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The Representation of Unity by Quartic Forms

by Ryotaro Okazaki at Doshisha University
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1 Theorem

Situation: Let
f(X,Y) € Z[X,Y]

be given. Assume that f(X,Y) is homogeneous, irreducible and quartic. Assume also
f(X,Y) splits completely in a totally real field. Denote by R(f) the number of integer
points on the curve

T: f(z,y) = £1.

(Count %(z,y) as one point.) Denote by D(f) the discriminant of f(X,Y).
Assertion: If D(f) > 0, we have

R(f) < 12.

2 Thue Curve and its Parameterization

Let
A={a; <az<...< a4}

be a given configuration of 4 distinct points. Let

f(X,Y) = f(AaXaY) = H(X - Yai)

i=1

and consider the Thue curve

T:|f@y) =1
Take the projective point

t= ;"‘l’- € PY(R)

and parameterize T / {1} by
‘{y(t) = YA = [FOIT,
z(t) = z(At) = ty(t),
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where

f) = f(A;t) = f(t,1).
3 Projective Transformation and Change of Variables

A projective transformation of t € P}(R) is given by

_ gt + g12

G = () € GLa(R) : t1— G(t) = T2

We adopt the convention
F=G(t), &=GCla), A={61,8s,...,a}, F=z(A1), §=yA7.
We have the following transformation law of difference: For
u,v’ € R C P'(R),
we have

i i = (u—vu')detG
X(G,wWx(G,w)’

f(z,v) =£Ildet( Z ¥ )

where x(G,t) = gzt + goa-

Consider f(z,y) as

When
(5)=<(3)
)] Y
we have . ) o \
I Qaj € T o
gdet( v 1 )— Hf=1x(G,ai),I=Ildet(y 1 )
Thus,

4
Hx(G,ai) .

=1

G(Z)z:&:(?)(:)ldetGﬂ:

This condition of compatibility is suitable for real algebraic geometry.

4 Invariant Coordinate and Transcendental Curve

Define the coordinates ¢,,(t), (m =1,2,...,4) by

DY8 (z — ya,)
| f'(am)|M/2

with D = D(A) = [[;¢;cjca li — ;|*. Then, define
d(t) = ¢(A,t) = ($1(t), a(t), - . ., Pa(t))-

¢m(t) = ¢m(A, 1) = log
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Since each coordinate ¢,,(t) is invariant under the action of GLy(R) (on t and «;’s), the
point ¢(t) is invariant upto permutation of coordinates under the action of GLy(R). Deep
consequences come from geometry of the transcendental curve

C = $(PY(R)\ A).

5 Asymptotic Line of C

The curve C has four asymptoic lines. We choose one of them and discuss what happens
along it. The situation around the other three asymptotic lines are the same. Let

1 1 1 1
b, = —Z(_3’ 1,1,1), b= —Z(l,—-3, L,1), bs= _Z(l’ 1,-3,1), by= -Z(l, 1,1,-3)

and 1
ci=b; + §b4, (2 < 4) (C, 1 b4)
Then,
2f
o) = Zl"g P = Z“’g P o o
where
_ 3 It - O£4|
w3 <1°g Pl - 321 e |1/2)
Let

Zl If' |1/2 - € + Rby.

Then, ¢(t) approaches L, as t approaches ay. If t = oy + u with |u|/(as — a3) < 1, we
have

Sul_., _ logl

dist(¢(t), La) = —— L
4= 03 473

< + 04(1).

Zlog |a4 — Otzl

i=1

Thus, we have r = ||¢(t)|| = —€4 + O4(1). Therefore,
dist(4(t), £s) <4 exp (— VAa/3 r) .

