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1 Introduction

In the previous papers [1,2], the author introduced Penalized Logistic Regression Machines
for multiclass discrimination. The machines are intended to handle noisy stochastic data
and it was shown that by penalizing the likelihood in a specific way, we can intrinsically
combine the logistic regression model with the kernel methods. In particular, a new class
of penalty functions and associated normalized projective kernels were introduced to gain
a versatile induction power of the learning machines. The purpose of this note is to show
the use of the conjugate gradient methods for solving the nonlinear equations arises in
the learning process by Newron’s method. In the section 2 through 8, we summarize the

previous papers[1,2] and the new CG-Newton methods are introduced in the section 6
and 8. .

2 Multiclass Discrimination Problem

Let us consider the problem of multiclass discrimination given a finite number of training
data set {(x,¢;)}iz1,.. N, Where x; is a column vector of size n whose elements may be
both continuous and discrete numbers and c; takes a value in the finite set {1,2,..., K’}
of classes. We are concerned with the construction of i) a conditional multinomial dis-
tribution M(p*(x)) of ¢ given x € R", where p*(x) is a predictive probability vector
whose k-th element p}(x) indicates the probability of ¢ taking the value k, and also ii)
prediction function ¢ = d*(x) € {1,2,..., K}, which are used respectively as stochas-
tic and deterministic prediction of ¢ given x. Let e; = (0,...,0,1,0,...,0))* be the k-th
unit column vector of size K, and let the K x N constant matrix Y be defined by
Y=y y2 ; yn]=[ey; €y ‘'3 €| whose j-th column vector y; = e,
indicates which class the data c; belongs to.

3 Normalized Projective Kernels

Following the idea of the Support Vector Machines, we introduce a map

B(x, A) = (¢1(x, A), $2(X, A), ooy (X, A))* (1)



from R™ into R™, where A is a hyperparamter vector. For ¢(x,)), we can choose a
set {dm(x,A)}iz12,.m of arbitrarily many functions. We will drop the argument A for
notational simlicity. Let @ be the m X NN constant matrix defined by

Q= [d(x1); B(x2); -3 O(xn)] (2)

whose j-th column vector is ¢(x;). In order to gain a versatile induction power of the
resulting method we always include the constant function ¢o(x) = w as a member of the
regressors, and let the associated augmented map @(x) and the (m + 1) x N constant
matrix ® be defined respectively by

(%) = ((;S‘(dx)) ,and @ = [w;;v] (3)

where w is a fixed nonnegative constant to be considered as a hyperparameter. s In order
to prepare for the arguments in the subsequent sections, we need to introduce a Normalized
Projective Kernel function K, (x,y) of two arguments (x,y) € R™ x R™, defined by the
bilinear form

Kule,y) SFEETB) = 5P + (090 — wn) B od(y) - wm),
= G+ (6() — o) S (BLy) - dom), @

of the maps @(x) and $(y), where @ (x) is the transpose of the column vector @(x) and
Y is an (m + 1) x (m + 1) positive definite matrix which is parametrized as

=s_f(o\[/c\ [0 0O _ [o? out
Ez(u) (u) +[0 E]z[vu E+uﬂ‘]' 5)
by a scalar o, a column vector u and an m X m positive definite matrix X, which are
considered to be hyperparameters, and ¢y = w/o. Note that any positive definite matrix
3 can be put in this form, because the middle part of Eq.(5) is an m-step-premature
Cholesky decomposition of .
It will be shown in Sections 6 and 7 that with a penalized logistic regression model
given in the next section we could work directly with the kernel function without resorting

explicitly to the map @(x) and the parameter > themselves. In fact, we only need the
N x N constant matrix

K& = [Ku(xi, %)) =8 T7 8 = i1yl + (B — dopl}y)! 1@ — doull)  (6)
and the map k., (x) from R™ into R" defined by
mu(x) =T T7G00) = ¢fLn + (8 ~ dopl}y) T4~ don) (7)

There are many possibilities for choosing the hyperparameter u. A typical choice is
p=N"1®1y = N1TY, ¢(x;). We briefly touch on the relationship of the normalized
projective kernel to the ordinary (but normalized) kernel Ko(x,y) = ¢*(x) £~ 1¢4(y). In
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particular, we relate the matrix in Eq.(6) and the function in Eq.(7) to the existing ones.
If 1 is chosen as above, then

K¢ = NG + (Iy — dolly) Ka(Iy — dolly),

Kuw(x) = $31n + (In — ¢TIy )(Ko(%X) — N doKi1y)

where IIy = N~'1y1% is the orthogonal projector onto the space spanned by 1. These
equations can be used as formulas for converting the existing kernels to normalized pro-
jective kernels.

