<table>
<thead>
<tr>
<th>Title</th>
<th>A Numerical Methodology for a Singular Limit Problem (The Numerical Solution of Differential Equations and Linear Computation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikota, Ryo; Mimura, Masayasu; Nakaki, Tatsuyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1320: 29-36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43076</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Numerical Methodology for a Singular Limit Problem

北海道大学・大学院工学研究科 井古田 亮 (Ryo IKOTA)
Graduate School of Engineering, Hokkaido University

広島大学・大学院理学研究科 三村 昌泰 (Masayasu MIMURA)
Graduate School of Science, Hiroshima University

九州大学・大学院数理学研究院 中木 達幸 (Tatsuyuki NAKAKI)
Faculty of Mathematics, Kyushu University

1 Introduction

In ecological and chemical problems, we encounter nonlinear equations of the form

\begin{align*}
(1)\quad w_t &= \nabla(d(w)\nabla w) + h(w) \quad x \in \Omega, \quad t > 0, \\
(2)\quad \frac{\partial w}{\partial \nu} &= 0 \quad x \in \partial\Omega, \quad t > 0, \\
(3)\quad w(0, x) &= w_0(x) \in L^\infty(\Omega) \quad x \in \Omega,
\end{align*}

where $d(s)$ is a step function:

\begin{equation}
 d(s) = \begin{cases}
 d_1 & (s \geq 0), \\
 d_2 & (s < 0).
 \end{cases}
\end{equation}

The function $w = w(t, x)$ is a real-valued function, d_1 and d_2 are positive constants, Ω is a bounded region in \mathbb{R}^N with a smooth boundary $\partial\Omega$, and ν is the unit outer normal to $\partial\Omega$. The aim of this article is to present a time-discrete scheme for (1)–(3), which is based on the operator-splitting methodology.
The problem (1)–(3) is obtained as a singular limit of the following system:

\begin{align*}
(5) & \quad u_t = d_1 \Delta u + f(u)u - kuv \quad x \in \Omega, \ t > 0, \\
(6) & \quad v_t = d_2 \Delta v + g(v)v - \alpha kuv \quad x \in \Omega, \ t > 0, \\
(7) & \quad \frac{\partial u}{\partial \nu} = 0, \quad \frac{\partial v}{\partial \nu} = 0 \quad x \in \partial \Omega, \ t > 0, \\
(8) & \quad u(0, x) = u_0(x), \quad v(0, x) = v_0(x) \quad x \in \Omega.
\end{align*}

Here \(\alpha \) and \(k \) are positive constants. The functions \(f \) and \(g \) are written as \(f(s) = a_u(R_u - s) \) and \(g(s) = a_v(R_v - s) \), where \(a_u, \ a_v, \ R_u \) and \(R_v \) are positive constants.

Let \((u^{(k)}, v^{(k)})\) be a solution to (5)–(8). Dancer et al. have shown that as \(k \to \infty \) the function \(w^{(k)} = u^{(k)} - v^{(k)}/\alpha \) converges to a weak solution \(w \) to (1)–(3) with a function \(h \) such that

\[h(s) = \begin{cases} f(s)s & (s \geq 0), \\ g(-\alpha s)s & (s < 0). \end{cases} \]

Furthermore they proved that \(u^{(k)} \to [w]^+ \) and \(v^{(k)} \to \alpha[w]^− \) respectively, where \([a]^±\) is \(\max\{±a, 0\} \); see Proposition 2.1 in [1] for the detail. Thus (1)–(3) describes the asymptotic behavior of (5)–(8).

The system (5)–(8) models behavior of competing biological species. On the other hand, when \(f = g \equiv 0 \), (5)–(8) is a model of chemical reactions. In this case the singular limit also leads to (1)–(3). Evans [2] has given convergence proof for restrictive initial data. Tonegawa [6] proved regularity properties of solutions to the limiting problem.

2 A Time-Discrete Scheme

We present a time-discrete scheme to integrate (1)–(3) numerically.

Put

\[F(s) := f(s)s, \quad G(s) := g(s)s. \]

Then the scheme that we propose is written as follows.

