The Representation of Unity by Quartic Forms

by Ryotaro Okazaki at Doshisha University

October 25, 2002

1 Theorem

Situation: Let

$$f(X,Y) \in \mathbf{Z}[X,Y]$$

be given. Assume that f(X, Y) is homogeneous, irreducible and quartic. Assume also f(X, Y) splits completely in a totally real field. Denote by $\mathcal{R}(f)$ the number of integer points on the curve

$$\mathcal{T}: f(x,y) = \pm 1.$$

(Count $\pm(x,y)$ as one point.) Denote by D(f) the discriminant of f(X,Y). Assertion: If $D(f) \gg 0$, we have

$$\mathcal{R}(f) \leq 12$$
.

2 Thue Curve and its Parameterization

Let

$$\mathcal{A} = \{\alpha_1 < \alpha_2 < \ldots < \alpha_4\}$$

be a given configuration of 4 distinct points. Let

$$f(X,Y) = f(A,X,Y) = \prod_{i=1}^{4} (X - Y\alpha_i)$$

and consider the Thue curve

$$\mathcal{T}: |f(x,y)| = 1.$$

Take the projective point

$$t = \frac{x}{y} \in \mathbf{P}^1(\mathbf{R})$$

and parameterize $\mathcal{T}/\{\pm 1\}$ by

$$\begin{cases} y(t) &= y(A,t) = |f(t)|^{-1/4}, \\ x(t) &= x(A,t) = ty(t), \end{cases}$$

where

$$f(t) = f(A; t) = f(t, 1).$$

3 Projective Transformation and Change of Variables

A projective transformation of $t \in \mathbf{P}^1(\mathbf{R})$ is given by

$$G = (g_{ij}) \in GL_2(\mathbf{R}) : t \longmapsto G\langle t \rangle = \frac{g_{11}t + g_{12}}{g_{21}t + g_{22}}.$$

We adopt the convention

$$\tilde{t} = G\langle t \rangle, \quad \tilde{lpha}_i = G\langle lpha_i \rangle, \quad \tilde{\mathcal{A}} = \{\tilde{lpha}_1, \tilde{lpha}_2, \dots, \tilde{lpha}_n\}, \quad \tilde{x} = x(\tilde{\mathcal{A}}, \tilde{t}), \quad \tilde{y} = y(\tilde{\mathcal{A}}, \tilde{t}).$$

We have the following transformation law of difference: For

$$u, u' \in \mathbf{R} \subset \mathbf{P}^1(\mathbf{R}),$$

we have

$$\tilde{u}-\tilde{u}'=rac{(u-u')\det G}{\chi(G,u)\chi(G,u')}, \quad ext{where} \quad \chi(G,t)=g_{21}t+g_{22}.$$

Consider f(x, y) as

$$f(x,y) = \prod_{i=1}^{4} \det \begin{pmatrix} x & \alpha_i \\ y & 1 \end{pmatrix}.$$

When

$$\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right) = G\left(\begin{array}{c} x \\ y \end{array}\right),$$

we have

$$\prod_{i=1}^4 \det \left(\begin{array}{cc} x_1 & \tilde{\alpha}_i \\ y_1 & 1 \end{array} \right) = \frac{\det G^4}{\prod_{i=1}^4 \chi(G,\alpha_i)} \prod_{i=1}^4 \det \left(\begin{array}{cc} x & \alpha_i \\ y & 1 \end{array} \right).$$

Thus,

$$G\left(egin{array}{c} x \ y \end{array}
ight)=\pm\left(egin{array}{c} ilde{x} \ ilde{y} \end{array}
ight)\Longleftrightarrow\left|\det G^4
ight|=\left|\prod_{i=1}^4\chi(G,lpha_i)
ight|.$$

This condition of compatibility is suitable for real algebraic geometry.

