On a distribution property of the residual order of $a \pmod{p}$, III

Leo Murata* and Koji Chinen[†]

村田 玲音 (明治学院大学 経済学部) 知念 宏司 (大阪工業大学 工学部)

1 Introduction

Let N be the set of all natural numbers, P the set of all prime numbers. And p always denotes a prime number, $\pi(x)$ the number of primes not exceeding x.

For a fixed natural number $a \geq 2$, we can define two functions, I_a and D_a , from **P** to **N**:

$$I_a: p \mapsto I_a(p) = |(\mathbf{Z}/p\mathbf{Z})^{\times} : \langle a \pmod{p} \rangle|$$

$$(\text{the residual index of } a \pmod{p}),$$
 $D_a: p \mapsto D_a(p) = \sharp \langle a \pmod{p} \rangle$

$$(\text{the residual order of } a \pmod{p} \text{ in } (\mathbf{Z}/p\mathbf{Z})^{\times}),$$

where $(\mathbf{Z}/p\mathbf{Z})^{\times}$ denotes the set of all invertible residue classes modulo p, and | : | the index of the subset.

We have a simple relation

$$I_a(p) \ D_a(p) = p - 1,$$

but both of these functions fluctuate quite irregularly. More than 200 years ago, C. F. Gauss calculated these numbers and he already noticed that

- (a) The movement of I_{10} is much more modest than D_{10} ,
- (b) $I_{10}(p) = 1$ happens rather frequently.

^{*}Department of Mathematics, Faculty of Economics, Meiji Gakuin University, 1-2-37 Shirokanedai, Minato-ku, Tokyo 108-8636, Japan. E-mail: leo@eco.meijigakuin.ac.jp

[†]Department of Mathematics, Faculty of Engineering, Osaka Institute of Technology. Omiya, Asahi-ku, Osaka 535-8585, Japan. E-mail: YHK03302@nifty.ne.jp

So he studied only about the distribution property of $I_a(p)$ and conjectured that

$$\sharp \{p \in \mathbf{P} : I_{10}(p) = 1\} = \infty,$$

which is now a part of so-called Artin's conjecture for primitive root.

Let us define the set, for a natural number n,

$$N_a(x;n) = \{ p \le x \; ; \; I_a(p) = n \},$$

then we already knows that

Theorem A ([5],[6]) We assume the Generalized Riemann Hypothesis(GRH).

Then

$$\sharp N_a(x;n) = C_a^n \ \pi(x) + O\left(\frac{x \log \log x}{\log^2 x}\right),$$

where C_a^n is a computable constant depends only on a and n.

and

Corollary 1 We assume GRH. When a is square-free and $a \not\equiv 1 \pmod{4}$, the map I_a is surjective from P to N.

And on the map D_a , we have

Theorem B The map D_a is almost surjective from P to N.

Where "almost surjective" means "except for only finite members of n's".

But we notice a big difference between these two surjectivities. For any $n \in \mathbb{N}$, the set

$$D_a^{-1}(\{n\}) = \{ p \in \mathbf{P} \; ; \; D_a(p) = n \}$$

contains only a finite number of elements. In fact, if $D_a(p) = n$, then

$$n+1 \leq p \leq a^n$$

On the contrary, Theorem A shows that (under GRH),

$$I_a^{-1}(\{n\}) = \left\{ p \in \mathbf{P} \; ; \; I_a(p) = n \right\} \sim C_a^{(n)} \; \mathrm{times \; of \; } \mathbf{P}.$$

So, the map $I_a(p)$ covers N very thickly, while the map $D_a(p)$ covers N very thinly. Here we want to study distribution properties of $D_a(p)$. Then taking into account of the above facts, we think we should take a subset S of N which contains infinitely many elements, and consider the inverse image

$$D_a^{-1}(S) = \{ p \le x ; D_a(p) \in S \}.$$

In this note, in Section 2 we take $S = \{a \text{ residue class in } N\}$ (joint work of K. Chinen and L. Murata), and in Section 3 we take S = P (joint work of C. Pomerance and L. Murata).

2 The case S = a residue class in N

This part is a sequel of our previous works [1], [2]. See also [3], [7].

2.1 A residue class mod 4

Let us take S as a residue class mod 4. Namely we define, for l = 0, 1, 2, 3,

$$Q_a(x;4,l) = \big\{ p \le x \; ; \; D_a(p) \equiv l \pmod{4} \big\}.$$

Then, in our previous paper, we proved

Theorem 1 ([7]) We assume $a \in \mathbb{N}$ is not a perfect h-th power with $h \geq 2$, and put

$$a = a_1 a_2^2$$
, a_1 : square free.