Threshold Competition Dynamics (TCD)

Let \(M \) be a positive integer. The approximate solution \((u_M(t, x), v_M(t, x))\) by TCD to the limiting problem of (5)–(8) as \(k \to \infty \) is defined by

\begin{align*}
(11) & \quad u_M(0, x) = u_0(x), \quad v_M(0, x) = v_0(x) \quad \text{for } x \in \Omega, \\
(12) & \quad u_M(t, x) = u_M^j(t, x), \quad v_M(t, x) = v_M^j(t, x) \quad \text{for } t \in (t_j, t_{j+1}], \ x \in \Omega,
\end{align*}

where \(u_M^j, v_M^j \) are the solutions to the threshold competition dynamics.
The functions $\overline{u}_{M}^{j}(t, x)$ and $\overline{v}_{M}^{j}(t, x)$ are constructed by the following steps:

Step 1. Put $u_{M}^{0}(x) = u_{0}(x)$, $v_{M}^{0}(x) = v_{0}(x)$ ($x \in \Omega$).

Step 2. For given $u_{M}^{j}(x)$ and $v_{M}^{j}(x)$,

(i) Find $\overline{u}_{M}^{j}(t, x)$ and $\overline{v}_{M}^{j}(t, x)$ such that

\[
\begin{align*}
\frac{\partial \overline{u}_{M}^{j}}{\partial t} &= d_{1}\Delta \overline{u}_{M}^{j} + F(\overline{u}_{M}^{j}) & x \in \Omega, & t_{j} < t < t_{j+1}, \\
\frac{\partial \overline{u}_{M}^{j}}{\partial \nu} &= 0 & x \in \partial \Omega, & t_{j} < t < t_{j+1}, \\
\overline{u}_{M}^{j}(t_{j}, x) &= u_{M}^{j}(x) & x \in \Omega,
\end{align*}
\]

(ii) Define $u_{M}^{j+1}(x)$ and $v_{M}^{j+1}(x)$ by

\[
\begin{align*}
u_{M}^{j+1}(x) &= \lim_{\theta \rightarrow \infty} \hat{u}_{M}^{j}(\theta; x), & v_{M}^{j+1}(x) &= \lim_{\theta \rightarrow \infty} \hat{v}_{M}^{j}(\theta; x),
\end{align*}
\]

where \hat{u}_{M}^{j} and \hat{v}_{M}^{j} solve

\[
\begin{align*}
\frac{d \hat{u}_{M}^{j}}{d \theta} &= -\hat{u}_{M}^{j} \hat{v}_{M}^{j} & x \in \Omega, & 0 < \theta < k\tau, \\
\frac{d \hat{v}_{M}^{j}}{d \theta} &= -\alpha \hat{u}_{M}^{j} \hat{v}_{M}^{j} & x \in \Omega, & 0 < \theta < k\tau, \\
\hat{u}_{M}^{j}(0; x) &= \overline{u}_{M}^{j}(x, t_{j+1}), & \hat{v}_{M}^{j}(0; x) &= \overline{v}_{M}^{j}(x, t_{j+1}), & x \in \Omega.
\end{align*}
\]

We note that an operator-splitting method is used in Step 2, that is, (5) and (6) are splitted into

\[
\begin{align*}
u_{t} &= d_{1}\Delta u + F(u), & v_{t} &= d_{2}\Delta v + G(v),
\end{align*}
\]
\[
\frac{du}{dt} = -kuv, \quad \frac{dv}{dt} = -kav.
\]

The main idea of TCD is Step 2 (ii). Let \(\theta = kt \); then (19) are rewritten to (17). Instead of passing to the limit \(k \to \infty \) in (19), we use the asymptotic limit \(\theta \to \infty \) in a solution to (17). The limit is easily obtained. In fact, by using the fact that \(d(u - v/\alpha)/d\theta = 0 \), it follows that

\[
\lim_{\theta \to \infty} \hat{u}_{M}^{j}(\theta; x) = \overline{u}_{M}^{j}(t_{j+1}, x) - \overline{v}_{M}^{j}(t_{j+1}, x)/\alpha
\]

\[
\lim_{\theta \to \infty} \hat{v}_{M}^{j}(\theta; x) = \alpha \overline{u}_{M}^{j}(t_{j+1}, x) - \overline{v}_{M}^{j}(t_{j+1}, x)/\alpha
\]

3 Results

To state our results we need to define a weak solution to (1)-(3).