4 Invariant Coordinate and Transcendental Curve

Define the coordinates $\phi_m(t)$, (m = 1, 2, ..., 4) by

$$\phi_m(t) = \phi_m(\mathcal{A}, t) = \log \left| \frac{D^{1/8} (x - y\alpha_m)}{|f'(\alpha_m)|^{1/2}} \right|$$

with $D = D(A) = \prod_{1 \le i < j \le 4} |\alpha_i - \alpha_j|^2$. Then, define

$$\phi(t) = \phi(A, t) = (\phi_1(t), \phi_2(t), \dots, \phi_4(t)).$$

Since each coordinate $\phi_m(t)$ is invariant under the action of $GL_2(\mathbf{R})$ (on t and α_i 's), the point $\phi(t)$ is invariant upto permutation of coordinates under the action of $GL_2(\mathbf{R})$. Deep consequences come from geometry of the transcendental curve

$$\mathcal{C} = \phi(\mathbf{P}^1(\mathbf{R}) \setminus \mathcal{A}).$$

5 Asymptotic Line of C

The curve C has four asymptoic lines. We choose one of them and discuss what happens along it. The situation around the other three asymptotic lines are the same. Let

$$b_1 = -\frac{1}{4}(-3, 1, 1, 1), \quad b_2 = -\frac{1}{4}(1, -3, 1, 1), \quad b_3 = -\frac{1}{4}(1, 1, -3, 1), \quad b_4 = -\frac{1}{4}(1, 1, 1, -3)$$

and

$$c_i = b_i + \frac{1}{3}b_4, \quad (i < 4) \quad (c_i \perp b_4).$$

Then,

$$\phi(t) = \sum_{i=1}^{4} \log \frac{|t - \alpha_i|}{|f'(\alpha_i)|^{1/2}} \cdot \boldsymbol{b_i} = \sum_{i=1}^{3} \log \frac{|t - \alpha_i|}{|f'(\alpha_i)|^{1/2}} \cdot \boldsymbol{c_i} + \frac{2\ell_4}{\sqrt{3}} \boldsymbol{b_4},$$

where

$$\ell_4 = \sqrt{\frac{3}{4}} \left(\log \frac{|t - \alpha_4|}{|f'(\alpha_4)|^{1/2}} - \frac{1}{3} \sum_{i=1}^3 \log \frac{|t - \alpha_i|}{|f'(\alpha_i)|^{1/2}} \right).$$

Let

$$\mathcal{L}_4 = \sum_{i=1}^3 \log \frac{|lpha_4 - lpha_i|}{|f'(lpha_i)|^{1/2}} \cdot c_i + \mathbf{R}b_4.$$

Then, $\phi(t)$ approaches \mathcal{L}_4 as t approaches α_4 . If $t = \alpha_4 + u$ with $|u|/(\alpha_4 - \alpha_3) \ll 1$, we have

$$\operatorname{dist}(\phi(t), \mathcal{L}_4) = \left\| \sum_{i=1}^3 \log \frac{|t - \alpha_i|}{|\alpha_4 - \alpha_i|} \cdot \boldsymbol{c}_i \right\| \ll \frac{3|u|}{\alpha_4 - \alpha_3}; \qquad \ell_4 = \frac{\log |u|}{\sqrt{4/3}} + O_{\mathcal{A}}(1).$$

Thus, we have $r = \|\phi(t)\| = -\ell_4 + O_A(1)$. Therefore,

$$\operatorname{dist}(\phi(t), \mathcal{L}_4) \ll_{\mathcal{A}} \exp\left(-\sqrt{4/3} r\right).$$

6 Convexity of C and Intersection with Line

The transcendental curve C has convexity in a certain sense. For observing it, we calculate

$$\phi(t) - \boldsymbol{v} = \sum_{i \neq 2} \log|t - \alpha_i| \cdot \boldsymbol{c}_i + \frac{2\ell_2}{\sqrt{3}} \boldsymbol{b}_2 = \sum_{i \neq 2, 4} \log \frac{|t - \alpha_i|}{|t - \alpha_4|} \cdot \boldsymbol{c}_i + \frac{2\ell_2}{\sqrt{3}} \boldsymbol{b}_2,$$

where v is a certain vector independent of t. Since c_1, b_2, c_3 form a basis of the orthogonal space Π_{\log} of (1, 1, ..., 1),

$$(u(t), w(t)) = \left(\log \frac{|t - \alpha_1|}{|t - \alpha_4|}, \log \frac{|t - \alpha_3|}{|t - \alpha_4|}\right)$$

is a linear projection of $\phi(t)$.

