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Vojta’s method in diophantine geometry,
applications and related topics

Gagél REMOND

1 Introduction

The method of Vojta’s referred to in the title is the one he introduced to prove
Mordell’s conjecture. We therefore start from this conjecture. As is well known,
Faltings ([F1]) was the first to prove the following statement in 1983, some sixty
years after Mordell’s question:

Theorem 1. A curve of genus at least two over a number field has finitely many
rational points.

Then, in 1990, Vojta gave a different proof of this fact which was based on
diophantine approximation (see [V1]). His approach led to various and powerful
generalisations of Faltings’ theorem. This paper is intended as a short survey of
this topic: I shall briefly sketch the original method and then present the different
results that can be obtained through extensions of it.

In this introduction, we give a slight generalisation of Theorem 1 in a for-
mulation that will make the further generalisations appear more natural. In the
situation of Theorem 1, let C be the curve and K the number field. We introduce
the Jacobian J of C. We recall that it is an abelian variety of dimension equal to
the genus of C. Furthermore, C' can be imbedded in J (assume for example that
C has at least one rational point). Finally, let I' = J(K) be the group of rational
points of J. The well-known Mordell-Weil theorem states that T' is a finitely
generated group. With this notation, the rational points of C can be written

C(K) = C(R)NT.

In this way, the following statement indeed contains Theorem 1.

Theorem 2. Let C be a | curve of genus > 2| in an | abelian variety} A over Q
and T a | finitely generated subgroup| of A(Q). Then the set C(Q) NT is l finite

Note that considering any finitely generated subgroup, instead of simply ratio-
nal points over a given number field, is in fact no strengthening of the statement,
since any such I' is contained in A(K”) for a certain number field K’ (simply con-
sider a field of definition for a finite set of generators of I'). On the other hand,




replacing the Jacobian by any abelian variety gives a slightly stronger statement
but Vojta’s proof yields at once this form.

The boxed words in the theorem indicate in what directions we are going to
generalise it. Roughly speaking, we will describe three directions: allowing more
choice for respectively C, A and T'. Let us say here that another natural variation
would be to consider other fields than Q. Interesting results exist in this direction
(see for example [Hr] and work by Moriwaki [Mo]) but in the following we restrict
ourselves to Q.

Extensions of Theorem 2 will be described in the third section. First, we
sketch a proof of this theorem.

2 Vojta’s method

Here we rely on Bombieri’s rewriting of the proof with more elementary tools
(see [Bo]). Let h be a Néron-Tate height on A(Q). We recall that h induces a
positive definite quadratic form on A(Q) ® R.

We divide the proof of Theorem 2 into three steps.

a) Inequality of heights

Here is the main ingredient in the proof.
Theorem 3 (Vojta). There exist positive real numbers c,, c; and c3 such that

h(az —y) > T (a?h(z) + A(y))

for any integer a > ¢, and points (z,y) € C(Q)? with h(z) > c; and h(y) > acs.

This statement is really the technical heart of the proof. The details are quite
involved but the general strategy is rather classical in diophantine approximation.
It makes use of:

(i) Siegel's lemma to construct a small section of an invertible sheaf on C' x C
related to the height h(az — y) — e(a?h(z) + h(y));

(ii) some local estimates for the derivatives of this section yielding the required
inequality if the section vanishes with a sufficiently low order in (z, y);

(iii) Roth’s lemma to show that, under the hypotheses on a and (z, y), the above
_order of vanishing cannot be too high.

b) Euclidean geometry

By assumption, the real vector space ' ® R equipped with the norm \/ﬁ is a
(finite-dimensional) euclidean space. Simple geometrical considerations in this
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space together with the above inequality will show that, under the assumptions
of Theorem 2, the height is bounded on the set C(Q)NT. )
Indeed, if z and y in this set are such that h(z) > c3 and h(y) > (cz +1)%h(z)

and-if o is the nearest integer to \/A(y)/h(y), the inequality of Theorem 3 can
be translated into a lower bound of the angle between z and y (in terms of ¢;).
If we denote this bound by 6, we simply have to cover I’ ® R by cones in which
any two points make an angle smaller than 6. In one of these cones, as soon as
we can find one point z of our set with h(z) > c; then any other has to satisfy
A(y) < (cy + 1)2h(z). Since there are a finite number of cones, this proves the
claim.