Definition. We call \(w \) a weak solution if it satisfies:

\[
(22) \quad w \in L^\infty(\Omega \times (0,T)) \cap L^2(0,T; H^1(\Omega)) \cap C([0,T]; L^2(\Omega)),
\]

\[
(23) \quad \int_{\Omega} w(T)\phi(T) - \int_{Q_T} \{ w\phi_t - d(w)\nabla w \nabla \phi + h(w)\phi \} = \int_{\Omega} w_0\phi(0),
\]

for all \(\phi \in C^1(\overline{Q}_T) \), where \(Q_T = \Omega \times (0,T) \).

Remark 1. There exists a unique solution to (22)–(23) if \(w_0 \in L^\infty(\Omega) \) [1].

We are ready to state our results.

Theorem A. Suppose \(w_0 \in L^\infty(\Omega) \). Set \(u_0 = [w_0]^+ \) and \(v_0 = \alpha[w_0]^− \). Let \(w \) be a weak solution for the initial data \(w_0 \) and \((u_M, v_M) \) an approximate solution by Threshold Competition Dynamics for the initial data \((u_0, v_0) \). Then \(u_M, v_M \) and \(w_M = u_M - v_M/\alpha \) converge to \([w]^+, \alpha[w]^−\) and \(w \) in \(L^2(0,T; L^2(\Omega)) \) respectively as \(M \) tends to \(\infty \).

Moreover, if \(d_1 = d_2 \) we have information about the convergence rate. Let \(\Omega^{\text{int}} \) be a Lipschitz domain such that \(\Omega^{\text{int}} \subset \subset \Omega \). Denote \(\Omega \setminus \overline{\Omega^{\text{int}}} \) by \(\Omega^{\text{ext}} \).
Theorem B. Functions w_0, u_0, v_0, w_M and w are the same as those in Theorem A. Assume that

\begin{equation}
(24) \quad u_0 \in H^2(\Omega^{\text{int}}), \quad v_0 \in H^2(\Omega^{\text{ext}}), \quad u_0 = v_0 = 0 \text{ on } \partial\Omega^{\text{int}},
\end{equation}

and that there exists a sequence of functions $\{a_n\}_{n=1}^\infty$ such that

\begin{align}
(25) & \quad a_n \in C^2(\overline{\Omega}^{\text{ext}}), \quad \text{for some constant } R_0, \\
& \quad 0 \leq a_n \leq R_0 \quad (n = 1, 2, \ldots), \\
& \quad \frac{\partial a_n}{\partial \nu} \big|_{\partial \Omega} = 0 \quad (n = 1, 2, \ldots), \\
& \quad a_n \to v_0 \text{ as } n \to \infty \text{ in } H^2(\Omega^{\text{ext}}).
\end{align}

In addition if $d_1 = d_2$, then

\begin{align}
(26) & \quad \| (u_M(T) - v_M(T)/\alpha) - w(T) \|_{L^2(\Omega)} \leq C(1/M)^{1/2}, \\
(27) & \quad \| (u_M(T) - v_M(T)/\alpha) - w(T) \|_{L^1(\Omega)} \leq C'(1/M),
\end{align}

where C and C' are positive constants independent of M.

4 Outline of the Proof

4.1 Theorem A

We work within the framework of the evolution triple $H^1(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow (H^1(\Omega))^*$ (see chapter 23 in [7] or chapter 3 in [5]).

The next lemmas play an important role in the proof.

Lemma 4.1. Functions u_M and v_M are uniformly bounded in $L^2(0,T;H^1(\Omega))$ with respect to M.