The curve (u(t), w(t)) with $t \in]\alpha_1, \alpha_3[$ is a convex curve as verified below: Observe

$$\frac{du}{dt} = \frac{\alpha_1 - \alpha_4}{(t - \alpha_1)(t - \alpha_4)} > 0 > \frac{\alpha_3 - \alpha_4}{(t - \alpha_3)(t - \alpha_4)} = \frac{dw}{dt}$$

and calculate

$$\frac{d^2 w}{du^2} = \frac{\frac{d}{dt} \frac{dw/dt}{du/dt}}{du/dt} = \frac{(t - \alpha_1)(t - \alpha_4)(\alpha_3 - \alpha_4)}{(\alpha_1 - \alpha_4)^2} \frac{d}{dt} \frac{t - \alpha_1}{t - \alpha_3}
= \frac{(t - \alpha_1)(t - \alpha_4)(\alpha_3 - \alpha_4)(\alpha_1 - \alpha_3)}{(\alpha_1 - \alpha_4)^2(t - \alpha_3)^2} < 0.$$

The convexity implies that an intersection of the part $\phi(]\alpha_1, \alpha_3[)$ with any given line always consists of at most two points.

Since we can projectively transform

to
$$\alpha_{m-2}$$
, α_{m-1} and α_m

without altering the point $\phi(t)$, the same property is enjoyed by every intervals $]\alpha_{m-1}, \alpha_{m+1}[$. Here we read the subscript modulo 4 and also read $]\alpha_4, \alpha_2[=]\alpha_4, \infty] \cap [-\infty, \alpha_2[$ and $]\alpha_3, \alpha_1[=]\alpha_3, \infty] \cap [-\infty, \alpha_1[$.

Therefore, the intersection of the part

$$\phi(]\alpha_{m-1},\alpha_{m+1}[)$$

with any given line always consists of at most two points, regardless of the value of m = 1, 2, ..., 4.

7 Intersection of C with Plane

An intersection of a plane of Π_{\log} with C always consists of at most 6 points. To see this, we denote the normal vector of Π_{\log} by $(w_1, w_2, \ldots, w_n) \in \Pi_{\log}$ and count solutions to

$$c = \sum_{i=1}^4 w_i \phi_i(t).$$

We have

$$c = \sum_{i=1}^{4} w_i \log \left| \frac{D^{1/8} (x - y \alpha_m)}{|f'(\alpha_m)|^{1/2}} \right| = \sum_{i=1}^{4} w_i \log |t - \alpha_i|;$$

$$\frac{d}{dt}\sum_{i=1}^{4}w_{i}\log|t-\alpha_{i}|=\frac{\sum_{i=1}^{n}w_{i}f_{i}(t)}{f(t)},$$

where $f_i(t) = f(t)/(t - \alpha_i)$ is a monic polynomial of degree 3 (i = 1, 2, ..., 4). Since the leading terms of the numerator of the right hand side cancel out, the right hand side has at most two roots. Thus, the function $\sum_{i=1}^4 w_i \phi_i(t)$ has at most 2 critical points. On the other hand it has exactly 4 singular points. Therefore, its mapping degree is at most 6.

8 Admissible Transformation and Discreteness

Let $G \in GL_2(\mathbf{R})$. We consider G preserves discreteness if it preserves

$$\left| \det \left(egin{array}{cc} x & x' \ y & y' \end{array}
ight)
ight|$$

and is compatible with change of variables:

$$\left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array}\right) = \pm G \left(\begin{array}{c} x \\ y \end{array}\right).$$