Notice that, though we can be more precise about the number of points of
C(Q)NT of height at least c3, this method offers no mean of bounding their height.
Doing so is an open difficult problem usually known as “effective Mordell”. The
reasons for ineffectivity here are the same as in Roth’s theorem.

c) Northcott’s theorem

Once we know that the set C(Q) NT is of bounded height, we very simply
conclude the proof by Northcott’s theorem since (see above) this set is defined
over a certain number field.

These three steps are of course of inequal difficulties but we have given them
in this way because we will encounter later the same pattern: an inequality of
heights (technical part) gives the boundedness of the height on the given set
through geometrical considerations and then another independent argument is
needed to yield finiteness.

3 Generalisations of Theorem 2

We are now going to extend Theorem 2 that is, when replacing the boxed parts of
the theorem as indicated, we obtain, unless otherwise specified, another theorem.
In Theorem 4 below we will give a statement containing all the previous ones.

a) Variations on C

It is natural to look for higher dimensional versions of Theorem 2. We have to
impose a condition extending the one on the genus. So we replace C by any
subvariety X which is not a translate of a subgroup of A and we also replace the
finiteness in the conclusion by the fact that the set is not Zariski-dense. In this
form, the result was conjectured by Lang and proven by Faltings (see [F3]). It is
also possible to retain finiteness with a stronger condition on X (as in [F2]) but
an easy argument shows that this is contained in the statement we consider here.
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b) Variations on A

We replace A by more general algebraic groups. Historically, the first case to be
proven, by Laurent in 1984 (see [La]), was with a torus A = G" m@- The proof
(Vojta’s method not being available yet!). relied on Schmidt’s subspace theorem.
Note that following the same lines a quantitative version was given by Evertse
and Schlickewei (see [Ev]). Sharper bounds can now be obtained through Vojta’s
method (see [R3]).

It turns out that the statement can be further extended to a family of algebraic
groups containing both abelian varieties and tori. We allow A to be a semi-abelian
variety, that is, an extension of an abelian variety Ay by a torus GZ,Q

0 — GrLg—A— 4 —0.

The proof of the theorem in this semi-abelian case is due to Vojta (see [V3]). Here,
A is no longer proper and one has to work with sheaves on a certain blow-up.

c) Variations on T’

Modifying I" really changes the nature of the problem.

e We start from the case of the set of all torsion points, that is: I' = Agys. This
is usually known (at least in the abelian case) as the Manin-Mumford conjecture
and was proven by Raynaud (see [Ra]). We generalise this case in three directions.

e First, consider for I" a finite rank subgroup (this means that I' ® Q is
a finite-dimensional vector space). Hindry (see [H1]) has shown how Faltings’
result implies this in the abelian case and McQuillan (see [McQ)]) has extended
the argument to the semi-abelian case. Here we have indeed a generalisation of the
Manin-Mumford conjecture (which deals with zero rank) and also of the initially
considered case of a finitely generated subgroup. It had been also conjectured by
Lang.

o Next, we look at points of small normalised height namely {z € A(Q) |
h(z) < €} (in the abelian case h is a Néron-Tate height and this can be extended
to the semi-abelian case — see for example [Po]). This type of question was first
raised by Bogomolov and we call this a “Bogomolov property”. The statement is
that there exists a positive € (small enough) such that the modified Theorem 2
holds. This fact is due to Zhang (see [Z1]) for abelian varieties and to David and
Philippon (see [DP]) for semi-abelian varieties. We recover the Manin-Mumford
conjecture with e = 0.

e We mention a third, mainly open, possible generalisation of I' = A¢qgs. For

some integer 7, we let ~
r= ) B@

dim B<r

where the union runs through all algebraic subgroups B satisfying the dimension
condition. It is clear that r = 0 is again Manin-Mumford. It is not at all so
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clear what other values of 7 are possible for a given subvariety X. This kind of
problems was raised in 1999 in a paper by Bombieri, Masser and Zannier (see
[BMZ]) where the case of a curve C in a torus A = G" 4 is solved: we can take
r = n — 2 (which is then easily seen to be optimal) if% is not contained in a
translate of a proper algebraic subgroup of A (this is probably not optimal: one
would like to say only “not contained in a proper algebraic subgroup of A”). The
only other case known is due to Viada (see [Vi]) and deals with curves in E"
where F is an elliptic curve.

e Given the three preceding directions, one can try to blend then into unified
results. Initially, the idea is due to Poonen (see [Po]) who conjectured that one

can take _ R
F=T,:={z+yec AQ) |z el"et h(y) <e}

where T is a finite rank subgroup of A(Q) and £ small enough. He called his
conjecture “Mordell-Lang plus Bogomolov” and was able to prove it for split
semi-abelian varieties (so in particular for tori and abelian varieties); Zhang (see
(Z3]) obtained independently the same result. Recently, we obtained the general
case (see [R4]).

e Following the same line one could ask for results with I" of the form

r= {J I+BQ

dim B<r

combining everything. This is, as far as I know, completely open and I will not
venture to propose a conjecture. However, it should be noted that this has some
links with a far-reaching conjecture of Zhang (see [Z2]): roughly speaking, the
case of curves here in certain abelian varieties would yield the case of constant
families in Zhang’s conjecture.