Lemma 4.2.

\begin{equation}
(28) \quad \iint_{Q_T} u_M v_M \to 0 \quad \text{as } M \to \infty.
\end{equation}

In view of Lemma 4.1 we observe w_M is uniformly bounded in $L^2(0,T;H^1(\Omega))$ with respect to M and so is $\partial_t w_M$ in $L^2(0,T;H^1(\Omega)^*)$. Hence thanks to the compactness
property (Theorem 2.1, chapter 3 in [5]) we obtain a subsequence from \(\{w_M\} \), which is denoted by \(\{w_M\} \) again, converging in \(L^2(0, T; L^2(\Omega)) \). We write the limit as \(w_\infty \):
\[
(29) \quad w_M \to w_\infty \quad \text{in} \quad L^2(0, T; L^2(\Omega)) \quad \text{as} \quad M \to \infty.
\]
With the aid of Lemma 4.2 we obtain, passing to a subsequence if necessary,
\[
\begin{align*}
 u_M &\to [w_\infty]^+ \quad \text{in} \quad L^2(0, T; L^2(\Omega)), \\
v_M/\alpha &\to [w_\infty]^– \quad \text{in} \quad L^2(0, T; L^2(\Omega)).
\end{align*}
\]
Then \(w_\infty \) turns out to be the weak solution to (1)–(3).

4.2 Theorem B

Throughout this subsection we assume that the conditions for Theorem B are satisfied. Set
\[
(30) \quad e_j^{(p)} := \|w_M(t_j, \cdot) - u(t_j, \cdot)\|_{L^p(\Omega)} \quad (p = 1, 2).
\]
Our strategy is to deduce a recursive inequality for \(e_j^{(p)} \).

To prove the theorem we use the following lemmas.

Lemma 4.3. For any positive \(\varepsilon \), there exist \(k = k(\varepsilon) > 0 \) and non-negative functions \(u_0^{(\varepsilon)}(x) \), \(v_0^{(\varepsilon)}(x) \) such that solutions \(u^{(k(\varepsilon))} \), \(v^{(k(\varepsilon))} \) to (5)–(7) with the initial conditions \(u^{(k(\varepsilon))}(0, \cdot) = u_0^{(\varepsilon)} \) and \(v^{(k(\varepsilon))} = v_0^{(\varepsilon)} \) satisfy the following:
\[
\begin{align*}
 &\|w^{(k(\varepsilon))} - w\|_{C([0,T];L^p(\Omega))} \leq \varepsilon, \\
 &\|u^{(k(\varepsilon))} - [w]^{+}\|_{C([0,T];L^p(\Omega))} \leq \varepsilon, \\
 &\|v^{(k(\varepsilon))}/\alpha - [w]^{-}\|_{C([0,T];L^p(\Omega))} \leq \varepsilon,
\end{align*}
\]
where \(w^{(k(\varepsilon))} = u^{(k(\varepsilon))} - v^{(k(\varepsilon))}/\alpha \) and \(p = 1, 2 \).

Lemma 4.4. Consider the following equations in each interval \([t_j, t_{j+1}] \):
\[
\begin{align*}
 \frac{\partial \overline{u}_{M}^{j,\varepsilon}}{\partial t} & = d_1 \Delta \overline{u}_{M}^{j,\varepsilon} + F(\overline{u}_{M}^{j,\varepsilon}), \quad t_j < t \leq t_{j+1}, \quad x \in \Omega, \\
 \frac{\partial \overline{u}_{M}^{j,\varepsilon}}{\partial t} & = d_2 \Delta \overline{\varepsilon_{j}^{j,\varepsilon}} + G(\overline{\varepsilon_{j}^{j,\varepsilon}}), \quad t_j < t \leq t_{j+1}, \quad x \in \Omega, \\
 \frac{\partial \overline{u}_{M}^{j,\varepsilon}}{\partial \nu} & = \frac{\partial \overline{\varepsilon_{j}^{j,\varepsilon}}}{\partial \nu} = 0, \quad t_j < t \leq t_{j+1}, \quad x \in \partial \Omega, \\
 \overline{u}_{M}^{j,\varepsilon}(t_j, x) & = u^{(k(\varepsilon))}(t_j, x), \\
 \overline{\varepsilon_{j}^{j,\varepsilon}}(t_j, x) & = v^{(k(\varepsilon))}(t_j, x).
\end{align*}
\]
If $d_1 = d_2$, the following inequality holds:

(35) \[\|w_M(t_{j+1}, \cdot) - \overline{w}_M^{j, \epsilon}(t_{j+1}, \cdot)\|_{L^p(\Omega)} \leq (e_j^{(p)} + \epsilon)(1 + E\tau), \quad (p = 1, 2), \]

where E is independent of M, j and ϵ.