As we have seen in §3, the latter is characterized by

$$\left|\det G^4\right| = \left|\prod_{i=1}^4 \chi(G, \alpha_i)\right|.$$

We say G is admissible for A if these conditions hold, i.e.,

$$|\det G| = \left| \prod_{i=1}^4 \chi(G, \alpha_i) \right| = 1.$$

An admissible transformation always preserves the discriminant:

$$D(\tilde{\mathcal{A}}) = D(\mathcal{A})$$

since

$$\prod_{1 \leq i < j \leq 4} \left| \tilde{\alpha}_i - \tilde{\alpha}_j \right| = \prod_{1 \leq i < j \leq 4} \left| \frac{(\alpha_i - \alpha_j) \det G}{\chi(G, \alpha_i) \chi(G, \alpha_j)} \right|.$$

Admissible transformation has freedom of degree 2, i.e., it can transform given two points, say $\mu, \nu \notin A$, to $0, \infty$: Choose v and w suitably to make

$$G = \left(\begin{array}{cc} v & -v\mu \\ w & -w\nu \end{array}\right)$$

admissible for \mathcal{A} .

9 Normalization of "Roots" and Symmetry of the Curve $\mathcal C$

We write $\alpha = \alpha_1, \beta = \alpha_2, \gamma = \alpha_3$ and $\delta = \alpha_4$. Set

$$e_i = b_i + b_4, \quad (i = 1, 2, 3).$$

Then, e_1, e_2 and e_3 constitute a basis of the space Π_{\log} . We get

$$2\phi(t) = \log \left| \frac{(t-\alpha)(t-\delta)(\gamma-\beta)}{(t-\beta)(t-\gamma)(\delta-\alpha)} \right| \cdot \boldsymbol{e}_{1}$$

$$+ \log \left| \frac{(t-\beta)(t-\delta)(\gamma-\alpha)}{(t-\alpha)(t-\gamma)(\delta-\beta)} \right| \cdot \boldsymbol{e}_{2}$$

$$+ \log \left| \frac{(t-\gamma)(t-\delta)(\beta-\alpha)}{(t-\alpha)(t-\beta)(\delta-\gamma)} \right| \cdot \boldsymbol{e}_{3}$$

$$=: 2z_{1}(t)\boldsymbol{e}_{1} + 2z_{2}(t)\boldsymbol{e}_{2} + 2z_{3}(t)\boldsymbol{e}_{3}.$$

The argument for intersection with subspace implies $z_i(t)$ has at most 2 critical points. Therefore, $z_1(t)$ has one critical point in each of $]\beta, \gamma[$ and $]\delta, \alpha[$. We call them $\mu(\beta, \gamma)$ and $\mu(\delta, \alpha)$. Similarly, $\mu(\alpha, \beta)$ and $\mu(\gamma, \delta)$ are defined by z_3 .

We can transform $\mu(\beta, \gamma)$ and $\mu(\delta, \alpha)$ respectively to 0 and ∞ by an admissible transformation. Therefore, we assume $\alpha = -\delta$, $\beta = -\gamma$ without altering the geometry of the curve \mathcal{C} . The cross ratio

$$\lambda = -\frac{(\gamma - \beta)(\alpha - \delta)}{(\delta - \gamma)(\beta - \alpha)}$$

of A is a projective invariant (upto permutation of "roots").

Admissible transformation determined by $\mu(\alpha, \beta) \longmapsto 0$ and $\mu(\gamma, \delta) \longmapsto \infty$ inverts λ . We say \mathcal{A} is normalized if $\alpha = -\delta$, $\beta = -\gamma$ and $4\gamma\delta/(\delta - \gamma)^2 = \lambda \geq 1$. We can assume that \mathcal{A} is normalized without altering the geometry of the curve \mathcal{C} .

We now have $\gamma \geq \delta/(3+2\sqrt{2})$.

