take S as a residue class mod 4. Namely we define, for $l = 0, 1, 2, 3,$

$$Q_{a}(x; 4, l) = \{p \leq x ; D_{a}(p) \equiv l \pmod{4} \}.$$

Then, in our previous paper, we proved

Theorem 1 ([7]) We assume $a \in N$ is not a perfect h-th power with $h \geq 2,$ and put

$$a = a_{1}a_{2}^{2}, \quad a_{1} : \text{square free.}$$

When $a_{1} \equiv 2 \pmod{4},$ we define a_{1}' by

$$a_{1} = 2a_{1}'.$$

We assume GRH. And we define an absolute constant C by

$$C = \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{2p}{(p^{2} + 1)(p - 1)}\right).$$

Then, for $l = 1, 3,$ we have an asymptotic formula

$$\#Q_{a}(x; 4, l) = \delta_{l} \pi(x) + O\left(\frac{x}{\log x \log \log x}\right),$$

and the leading coefficients (=the natural density) δ_{l} ($l = 1, 3$) are given by the following way:

(I) If $a_{1} \equiv 1, 3 \pmod{4},$ then $\delta_{1} = \delta_{3} = \frac{1}{6}.$

(II) When $a_{1} \equiv 2 \pmod{4},$

(i) If $a_{1}' = 1,$ i.e. $a = 2 \cdot (a \text{ square number}),$ then

$$\delta_{1} = \frac{7}{48} - \frac{C}{8}, \quad \delta_{3} = \frac{7}{48} + \frac{C}{8}.$$

(ii) If $a_{1}' \equiv 1 \pmod{4}$ with $a_{1}' > 1,$ then

(ii-1) if a_{1}' has a prime divisor q with $q \equiv 1 \pmod{4},$ then $\delta_{1} = \delta_{3} = \frac{1}{6}.$
(ii-2) If all prime divisors q of a'_1 satisfy $q \equiv 3 \pmod{4}$, then
\[
\delta_1 = \frac{1}{6} - \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right),
\]
\[
\delta_3 = \frac{1}{6} + \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right).
\]

(iii) If $a'_1 \equiv 3 \pmod{4}$, then

(iii-1) If a'_1 has a prime divisor q with $q \equiv 1 \pmod{4}$, then $\delta_1 = \delta_3 = \frac{1}{6}$.

(iii-2) If all prime divisors q of a'_1 satisfy $q \equiv 3 \pmod{4}$, then
\[
\delta_1 = \frac{1}{6} + \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right),
\]
\[
\delta_3 = \frac{1}{6} - \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right).
\]

This theorem shows that, roughly speaking, usually we have rather beautiful distribution
\[
\#Q_a(x; 4, 0) \sim \frac{1}{3} \pi(x) \quad \text{unconditional}
\]
\[
\#Q_a(x; 4, 1) \sim \frac{1}{6} \pi(x)
\]
\[
\#Q_a(x; 4, 2) \sim \frac{1}{3} \pi(x)
\]
\[
\#Q_a(x; 4, 3) \sim \frac{1}{6} \pi(x) \quad \text{we need GRH}
\]

And we notice that when $(a_1, 4) > 1$ the distribution turns into a little irregular one. Anyway it seems an interesting phenomenon, in II-(ii) and II-(iii), the densities δ_1 and δ_3 are controled by whether a'_1 has a prime factor q with $q \equiv 1 \pmod{4}$ or not.

For numerical examples, see Section 4, Table 4.1 - Table 4.3.

Then, what happens for another modulus?

2.2 A residue class mod 5

We can not find a good probabilistic model for this problem so far, i.e. we do not know why the natural density of $Q_a(x; 4, 1)$ should be equal to $\frac{1}{6}$?

But here we remark that this problem has a relation to the structure of the additive group $\mathbb{Z}/4\mathbb{Z}$.
\[\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\} \cup \{\overline{0}, \overline{2}\} \cup \{\overline{0}\} \]
\[\# Q_a(x; 4, \mathbb{Z}/4\mathbb{Z}) \sim \pi(x) \]
\[\# Q_a(x; 4, \overline{0} \cup \overline{2}) \sim \frac{2}{3} \pi(x) \]
\[\# Q_a(x; 4, \overline{0}) \sim \frac{1}{3} \pi(x) \]

And in order to separate \(\overline{1} \) and \(\overline{3} \), we need GRH.

Then, since \(\mathbb{Z}/5\mathbb{Z} = \{0, 1, 2, 3, 4\} \) has only one additive subgroup \(\{0\} \), we can expect that we can get an asymptotic formula for \(\# Q_a(x; 5, 0) \) and we need GRH to get an asymptotic formula for \(\# Q_a(x; 4, j) \) for \(j = 1, 2, 3, 4 \). And it is true.