6 Convexity of C and Intersection with Line

The transcendental curve C has convezity in a certain sense. For observing it, we calculate

20 i 2/
¢(t)—v=210g|t—ai|-q+—%bg—Zlogt a] ¢+ 2 b,
i#2 i#2,4 [t~ V3



where v is a certain vector independent of £. Since ¢, b, 3 form a basis of the orthogonal
space Iz of (1,1,...,1),

(u(),w(e) = (tog =2 1og =221

|t — ay

is a linear projection of ¢(¢).
The curve (u(t), w(t)) with ¢t € Joy, as[ is a convex curve as verified below: Observe

d_u Qa1 — Oy >0> Q3 — Qg ﬂu_
dt (t - O!1)(t - a4) (t — O.’3) (t - 014) dt
and calculate
d dw/dt
Fw _ dtduf/dt (t—a)t—ox)(as—as) d t—o
du? —  du/dt (g — ay)? dtt—as

_ (t—an)(t — cu)(03 — au) (01 — as)
(01 — 0g)?(t — 03)?
The convexity implies that an intersection of the part ¢(Ja;,a3[) with any given line

always consists of at most two points.
Since we can projectively transform

< 0.

¥m—2, Cm-1 and Qm
to +1, -1 and O

without altering the point ¢(t), the same property is enjoyed by every intervals [am—1, Cm41]-

Here we read the subscript modulo 4 and also read ]ag,as[=]as,o0] N [~00, as| and
Jas, ai[=]as, 00] N [—o0, ay].
Therefore, the intersection of the part
¢(lom-1, ¥m+1])

with any given line always consists of at most two points, regardless of the value of m =
1,2,...,4.

7 Intersection of C with Plane

An intersection of a plane of o, with C always consists of at most 6 points. To see this,
we denote the normal vector of I, by (wy,ws, ..., w,) € I, and count solutions to

4
cC= Z w,-qﬁ,'(t).
i=1

We have
DY8(z — yam)

TICHIE

Zw, log |t — ail;

i=1

c= Zw,log
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d § _ L widi()
EZ ;wzloglt — O[i, = ———}ﬂ—t_)——’

where fi(t) = f(t)/(t — ;) is a monic polynomial of degree 3 (i = 1,2,...,4). Since the
leading terms of the numerator of the right hand side cancel out, the right hand side has

at most two roots. Thus, the function E;;l w;¢;(t) has at most 2 critical points. On the
other hand it has exacltly 4 singular points. Therefore, its mapping degree is at most 6.

8 Admissible Transformation and Discreteness

Let G € GLy(R). We consider G preserves discreteness if it preserves

(5 5)
y v

and is compatible with change of variables:

(5)==(5)

As we have seen in §3, the latter is characterized by

4
H X(G1 ai)

i=1

det G| =

We say G is admissible for A if these conditions hold, i.e.,

HX(G,CM;)

i=1

|det G| =

An admissible transformation always preserves the discriminant:
D(.«i) = D(A)

since

(i — a;)det G
x(G, :)x(G, o)
Admissible transformation has freedom of degree 2, i.e., it can transform given two points,
say u,v € A, to 0,00: Choose v and w suitably to make

_(v —vn
G—‘(w —wu)

[T &-al= 1]

1<icji<4 1<i<j<4

admissible for A.
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9 Normalization of “Roots” and Symmetry of the Curve C
We write a = a1, 8 = ay,y = az and § = ay. Set
ei=b,~+b4, (’&=1,2,3)

Then, e;, e; and e3 constitute a basis of the space II;,;. We get

L |t=a)t=8H-8)
2 = gl p 6 -a)
(t— B)(t — &)y~ a)
gl G E— 6 -p)|
(t-DE-0B-a)|
tlog | =BG =]

=: 2z (t)e; + 22(t)es + 223(t)es.

The argument for intersection with subspace implies z;(t) has at most 2 critical points.
Therefore, z;(t) has one critical point in each of |3,7[ and ]6,a[. We call them u(3,7)
and u(d, «). Similarly, u(a, 8) and (v, d) are defined by 23.