Set $L = \gamma + \delta$. Then, $\sqrt{D} = 4\gamma \delta L^2 (\delta - \gamma)^2 \leq L^6 / \lambda$. We now have

$$2\phi(t) = z_1(t)\boldsymbol{e}_1 + z_2(t)\boldsymbol{e}_2 + z_3(t)\boldsymbol{e}_3$$

$$= \log \left| \frac{2\gamma(t-\alpha)(t-\delta)}{2\delta(t-\beta)(t-\gamma)} \right| \cdot \boldsymbol{e}_1$$

$$+ \log \left| \frac{(t-\beta)(t-\delta)}{(t-\alpha)(t-\gamma)} \right| \cdot \boldsymbol{e}_2$$

$$+ \log \left| \frac{(t-\gamma)(t-\delta)}{(t-\alpha)(t-\beta)} \right| \cdot \boldsymbol{e}_3.$$

We set $\mu = -\mu(\alpha, \beta) = \mu(\gamma, \delta) = \sqrt{\gamma \delta}$.

Then, the curve C is preserved by the projective transformations $t \longmapsto -t$, $t \longmapsto -\mu^2/t$ and $t \longmapsto \mu^2/t$. Note: transformations

$$\begin{pmatrix} -1 & \\ & 1 \end{pmatrix}, \quad \begin{pmatrix} & -\mu \\ \mu^{-1} & \end{pmatrix}, \quad \begin{pmatrix} & \mu \\ \mu^{-1} & \end{pmatrix}$$

are admissible for A.

The three transformations have the same effect on the curve C as the rotations around $\mathbf{Re_1}$, $\mathbf{Re_2}$ and $\mathbf{Re_3}$ of angle π in the space Π_{\log} .

10 Four Asymptotic Parts and One Bridge of C

Hereafter, we assume $D > 10^{20}$.

We wrap \mathcal{C} by five "cylinders" (four "asymptotic cylinders" and "the bridge"). The part of \mathcal{C} corresponding to $\phi(\delta + u)$ with

$$s^{-1} := \frac{|u|}{\delta - \gamma + u} \le \frac{4}{L^2}$$

will be called the asymptotic part of C at δ . Asymptotic part of C at other "roots" are defined by symmetry.

The rest of the part of C will be called the bridge.

In the asymptotic part, we have (e.g.)

$$\operatorname{dist}(\phi(\delta+u),\mathcal{L}_4)\ll s^{-1}$$

and

$$(2r)^2 > 2(\log s)^2 + (\log s + \log \lambda - 0.2)^2,$$

$$(2r)^2 < 2(\log s + 2)^2 + (\log s + \log \lambda + 2)^2.$$

where $r = \|\phi(t)\|$. The first inequality and $D \leq L^{12}$ imply

$$\log D \ll r. \tag{1}$$

Since $1 \le \lambda \le L^6/\sqrt{D}$, we have $\lambda < s^3$. Thus, the second inequality implies

$$\log s > \sqrt{2} \, r/3$$

and

$$\operatorname{dist}(\phi(\delta+u), \mathcal{L}_4) \ll e^{-\sqrt{2}r/3}$$

We have the Gap Principle

$$r'' \gg \Delta\left(\phi\left(t\right), \phi\left(t'\right), \phi\left(t''\right)\right) \exp\left(\sqrt{2}\,r/3\right) > 0$$
 (2)

when $\phi(t)$, $\phi(t')$ and $\phi''(t)$ belongs to the same asymptotic part of \mathcal{C} and $\|\phi(t)\| \leq \|\phi(t')\| \leq r'' := \|\phi(t'')\|$. This follows from the previous estimate and the simple estimate

$$\triangle (\phi(t), \phi(t'), \phi(t'')) \ll r'' \cdot \operatorname{dist}(\phi(t), \mathcal{L}_4)$$

and the result of §6.

11 Original Arithmetic Situation

We say f(X,Y) is arithmetic (or \mathcal{A} is arithmetic) if $f(X,Y) \in \mathbf{Z}[X,Y]$ is irreducible. We say t is arithmetic if f(X,Y) is arithmetic and $x(t),y(t) \in \mathbf{Z}$. (Later, we shall extend its use.)

When t and t' are arithmetic, $\phi(t) - \phi(t')$ belongs to the image \mathfrak{E} of the regulator map of the unit group of the field defined by f(X, 1):

$$\phi(t) - \phi(t') = \log \vec{\varepsilon} = (\log |\varepsilon^{(i)}|)_{1 \le i \le 4} \in \mathfrak{E}.$$

(Just recall $\phi_m(t) = \log |D^{1/8}(x - y\alpha_m)/|f'(\alpha_m)|^{1/2}$ and |f(x(t), y(t))| = 1.)