Here we show our result only some simple cases. Namely we assume \(a \in \mathbb{N} \) is not a perfect \(h \)-th power with \(h \geq 2 \), and put
\[a = a_1 a_2^2, \quad a_1 : \text{square free}, \]
as above, and further assume \(5 \nmid a_1 \) — as we remarked already, when \(5|a_1 \), we have rather irregular densities.

Theorem 2 Let \(G \) be the multiplicative group of all characters modulo 5. We define, for \(\chi \in G \), the numbers \(\beta_\chi \) and \(C_\chi \) by

\[\beta_\chi = \begin{cases} 1, & \chi \in G^2, \\ -1, & \text{otherwise}, \end{cases} \]

and
\[C_\chi = \prod_{p \neq 5} \frac{p^3 - p^2 - p + \chi(p)}{(p - 1)(p^2 - \chi(p))}. \]

(1) If \(j = 0 \), then we have an asymptotic formula unconditionally
\[\# Q_a(x; 5, 0) = \frac{5}{24} \pi(x) + O\left(\frac{x}{\log x \log \log x}\right). \]

(II) When \(j \neq 0 \), we assume GRH. Then we have
\[\# Q_a(x; 5, j) = \delta_j \pi(x) + O\left(\frac{x}{\log x \log \log x}\right), \]
and the leading coefficient is given by
(II-1) If \(a_1 \equiv 1 \pmod{4} \), then
\[\delta_j = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_\chi \chi(j) \cdot C_\chi \left(1 + \prod_{p\nmid 2a_1} \frac{p (\chi(p) - 1)}{p^3 - p^2 - p + \chi(p)}\right). \]
(II-2) If $a_1 \equiv 2 \pmod{4}$, then

$$\delta_j = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_{\chi} \chi(j) C_{\chi} \left(1 + \frac{\chi(2)^2}{16} \prod_{p|2a_1} \frac{p \left(\chi(p) - 1 \right)}{p^3 - p^2 - p + \chi(p)} \right).$$

(II-3) If $a_1 \equiv 3 \pmod{4}$, then

$$\delta_j = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_{\chi} \chi(j) C_{\chi} \left(1 + \frac{\chi(2)}{4} \prod_{p|2a_1} \frac{p \left(\chi(p) - 1 \right)}{p^3 - p^2 - p + \chi(p)} \right).$$

We can prove this theorem by the similar method which we used in [7], but in order to separate four classes — 1, 2, 3, 4 — we need Dirichlet characters and very complicated calculations.

We can extend this result to much more general moduli, such as q^r with a prime q (see [4]).

For $\chi \notin G^2$, the number C_{χ} is not a real number. The most interesting feature of this result may be the fact that a combination of these complex numbers gives the real density of $\#Q_a(x; 5, j)$.

For numerical examples, see Section 4, Table 4.4 - Table 4.6.

3 The case $S = P$

Here we take $a = 2$, and consider the set

$$M(x) = \{ p \leq x \ ; \ I_2(p) \text{ is prime} \}.$$

On the cardinality of this set, Pomerance [9] proved

Theorem C We have unconditionally

$$\#M(x) \ll \pi(x) \frac{\log \log \log x}{\log \log x},$$

and under GRH,

$$\#M(x) \ll \pi(x) \frac{\log \log x}{\log x}.$$

We can improve the latter estimate as follows:

Theorem 3 ([8]) We assume GRH. Then we have

$$\#M(x) \ll \pi(x) \frac{1}{\log x}.$$
Here we remark that, this estimate seems to be best possible. In fact, let us consider the set
\[
L(x) = \{ p \leq x ; \frac{p-1}{2} \text{ is also prime, } p \equiv 7 \pmod{8} \}.
\]
Then, it is easy to see that \(L(x) \subset M(x) \), and it is (not yet proved but) conjectured that
\[
\# L(x) \sim C \pi(x) \frac{1}{\log x}
\]
with a strictly positive constant \(C \), which gives a lower bound of \(\# M(x) \).
For the proof, see [8].

4 Some numerical examples

Here we show some numerical examples to compare our theoretical results with experimental results.

In the Tables 4.1 - 4.3, we compare the theoretical densities and the experimental densities \(\pi(x)^{-1} \# Q_a(x;4,j) \) for \(x = 10^3, 10^4, 10^5, 10^6, 10^7 \).