4 Penalized Logistic Regression Models

In order to solve the problem mentioned earlier, we introduce the penalized logistic regres-
sion model. We assume that the joint probability distribution {(x,y) of (x,y) from which
the training data is sampled is unknown and that the conditional distribution {(y|x) of y
given x, follows the multinomial distribution M(p(x)) specified by the probability vector

P(x) = (p1(x), p2(X), -, Px (%))* = B(E(X)), (8)

which is parametrized by the logistic transform p(f), due to Leonard(1973), of the affine
transformation f(x) of the map ¢(x), where

p(f) = (Bu(£), 52(£), ..., Px (£))!, where pr(f) = expfi(d_ expfi)™, 9)

f(x) = (f1i(x), fo(%), ..., f (%) = wwo + W (x) = W ¢(x), (10)

wo and W are respectively an K x 1 parameter vector and an K X m parameter matrix
to be estimated from the given training data, {(x;,y:)}i=1,..~ as y; given in Eq.(??), and
the K x (m+ 1) augmented parameter matrix W = [wg ; W] is introduced for notational
convenience.

If the data is completely separable by the map f(x), there exists no maximum likeli-
hood estimate of W which maximizes the likelihood function

N N N
L(W) = [ pe;(x3) = T[] 8, (£ () = T] 5e;(W ¢(x)) (11)

j=1 j=1 j=1
with respect to W. Besides, even in the cases where the maximum likelihood estimate
W™ exists, overfitting could occur with W™, If this is the case, the learning process of
maximizing the likelihhod suffers from the phenomenon called 'overlearning’. In order to
avoid it and obtain a due induction(generalization) capacity to the size and the quality of

an available training data set, we introduce a penalty function

— e 1
Pirauct(W) = e:vp(—%trace IWEW) = ea:p(-—-2~(||awo + Wyuljd + trace TWEZWY)),



where I' is an K x K positive definite matrix, ¥, o, , 1w and X are given in Sectlon 2, | llF
is the Frobenius norm, and |jaj|} = a'Ta.

We employ the penalized logistic regression(PLR) likelihood PLs(W) = L(W)Pnduct(W)
which is to be maximized for obtaining the optimal parameter value W* of the model,
where § € [0,00) is a balancing parameter introduced for notational convenience. We
have introduced the matrices T' and ¥, the vectors £ and A, the scalars w, o and ¢ as
hyperparameters for the model so that we can gain a variety of induction(generalization)
capacity of the resulting machines by controlling them according to the sampling scheme
of training data set and also to the prospective situation in which the predictor is to be
used. Generally, we determine the values of the hyperparameters by a statistical criteria
such as the empirical Bayes method, the maximum Type II likelihood method and GIC
method.

The choice of T' does not affect the kernel function itself as was seen in [1,2], but it
controls the learning process and hence the induction characteristics of the obtainable
predictor. In other words, the induction penalty does not completely specify the kernel
function. See [1] for further discussions on this point.

5 Maximum PLR Likelihood

The maximum penalized logistic regression likelihood estimate W is given by minnimiz-
ing the negative—log—penalized—likelihood

pls(W) = —log PLs(W Z log pe,(£(x;)) + 6tmceI‘WEW (12)
ij=1
Bishop(1992) gave a set of formulas to be composed for obtaining the derivatives of this
function, but his formulas can be further simplified to the following closed formulas, in
which many terms in his formulas have been cancelled out one another in the case of the
likelihood of the multinomial distribution.
Lemma 1: The following equalities hold for § > 0.

Vpls(W) = (P(W) — V)& + TWZ, (13)

V2pls(W) = 3 (B, (%)) @ (P()] — pE)p )} + 68T (14)

j=1

where V = 8/0W arranged in the same K X (m + 1) matrix form as W itself, P(W)
is the K x N matrix defined by P(W) = [p(x1); P(X2); - --;P(xn)], whose j-th column
vector is given by p(x;) = P(£(x;)) = D(W ¢(x;)), [p | = daig(p) is the diagonal matrix
formed from the vector p and ® is the tensor product.

Lemma 2: The following equalities hold for § > 0.