When $a_1 \equiv 2 \pmod{4}$, we define a'_1 by

$$a_1=2a_1'.$$

We assume GRH. And we define an absolute constant C by

$$C = \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{2p}{(p^2 + 1)(p - 1)} \right).$$

Then, for l = 1, 3, we have an asymptotic formula

$$\sharp Q_a(x;4,l) = \delta_l \ \pi(x) + O\left(\frac{x}{\log x \log \log x}\right),$$

and the leading coefficients (=the natural density) δ_l (l=1,3) are given by the following way:

- (I) If $a_1 \equiv 1, 3 \pmod{4}$, then $\delta_1 = \delta_3 = \frac{1}{6}$.
- (II) When $a_1 \equiv 2 \pmod{4}$,
- (i) If $a'_1 = 1$, i.e. $a = 2 \cdot (a \text{ square number})$, then

$$\delta_1 = \frac{7}{48} - \frac{C}{8}, \quad \delta_3 = \frac{7}{48} + \frac{C}{8}.$$

- (ii) If $a'_1 \equiv 1 \pmod{4}$ with $a'_1 > 1$, then
- (ii-1) if a_1' has a prime divisor q with $q \equiv 1 \pmod{4}$, then $\delta_1 = \delta_3 = \frac{1}{6}$,

(ii-2) if all prime divisors q of a'_1 satisfy $q \equiv 3 \pmod{4}$, then

$$\delta_1 = \frac{1}{6} - \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right),$$

$$\delta_3 = \frac{1}{6} + \frac{C}{8} \prod_{p|a'_1} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right).$$

(iii) If $a_1' \equiv 3 \pmod{4}$, then

(iii-1) if a_1' has a prime divisor q with $q \equiv 1 \pmod{4}$, then $\delta_1 = \delta_3 = \frac{1}{6}$,

(iii-2) if all prime divisors q of a'_1 satisfy $q \equiv 3 \pmod{4}$, then

$$\begin{split} \delta_1 &= \frac{1}{6} + \frac{C}{8} \prod_{p|a_1'} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right), \\ \delta_3 &= \frac{1}{6} - \frac{C}{8} \prod_{p|a_1'} \left(\frac{-2p}{p^3 - p^2 - p - 1} \right). \end{split}$$

This theorem shows that, roughly speaking, usually we have rather beautiful distribution

$$\#Q_a(x;4,0) \sim \frac{1}{3} \pi(x) \leftarrow \text{unconditional}$$

$$\#Q_a(x;4,1) \sim \frac{1}{6} \pi(x)$$

$$\#Q_a(x;4,2) \sim \frac{1}{3} \pi(x)$$

$$\#Q_a(x;4,3) \sim \frac{1}{6} \pi(x) \leftarrow \text{we need GRH}$$

And we notice that when $(a_1,4) > 1$ the distribution turns into a little *irregular* one. Anyway it seems an interesting phenomenon, in II-(ii) and II-(iii), the densities δ_1 and δ_3 are controlled by whether a_1' has a prime factor q with $q \equiv 1 \pmod{4}$ or not.

For numerical examples, see Section 4, Table 4.1 - Table 4.3.

Then, what happens for another modulus?

2.2 A residue class mod 5

We can not find a good probabilistic model for this problem so far, i.e. we do not know why the natural density of $Q_a(x; 4, 1)$ should be equal to $\frac{1}{6}$?

But here we remark that this problem has a relation to the structure of the additive group $\mathbb{Z}/4\mathbb{Z}$.

$$\mathbf{Z}/4\mathbf{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\} \longleftrightarrow \sharp Q_a(x; 4, \mathbf{Z}/4\mathbf{Z}) \sim \pi(x)$$

$$\downarrow 0$$

$$\{\bar{0}, \bar{2}\} \longleftrightarrow \sharp Q_a(x; 4, \bar{0} \cup \bar{2}) \sim \frac{2}{3}\pi(x)$$

$$\downarrow 0$$

$$\{\bar{0}\} \longleftrightarrow \sharp Q_a(x; 4, \bar{0}) \sim \frac{1}{3}\pi(x)$$

And in order to separate $\bar{1}$ and $\bar{3}$, we need GRH.

Then, since $\mathbb{Z}/5\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$ has only one additive subgroup $\{\bar{0}\}$, we can expect that we can get an asymptotic formula for $\sharp Q_a(x; 5, \bar{0})$ and we need GRH to get an asymptotic formula for $\sharp Q_a(x; 4, \bar{j})$ for j = 1, 2, 3, 4. And it is true.