Table 4.1. The densities of \(Q_5(x;4,l) \)
Theoretical densities are typical \(\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{3}, \frac{1}{6}, \right) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.319277</td>
<td>0.156627</td>
<td>0.349398</td>
<td>0.174699</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.327628</td>
<td>0.167074</td>
<td>0.340668</td>
<td>0.164629</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.334619</td>
<td>0.167049</td>
<td>0.333055</td>
<td>0.165276</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.333227</td>
<td>0.167155</td>
<td>0.332934</td>
<td>0.166684</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.333320</td>
<td>0.166771</td>
<td>0.333099</td>
<td>0.166810</td>
</tr>
</tbody>
</table>

Table 4.2. The densities of \(Q_{50}(x;4,l) \)
Theoretical densities are \(\left(\frac{5}{12}, \frac{7}{48} - \frac{C}{8} \approx 0.06538, \frac{7}{24}, \frac{7}{48} + \frac{C}{8} \approx 0.22629 \right) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.415663</td>
<td>0.0365145</td>
<td>0.295181</td>
<td>0.253012</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.409943</td>
<td>0.068460</td>
<td>0.290139</td>
<td>0.231459</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.416684</td>
<td>0.065172</td>
<td>0.292284</td>
<td>0.225860</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.416569</td>
<td>0.065889</td>
<td>0.291633</td>
<td>0.225910</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.416719</td>
<td>0.065351</td>
<td>0.291584</td>
<td>0.226345</td>
</tr>
</tbody>
</table>
Table 4.3. The densities of $Q_6(x; 4, l)$

Theoretical densities are \(\left(\frac{1}{3}, \frac{1}{6} - \frac{3C}{56} \approx 0.13219, \frac{1}{3}, \frac{1}{6} + \frac{3C}{56} \approx 0.20115 \right) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.331325</td>
<td>0.126506</td>
<td>0.325301</td>
<td>0.216867</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.334963</td>
<td>0.133659</td>
<td>0.333333</td>
<td>0.198044</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.333785</td>
<td>0.133577</td>
<td>0.332847</td>
<td>0.199791</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.333151</td>
<td>0.132249</td>
<td>0.333507</td>
<td>0.201093</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.333331</td>
<td>0.132179</td>
<td>0.333019</td>
<td>0.201471</td>
</tr>
</tbody>
</table>

Here are some examples where the modulus is 5. In the following tables, the second row shows the theoretical density.

Table 4.4. The densities of $Q_{21}(x; 5, l)$

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
<th>(l = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.208333</td>
<td>0.235494</td>
<td>0.176925</td>
<td>0.233715</td>
<td>0.145532</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.193939</td>
<td>0.266667</td>
<td>0.163636</td>
<td>0.260606</td>
<td>0.120482</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.209625</td>
<td>0.242251</td>
<td>0.166395</td>
<td>0.235726</td>
<td>0.145069</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.210554</td>
<td>0.242048</td>
<td>0.174054</td>
<td>0.230160</td>
<td>0.147862</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.208179</td>
<td>0.236091</td>
<td>0.176457</td>
<td>0.233251</td>
<td>0.143472</td>
</tr>
<tr>
<td></td>
<td>0.208218</td>
<td>0.236068</td>
<td>0.176878</td>
<td>0.233708</td>
<td>0.144110</td>
</tr>
</tbody>
</table>

Table 4.5. The densities of $Q_6(x; 5, l)$

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
<th>(l = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.208333</td>
<td>0.233302</td>
<td>0.179043</td>
<td>0.234686</td>
<td>0.144636</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.204819</td>
<td>0.289157</td>
<td>0.192771</td>
<td>0.198795</td>
<td>0.114458</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.215974</td>
<td>0.246944</td>
<td>0.175224</td>
<td>0.231459</td>
<td>0.130399</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.208133</td>
<td>0.231283</td>
<td>0.181335</td>
<td>0.231178</td>
<td>0.148071</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.208571</td>
<td>0.232840</td>
<td>0.179219</td>
<td>0.235362</td>
<td>0.144007</td>
</tr>
<tr>
<td></td>
<td>0.208645</td>
<td>0.233330</td>
<td>0.179161</td>
<td>0.234770</td>
<td>0.144093</td>
</tr>
</tbody>
</table>

Table 4.6. The densities of $Q_3(x; 5, l)$

<table>
<thead>
<tr>
<th>(x)</th>
<th>(l = 0)</th>
<th>(l = 1)</th>
<th>(l = 2)</th>
<th>(l = 3)</th>
<th>(l = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>0.208333</td>
<td>0.238076</td>
<td>0.169818</td>
<td>0.235252</td>
<td>0.148521</td>
</tr>
<tr>
<td>(10^4)</td>
<td>0.210843</td>
<td>0.210843</td>
<td>0.186747</td>
<td>0.259036</td>
<td>0.132530</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0.211084</td>
<td>0.238794</td>
<td>0.160554</td>
<td>0.234719</td>
<td>0.154849</td>
</tr>
<tr>
<td>(10^6)</td>
<td>0.208238</td>
<td>0.241397</td>
<td>0.164964</td>
<td>0.235036</td>
<td>0.150365</td>
</tr>
<tr>
<td>(10^7)</td>
<td>0.208125</td>
<td>0.238687</td>
<td>0.169448</td>
<td>0.234725</td>
<td>0.149014</td>
</tr>
<tr>
<td></td>
<td>0.208340</td>
<td>0.238100</td>
<td>0.169499</td>
<td>0.235312</td>
<td>0.148749</td>
</tr>
</tbody>
</table>
References