By tuning the Gap-Principle of Bombieri-Schmidt in our setting, we see there are at most 4 arithmetic points t such that $\phi(t)$ is on the bridge.

We have seen, under the normality of the roots,

$$\operatorname{dist}(\phi(\delta+u),\mathcal{L}_4) \ll e^{-\sqrt{2}r/3}$$

The left hand side has an invariant representation:

9 · dist
$$(\phi(\delta + u), \mathcal{L}_4)^2 = \log^2 \left| \frac{(t - \alpha)(\delta - \beta)}{(\delta - \alpha)(t - \beta)} \right|$$

+ $\log^2 \left| \frac{(t - \beta)(\delta - \gamma)}{(\delta - \beta)(t - \gamma)} \right| + \log^2 \left| \frac{(t - \gamma)(\delta - \alpha)}{(\delta - \gamma)(t - \alpha)} \right|$. (3)

Thus, we get the inequality

$$\Lambda := \log \left| rac{(t-lpha)(\delta-eta)}{(\delta-lpha)(t-eta)}
ight| \ll e^{-\sqrt{2}r/3},$$

of the invariant quantity Λ under $GL_2(\mathbf{R})$.

Switching back to the original configuration and assume \mathcal{A} is an arithmetic configuration and t, t_0 are arithmetic points. Let $\mathfrak{K} = \mathbf{Q}(\alpha)$. Let $\log \zeta$, $\log \eta$, $\log \xi$ be successive minima of $\log \mathfrak{O}(\mathfrak{K})^{\times}$. ($\|\log \zeta\| \leq \|\log \eta\| \leq \|\log \xi\|$.) Then, Λ is a linear combination with rational integral coefficients in $\log((t_0-\alpha)(\delta-\beta)/(\delta-\alpha)(t_0-\beta))$, $\log(\zeta_1/\zeta_2)$, $\log(\eta_1/\eta_2)$ and $\log(\xi_1/\xi_2)$. Here, the subscript of ζ_i , η_i and ξ_i denotes the embedding of \mathfrak{K} induced by $\alpha \longmapsto \alpha_i$.

By using Matveev's lower bound (E. M. Matveev, "An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II", Izvestiya Mathematics 64 (2000) 1217–1269.), we get

$$r \ll -\log |\Lambda| \ll \log \left(\frac{r + \log D}{A_4}\right) \cdot \prod_{k=1}^4 A_k,$$
 (4)

where we set

$$A_1 = h\left(rac{(t_0 - lpha)(\delta - eta)}{(\delta - lpha)(t_0 - eta)}
ight), \quad (t_0: ext{ arithmetic point)};$$
 $A_2 = \|\log \zeta\|, \quad A_3 = \|\log \eta\|, \quad A_4 = \|\log \xi\|.$

12 Controlling the Parameter A_1

We want to control the size of

$$\log \left| \frac{(t_0 - \alpha_j)(\alpha_i - \alpha_k)}{(\alpha_i - \alpha_j)(t_0 - \alpha_k)} \right|.$$

The identity (3) implies

$$\log \left| \frac{(t_0 - \alpha_j)(\delta - \alpha_k)}{(\delta - \alpha_j)(t_0 - \alpha_k)} \right| < \operatorname{dist}(\phi(t_0), \mathcal{L}_4) \ll 1.$$

For other α_i , we have

$$\log \left| \frac{(t_0 - \alpha_j)(\alpha_i - \alpha_k)}{(\alpha_i - \alpha_j)(t_0 - \alpha_k)} \right| < \operatorname{dist}(\phi(t_0), \mathcal{L}_i).$$

By symmetry of the curve, there is a point z such that

$$\operatorname{dist}(\boldsymbol{z}, \mathcal{L}_4) = \operatorname{dist}(\phi(t_0), \mathcal{L}_i), \quad \|\boldsymbol{z}\| = \|\phi(t_0)\|.$$

Thus,

$$\operatorname{dist}(\phi(t_0), \mathcal{L}_i) < 2\|\phi(t_0)\| + o(1).$$

We now see

$$\log \left| \frac{(t_0 - \alpha_j)(\alpha_i - \alpha_k)}{(\alpha_i - \alpha_j)(t_0 - \alpha_k)} \right| \ll \|\phi(t_0)\|.$$

Hence, $A_1 \ll ||\phi(t_0)|| + \log D$.