Here we show our result only some simple cases. Namely we assume $a \in \mathbb{N}$ is not a perfect h-th power with $h \geq 2$, and put

$$a = a_1 a_2^2$$
, a_1 : square free,

as above, and further assume $5 \nmid a_1$ — as we remarked already, when $5|a_1$, we have rather irregular densities.

Theorem 2 Let G be the multiplicative group of all characters modulo 5. We define, for $\chi \in G$, the numbers β_{χ} and C_{χ} by

$$eta_{\chi} = \left\{ egin{array}{ll} 1, & \chi \in G^2, \ -1, & otherwise, \end{array}
ight.$$

and

$$C_{\chi} = \prod_{p \neq 5} \frac{p^3 - p^2 - p + \chi(p)}{(p-1)(p^2 - \chi(p))}.$$

(I) If j = 0, then we have an asymptotic formula unconditionally

$$\sharp Q_a(x;5,0) = \frac{5}{24} \pi(x) + O\left(\frac{x}{\log x \log \log x}\right).$$

(II) When $j \neq 0$, we assume GRH. Then we have

$$\sharp Q_a(x;5,j) = \delta_j \ \pi(x) + O\left(\frac{x}{\log x \log \log x}\right),$$

and the leading coefficient is given by

(II-1) If $a_1 \equiv 1 \pmod{4}$, then

$$\delta_j = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_{\chi} \chi(j) C_{\chi} \left(1 + \prod_{p \mid 2a_1} \frac{p (\chi(p) - 1)}{p^3 - p^2 - p + \chi(p)} \right).$$

(II-2) If $a_1 \equiv 2 \pmod{4}$, then

$$\delta_{j} = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_{\chi} \ \chi(j) \ C_{\chi} \left(1 + \frac{\chi(2)^{2}}{16} \prod_{p \mid 2a_{1}} \frac{p \ (\chi(p) - 1)}{p^{3} - p^{2} - p + \chi(p)} \right).$$

(II-3) If $a_1 \equiv 3 \pmod{4}$, then

$$\delta_j = \frac{25}{96} - \frac{1}{16} \sum_{\chi \in G} \beta_{\chi} \ \chi(j) \ C_{\chi} \left(1 + \frac{\chi(2)}{4} \prod_{p \mid 2a_1} \frac{p \ (\chi(p) - 1)}{p^3 - p^2 - p + \chi(p)} \right).$$

We can prove this theorem by the similar method which we used in [7], but in order to separate four classes — $\bar{1}, \bar{2}, \bar{3}, \bar{4}$ — we need Dirichlet characters and very complicated calculations.

We can extend this result to much more general moduli, such as q^r with a prime q (see [4]).

For $\chi \notin G^2$, the number C_{χ} is not a real number. The most interesting feature of this result may be the fact that a combination of these complex numbers gives the real density of $\sharp Q_a(x;5,j)$.

For numerical examples, see Section 4, Table 4.4 - Table 4.6.

3 The case S = P

Here we take a = 2, and consider the set

$$M(x) = \{ p \le x ; I_2(p) \text{ is prime} \}.$$

On the cardinality of this set, Pomerance [9] proved

Theorem C We have unconditionaly

$$\sharp M(x) \ll \pi(x) \frac{\log \log \log x}{\log \log x},$$

and under GRH,

$$\sharp M(x) \ll \pi(x) \frac{\log \log x}{\log x}.$$

We can improve the latter estimate as follows:

Theorem 3 ([8]) We assume GRH. Then we have

$$\sharp M(x) \ll \pi(x) \frac{1}{\log x}.$$

Here we remark that, this estimate seems to be best possible. In fact, let us consider the set

$$L(x) = \{ p \le x ; \frac{p-1}{2} \text{ is also prime, } p \equiv 7 \pmod{8} \}.$$

Then, it is easy to see that $L(x) \subset M(x)$, and it is (not yet proved but) conjectured that

$$\sharp L(x) \sim C \ \pi(x) \frac{1}{\log x}$$

with a strictly positive constant C, which gives a lower bound of $\sharp M(x)$. For the proof, see [8].

4 Some numerical examples

Here we show some numerical examples to compare our theoretical results with experimental results.

In the Tables 4.1 - 4.3, we compare the theoretical densities and the experimental densities $\pi(x)^{-1} \sharp Q_a(x;4,j)$ for $x=10^3,10^4,10^5,10^6,10^7$.

Table 4.1. The densities of $Q_5(x;4,l)$ Theoretical densities are typical $\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{3}, \frac{1}{6}\right)$.