Lemma 4.5. Suppose $\overline{w}_M^{j, \epsilon}$ is given by (34). If $d_1 = d_2$, $\overline{w}_M^{j, \epsilon}$ satisfies

(36) \[\|\overline{w}_M^{j, \epsilon}(t_{j+1}, \cdot) - w^{(k(\epsilon))}(t_{j+1}, \cdot)\|_{L^2(\Omega)} \leq C_1\tau^{3/2}, \]

(37) \[\|\overline{w}_M^{j, \epsilon}(t_{j+1}, \cdot) - w^{(k(\epsilon))}(t_{j+1}, \cdot)\|_{L^1(\Omega)} \leq C_2\tau^2, \]

where C_1 and C_2 are independent of M, j and ϵ.

Now we are in a position to prove Theorem B.

Proof of Theorem B. From (31), (35) and (36) we observe

\[
e_{j+1}^{(2)} = \|w_M(t_{j+1}, \cdot) - w(t_{j+1}, \cdot)\|_{L^2(\Omega)} \leq \|w_M(t_{j+1}, \cdot) - \overline{w}_M^{j, \epsilon}(t_{j+1}, \cdot)\|_{L^2(\Omega)} + \|\overline{w}_M^{j, \epsilon}(t_{j+1}, \cdot) - w^{(k(\epsilon))}(t_{j+1}, \cdot)\|_{L^2(\Omega)}
\]

\[
+ \|w^{(k(\epsilon))}(t_{j+1}, \cdot) - w(t_{j+1}, \cdot)\|_{L^2(\Omega)} \leq (e_j^{(2)} + \epsilon)(1 + E\tau) + C_1\tau^{3/2} + \epsilon.
\]

Since ϵ is arbitrary, we have

\[
e_{j+1}^{(2)} \leq (1 + E\tau)e_j^{(2)} + C_1\tau^{3/2}.
\]

Consequently we are led to $e_{M}^{(2)} \leq C(1/M)^{1/2}$. In a similar way we arrive at $e_{M}^{(1)} \leq C'(1/M)$, thereby completing the proof. \[\square \]

5 Concluding Remarks

In [4] we have applied TCD to three-component competition-diffusion systems.

Some numerical experiments show that TCD converges in practical computations for the singular limit of the two-component system. For the completeness, further experiments are under way.
It is interesting to investigate whether the idea of TCD is applicable or not to other problems that are characterized as singular limits of reaction-diffusion systems. In fact, numerical experiments suggest that it is applicable to certain problems.

To integrate (1)–(3) numerically, we can also use the Finite Volume Method (FVM). Eymard et al. have given a convergence proof of FVM for the following:

\begin{align*}
 u_t(t, x) - \Delta \Phi(u(t, x)) &= v(t, x), & x \in \Omega, & t > 0, \\
 \frac{\partial \Phi(u)}{\partial \nu} &= 0, & x \in \partial\Omega, & t > 0, \\
 u(0, x) &= u_0(x), & x \in \Omega,
\end{align*}

where $\Phi \in C(\mathbb{R})$ is a non decreasing locally Lipschitz continuous function and $u_0 \in L^\infty(\Omega)$, $v \in L^\infty(\Omega \times (0, T))$. See [3] for the detail.

To prove Lemma 4.5, we resort to the Duhamel formula. We write $u^{(k(\epsilon))}$ and $v^{(k(\epsilon))}$ with the formula. Then the terms related to $k(\epsilon)$ disappear from the expression of $w^{(k(\epsilon))}$ when $d_1 = d_2$.

References