We conclude this section by a statement containing all the previous results

(except those of [BMZ] and [Vi]) that is, “Mordell-Lang plus Bogomolov” in the
semi-abelian case (proven in [R4]).
Theorem 4. Let X be a subvariety of a semi-abelian variety A over Q such that
X is not the translate of a subgroup of A. Let T" be a finitely generated subgroup
of A(Q). Then there exists € > 0 such that the set X (Q)NTY. is not Zariski-dense
in X.

4 Extensions of Vojta’s method

We want to sketch how the method of Section 2 is used in the proof of (some
of) the results quoted in Section 3. For the sake of simplicity, we deal only with
abelian varieties from now on (but the general framework is the same in the
semi-abelian case).
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Let X be an integral subvariety of an abelian variety A. To mimic Section 2,
we need finiteness instead of non-density. We therefore introduce the exceptional
subset

ZX = U z+ B
r+BCX
defined as the union of translates contained in X -of nonzero abelian subvarieties
B of A. It can be shown that

e Zx is a closed subset of X;
o X = Zx if and only if X is itself a translate of an abelian subvariety of A.

Thus, to prove the non-density of X (Q) NT, it is enough to prove the finiteness
of (X\ Zx)(Q)NT.

a) Inequality on (X \ Zx)(Q)

When points of Zx are excluded, Theorem 3 can be generalised. We let m =
dim X + 1.

Theorem 5 (Faltings). There erist positive real numbers ci, ca and c3 such
that

m—1 m

Z ﬁ(ai.’ci - a,~+1x,-+1) > Cl_l Z a?fz(:v,)
i=1 i=1
for any a € (N\ {0})™ and m-tuple of points £ € (X \ Zx)(Q)™ with ai/ai41 > ¢,
and a?h(z;) > alcs.
Without giving any precisions, let us say that this is again the technical
part and that the strategy closely resembles the one used in Section 2 with an
additional induction based on the product theorem of Faltings (instead of Roth’s

lemma). For a quantitative statement (values of c;, c; and ¢3) see [R1} and the

introduction of [R5] for a slightly sharper inequality; the original result is due to
Faltings and is described briefly in [F3]; details can be found for example in [EE],
[H2], [R1] or [V2].

b) his bounded on (X \ Zx)(Q)NT

As in Section 2, this is a consequence of the inequality as soon as I" can be covered
by a finite number of small cones. This is the case:

1. obviously, if T is finitely generated (see Section 2);

2. by the same argument if ' is of finite rank since ' ® R is still finite-
dimensional;
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3. also when I" = I',; here, although the span of T is infinite-dimensional, we
obtain a covering in the following way: first cover I as above with cones
defined with an angle 6; then choose ¢ small enough such that the cones
defined with 26 cover {z € T | h(z) > ¢35} (see [R4]).

c) Finiteness

We consider the same three cases:
1. again this is clear by Northcott’s theorem:;

2. originally Raynaud’s method and its extensions (see [Ra], [H1] and [McQ])
used Galois arguments to reduce to the previous case. A different proof is
obtained if one uses the next case.

3. here the points of I'; of height less than, say, ¢ can be divided in finitely
many small balls of radius 2e. When ¢ is small enough, we can the apply
the Bogomolov property to each of these balls to get finiteness. We need
some uniformity to apply this argument, see [R4].

Let us say just one word about the proofs in (BMZ] and [Vi]. Here a direct
argument is used to bound the height in the case of curves. Once the height
is bounded, finiteness is obtained through good estimates in the direction of
the generalised Lehmer problem proven in [AD] for tori and in [DH] for abelian
varieties with complex multiplication. This second part seems to generalise in
higher dimension but the first one looks specific to curves. Hence one can try
to use Vojta’s method to supply the boundedness of the height... The general
formulation of the height inequality of the method given in [R5] may give some
hope to do this...
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