We can transform u(8,v) and u(d, ) respectively to 0 and oo by an admissible trans-
formation. Therefore, we assume a = —§, 3 = —v without altering the geometry of the
curve C. The cross ratio

A= — (’}'—-IB)(Q—(S)

G-nE-a)
of A is a projective invariant (upto permutation of “roots”).
Admissible transformation determined by u(c, 3) — 0 and u(7y, §) — oo inverts A.
We say A is normalized if oo = —§, B = —v and 4v6/(§ —v)® = A > 1. We can
assume that 4 is normalized without altering the geometry of the curve C.
We now have v > §/(3 + 2v/2).
Set L = v+ 6. Then, v'D = 4y§L*(6 — )? < L%/A. We now have

20(t) = z(t)er + z(t)es + z3(t)es

L log|TE=2)E=)].
B 12— A=)
(t-B)t—98)|
+1'@—)a 1
(t—7)(E—9)

+log t—a )(t—,B) - e3.

We set p = —p(a, B) = u(v,6) = V4.



226

Then, the curve C is preserved by the projective transformations ¢ — —t, t — —pu?/t
and t — p2/t. Note: transformations

-1 —H Iz
1 ) ﬂ—l ) /1'—1
are admissible for A.

The three transformations have the same effect on the curve C as the rotations around
Re;, Re; and Reg of angle 7 in the space Il .

10 Four Asymptotic Parts and One Bridge of C

Hereafter, we assume D > 10%.

We wrap C by five“cylinders” (four “asymptotic cylinders” and “the bridge”). The
part of C corresponding to ¢(4 + u) with
-1._ |ul < 4

d—vy+u~ L2

will be called the asymptotic part of C at §. Asymptotic part of C at other “roots” are
defined by symmetry.

The rest of the part of C will be called the bridge.

In the asymptotic part, we have (e.g.)

dist(@(d + u), L4) < s7*

S

and
(2r)> > 2(logs)? + (log s +log A — 0.2)?,
(2r)> < 2(logs + 2)* + (log s + log A + 2)?,
where 7 = ||¢(t)||. The first inequality and D < L'? imply
logD < 7. (1)
Since 1 < A < L8/v/D, we have A < s®. Thus, the second inequality implies
logs > v2r/3

and
dist(4(0 + u), Lq) < e~ V273,

We have the Gap Principle

> A1), 6(t),6(¢) exp (VEr/3) >0 ®)
when ¢(t), (') and ¢"(t) belongs to the same asymptotic part of C and ||p(t)|| < ||o(#)]| <
" := ||¢(t")||. This follows from the previous estimate and the simple estimate

A1), (), o (t") < r" - dist(4(t), La)
and the result of §6.
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11 Original Arithmetic Situation

We say f(X,Y) is arithmetic (or A is arithmetic) if f(X,Y) € Z[X,Y] is irreducible. We
say t is arithmetic if f(X,Y) is arithmetic and z(t), y(t) € Z. (Later, we shall extend its
use.)

When t and ¢’ are arithmetic, ¢(t) — ¢(¢') belongs to the image & of the regulator map
of the unit group of the field defined by f(X,1):

(t) — 6(t) = log&'= (log [e?]), ;s € €

(Just recall ¢m(t) = log | DY/® (z — yom) /|f'(em)[/?| and |£(2(t), y(2))] = 1.)

By tuning the Gap-Principle of Bombieri-Schmidt in our setting, we see there are at
most 4 arithmetic points ¢ such that ¢(t) is on the bridge.

We have seen, under the normality of the roots,

dist(¢(6 + u), L4) < e V23,

The left hand side has an invariant representation:

. 2 _ Jog? (t—a)(6 = 0)
9 . dist(¢(d +u), L4)* =1 (J—a)(t—ﬁ)‘
2|t =B)(6 =) 2 |[E=7)(6-0)
e ae— | T [Tme-a)l ®)

Thus, we get the inequality

L t-a)G-p)
A=log| G0 e—p)

of the invariant quantity A under GL(R).