13 Counting All Arithmetic Points

Suppose 13 arithmetic points exist. Remove 4 arithmetic points of minimal "radii" $\|\phi(t)\|$. The arithmetic points on the bridge are removed. (See §11.) For the rest of the arithmetic points t, we have $\log D \ll \|\phi(t)\|$. (See (1) of §10.)

At least 3 arithmetic points t,t' and t'' concentrate on an asymptotic part. Write $r'' = \|\phi(t'')\|, r' = \|\phi(t')\|, r = \|\phi(t)\|$. WLOG, $r'' \ge r' \ge r$. We get

$$\frac{r''/A_4}{\log\left(r''/A_4\right)} \ll \prod_{k=1}^3 A_k$$

from $\log D \ll r$ and (4). Thus, we get

$$r'' \ll \prod_{k=1}^4 A_k \cdot \log \left(\prod_{k=1}^3 A_k \right)$$

We set $t_0 = t$. Then, we get

$$r'' \ll \prod_{k=2}^4 A_k \cdot r \log r$$

since $A_1 \ll \|\phi(t_0)\| + \log D \ll r$ by the result of §12 and the analytic class number formula implies $\log A_2 A_3 A_4 \ll \log D(\mathfrak{K}) \ll \log D \ll r$. For showing $r \ll 1$, we would like to combine this inequality with the Gap Principle (2):

$$r'' \gg \triangle \left(\phi \left(t\right), \phi \left(t'\right), \phi \left(t''\right)\right) \exp \left(\sqrt{2} r/3\right).$$

It will establish the theorem since $\log D \ll r$.

The result of §6 implies linear independence of $\phi(t') - \phi(t)$ and $\phi(t'') - \phi(t)$ over **R**. Let $\log \tilde{\zeta}$ and $\log \tilde{\xi}$ be a reduced basis of the plane lattice

$$\mathbf{Z}(\phi(t') - \phi(t)) + \mathbf{Z}(\phi(t'') - \phi(t)).$$

Then, the theory of basis reduction of plane lattice implies

$$\triangle (\phi(t), \phi(t'), \phi(t'')) \gg \|\log \tilde{\zeta}\| \cdot \|\log \tilde{\xi}\| \gg A_2 A_3.$$

Easier Case: If $A_4 \leq 2r$, we easily argue as follows:

$$A_2 A_3 e^{\sqrt{2} r/3} \ll r'' \ll A_2 A_3 r^2 \log r;$$

 $r \ll 1.$

Harder Case: We now treat the harder case of $A_4 > 2r$. The lattice generated by vectors

$$\phi(T) - \phi(t)$$
, $(T : \text{arithmetic point}, \|\phi(T)\| \le \|\phi(t)\|)$

is a sublattice of finite index of the lattice $\mathbb{Z} \log \zeta + \mathbb{Z} \log \eta$. (Here, we use the result of §6 noting that there are at least five points of the form $\phi(T)$.) Therefore, $A_2, A_3 \leq 2r$. Those T's and t', t'' form a set of 7 or more points. Hence, $\log \zeta, \log \eta, \log \widetilde{\zeta}$ and $\log \widetilde{\xi}$ generate a space lattice by the result of §7. Therefore, $\|\log \widetilde{\xi}\| \geq A_4$. (Obviously, $\|\log \widetilde{\zeta}\| \geq A_2$.) Now, we can argue as follows:

$$A_2 A_4 e^{\sqrt{2} r/3} \ll r'' \ll A_2 A_4 r^2 \log r;$$
$$r \ll 1.$$