\boldsymbol{x}	l=0	l=1	l=2	l=3
10^3	0.319277	0.156627	0.349398	0.174699
10 ⁴	0.327628	0.167074	0.340668	0.164629
10^{5}	0.334619	0.167049	0.333055	0.165276
106	0.333227	0.167155	0.332934	0.166684
107	0.333320	0.166771	0.333099	0.166810

Table 4.2. The densities of $Q_{50}(x;4,l)$ Theoretical densities are $\left(\frac{5}{12}, \frac{7}{48} - \frac{C}{8} \approx 0.06538, \frac{7}{24}, \frac{7}{48} + \frac{C}{8} \approx 0.22629\right)$.

x	l=0	l=1	l=2	l=3
10^3	0.415663	0.036145	0.295181	0.253012
104	0.409943	0.068460	0.290139	0.231459
10^{5}	0.416684	0.065172	0.292284	0.225860
106	0.416569	0.065889	0.291633	0.225910
107	0.416719	0.065351	0.291584	0.226345

Table 4.3. The densities of $Q_6(x;4,l)$ Theoretical densities are $\left(\frac{1}{3}, \frac{1}{6} - \frac{3C}{56} \approx 0.13219, \frac{1}{3}, \frac{1}{6} + \frac{3C}{56} \approx 0.20115\right)$.

\overline{x}	l = 0	l = 1	l=2	l=3
10^{3}	0.331325	0.126506	0.325301	0.216867
104	0.334963	0.133659	0.333333	0.198044
105	0.333785	0.133577	0.332847	0.199791
10 ⁶	0.333151	0.132249	0.333507	0.201093
107	0.333331	0.132179	0.333019	0.201471

Here are some examples where the modulus is 5. In the following tables, the second row shows the theoretical density.

Table 4.4. The densities of $Q_{21}(x;5,l)$

x	l=0	l = 1	l=2	l=3	l=4
	0.208333	0.235494	0.176925	0.233715	0.145532
10^3	0.193939	0.266667	0.163636	0.260606	0.120482
104	0.209625	0.242251	0.166395	0.235726	0.145069
105	0.210554	0.242048	0.174054	0.230160	0.147862
10 ⁶	0.208179	0.236091	0.176457	0.233251	0.143472
107	0.208218	0.236068	0.176878	0.233708	0.144110

Table 4.5. The densities of $Q_6(x; 5, l)$

x	l=0	l=1	l=2	l=3	l=4
	0.208333	0.233302	0.179043	0.234686	0.144636
10^{3}	0.204819	0.289157	0.192771	0.198795	0.114458
104	0.215974	0.246944	0.175224	0.231459	0.130399
10^{5}	0.208133	0.231283	0.181335	0.231178	0.148071
10^{6}	0.208571	0.232840	0.179219	0.235362	0.144007
107	0.208645	0.233330	0.179161	0.234770	0.144093

Table 4.6. The densities of $Q_3(x; 5, l)$

x	l = 0	l=1	l=2	l=3	l=4
	0.208333	0.238076	0.169818	0.235252	0.148521
10^3	0.210843	0.210843	0.186747	0.259036	0.132530
104	0.211084	0.238794	0.160554	0.234719	0.154849
10^5	0.208238	0.241397	0.164964	0.235036	0.150365
10 ⁶	0.208125	0.238687	0.169448	0.234725	0.149014
107	0.208340	0.238100	0.169499	0.235312	0.148749

References

- [1] Chinen, K. and Murata, L: On a distribution property of the residual orders of a (mod p) (in Japanese) in Analytic Number Theory Expectations for the 21st Century —, RIMS Kokyuroku 1219 (2001), 245-255.
- [2] Chinen, K. and Murata, L: On a distribution property of the residual orders of a (mod p), II (in Japanese) in New Aspects of Analytic Number Theory, RIMS Kokyuroku 1274 (2002), 62-69.
- [3] Chinen, K. and Murata, L: On a distribution property of the residual order of a (mod p), (preprint). (e-print archive, http://xxx.lanl.gov/archive/math, article number math. NT/0211077)
- [4] Chinen, K. and Murata, L: On a distribution property of the residual orders of $a \pmod{p}$, III. (preprint).
- [5] Lenstra Jr., H. W.: On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math. 42 (1977), 201-224.
- [6] Murata, L.: A problem analogous to Artin's conjecture for primitive roots and its applications, Arch. Math. 57 (1991), 555-565.
- [7] Murata, L and Chinen, K: On a distribution property of the residual orders of $a \pmod{p}$, II. (preprint). (e-print archive, http://xxx.lanl.gov/archive/math, article number math. NT/0211083)
- [8] Murata, L and Pomerance, C: On the largest prime factor of a Mersenne number, (preprint).
- [9] Pomerance, C: On primitive divisors of Mersenne numbers, Acta Arith. 46 (1986), 355-367.