Switching back to the original configuration and assume A is an arithmetic configu-
ration and t, ty are arithmetic points. Let & = Q(a). Let log ¢, logn, log§ be successive
minima of log O(R)*. (||log¢]| < ||logn|| < ||logé|l.) Then, A is a linear combination
with rational integral coefficients in log((to—a)(6—B8)/(6—a)(to—2B)), log(¢1/¢2) Jog(m1/n2)
and log(&;/&2). Here, the subscript of {;, 7; and &; denotes the embedding of & induced
by a — a;.

By using Matveev’s lower bound (E. M. Matveev, “An explicit lower bound for a
homogeneous rational linear form in the logarithms of algebraic numbers. II”, Izvestiya
Mathematics 64 (2000) 1217-1269.), we get

logD\ 1
r<<-—10g|A|<<log(T+Og ) HAk, 4)

<< e-—-\/2—r/3’

where we set

_ (to —)(6 — B) . ) N
A =h ((50_ Dt ﬂ)) , (to: arithmetic point);

Ay = ||log(ll, As=lognl, As=|logg]l-
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12 Controlling the Parameter A,

‘We want to control the size of

(to — o) (o — )

tog (05 — a;)(to — au) |

The identity (3) implies

(to — @;)(0 — o)
(6 — a;)(to — o)

log < dist(¢p(to), £4) < 1.

For other «;, we have

(to — aj) (0 — o)
(oi — a;)(to — )

By symmetry of the curve, there is a point z such that

dist(z, L) = dist(d(to), £), |12 = et

log

< dlSt(¢(to) L; )

Thus,
dist(¢(to), £i) < 2[|é(to)ll + o(1).

(to — a;) (@i — o)
(i — ;) (to — ax)

We now see

log < [l (to)]l-

Hence, A; < ||¢(to)|| + log D.

13 Counting All Arithmetic Points

Suppose 13 arithmetic points exist. Remove 4 arithmetic points of minimal “radii” ||¢(¢)|.
The arithmetic points on the bridge are removed. (See §11.) For the rest of the arithmetic
points t, we have log D < {|¢(¢t)||. (See (1) of §10.)

At least 3 arithmetic points ¢,¢' and ¢” concentrate on an asymptotic part. Write
= o), v = ll¢)]l,r = l¢(t)|l. WLOG, r" > r' > r. We get

II / A4
Tog (m/Ag) < H A

from log D < r and (4). Thus, we get

4 3
<« HA[, - log (H Ak)
k=1 k=1
We set tp = t. Then, we get

4
r < HA‘“ -rlogr
k=2
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since A; < ||¢(to)|| + log D <« 7 by the result of §12 and the analytic class number
formula implies log A;A3A4 < log D(8R) < log D < . For showing r < 1, we would like
to combine this inequality with the Gap Principle (2):

"> A (0),6(t), 6 (") exp (VEr/3).

It will establish the theorem since log D < 7.
The result of §6 implies linear independence of ¢(t') — ¢(t) and ¢(¢") — &(t) over R.
Let log ¢ and log& be a reduced basis of the plane lattice

Z(g(t) — ¢(1)) + Z(H(t") — ¢(2))-
Then, the theory of basis reduction of plane lattice implies
A(8(2),6(t), 8 (") > || log{ll - [1og €]l > Asds.
Easier Case: If A4 < 2r, we easily argue as follows:
ArAzeV?T & 1" & AyAgr?logr;

r<l.

Harder Case: We now treat the harder case of Ay > 2r. The lattice generated by
vectors

¢(T) — ¢(t), (T : arithmetic point, |§(T)|| < [|$(2)1)

is a sublattice of finite index of the lattice Zlog( + Z logn. (Here, we use the result of §6
noting that there are at least five points of the form ¢(T').) Therefore, A;, A3 < 2r. Those
T’s and ¢, t” form a set of 7 or more points. Hence, log(,logn, log ¢ and log§ generate
a space lattice by the result of §7. Therefore, || log || > As. (Obviously, | log Ell > Azl
Now, we can argue as follows:

AgA V2B « " &« AjAyr?logr

r<<l.