SER®T < Vipls(W) < (38)®[Vp]+6ZeT
< (@FF)@(Ix - K 1glL)+6EQT < (3F)@Ix+6Z®T,  (15)
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where A < B implies that B — A is a nonnegative definite matrix, Ix is the identity

matrix of size K, Iy = N~'1y1% is the orthogonal projector onto the space spanned
— N

by 1y, and Vp = Vp(W) = _\/lp(xj) is the smallest vector such that Vp > p(x;) for
‘7=

J=1,2,..., N and the inequality is meant elementwise.

Proposition 3: The functions, plo(W) and pls(W) (6 > 0) are convex and strictly
convex functions respectively with respect to the parameter W. The function pls(W) has
the unique minimum point W which satisfies the condition, Vpl; (—W*) = Ok m+1, Where
Ok,m+1 is the K x (m + 1) zero matrix. See [1] for the proof.

PLRP: We adopt p*(x) = p(f*(x)) = p(W ¢(x)), as a our predictive probability vec-
tor, and y*(x) = arg max fr(x) as our deterministic predicton function, where f*(x) =

W é(x).

6 Penalized Logistic Regression Machines

Based on Lemma 1 and 2, we constructed in [1] the penalized logistic regression machine
(PLRM) for computing W~ ,.
PLRM-1: Starting with an K X (m + 1) matrix w° , generate a sequence of matrices

W' },_1 2,.. by the iterative formula for i=0,1,2,..., oo,
1

W =W — o (P(W) - Y)& +TW'S), (16)

where ® is the constant matrix given in Egs. (2).

Theorem 4: The sequence generated by PLRM-1 converges to the unique minimizer w*

of pls for any choice of initial matrix W's under certain condition which was specified

in [1], for example a; = (||Z||(JIK¢]| + 8||T'||))~:. Then its convergence rate is less than
= 8((IIK2]} + 8|IT|DIT Y ||cond )1, where condA = ||A||||A||(> 1) is the condition

number of a matrix A and ||A]| is the spectral norm of A. See [1] for details and the

proof.

PLRM-2: Starting with an K x (m + 1) matrix W, generate a sequence of matrices
{W },_1 2,.. by the iterative formula,

WH =W — AW, i=10,1,2, ..., 00, (17)

where AW" = G,,lrmz (W) is the unique solution of the linear matrix equation,

2 (p0s)] = P0xs) (e VAW (B(5) () + STAW' ©

= (P(W") - Y)® + TW'E. (18)



Theorem 5: The sequence generated by PLRM-2 converges to the unique minimizer W
of pls for any choice of initial matrix WO, if o; is chosen so that

pl,;(W + azAW) Plé(W) <1—y (19)
T trace (AW )tVpls(W') ~ ,

for a scalar v such that 0 < v < %, with o; = 1 whenever it satisfies Ineq.(42). Further,
there exist a number 7 such that the stepsizes o; = 1 is possible whenever i > %, and the
convergence is superlinear.

Theorem 6: The sequence generated by PLRM-2 converges quadratically to the umque
minimizer W~ of pl; if the initial matrix W satisfies

67 condX Y| (IKE] + SITINIAW 7 <

l\JIr—l

(20)

and if a; = 1 is chosen.

Eventually PLRM-2 has the quadratic convergence property if the stepsize is controlled
in such a way as in Theorem 5, because |AW'|| tends to zero, satisfying Ineq.(42) in a
final stage of the iteration.

The linearer equation (22) can be conveniently solved by the following algorithm.
CG Method: Starting with an arbitrary initial approximation AW, which is usually
taken to be zero matrix, we generate a sequence AW, of matrices which converges to the
solution of Eq. (22) by the following iterative formula.

Ro = (P(W') - V)& + TW'S (21)
- ,é ([P(x;)] — P(%;)(P(%;))) AW o (B(x;) (x;)) + STAW, T
Qo =Ro
Qs = £ (909~ 20 P05 IRo Bl (x) + 5T Ro
o — traceQLR

trace( 5, ([p(x;)] ~ P0xs) (05 )Qu @63 ) + ST Qe )

AWiy1 = AW} + 0 Qx, (22)
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Ry = (P(W) = Y)® +TW'S (23)
=3 (POu)] = POG)(P(6)) ) AW (B(,)3 (x,)) + AWy B
trace(,‘Z‘, ([p(x;)] — P(%;) (P(%,))") Qe(B(x;)8 (x;)) + STQT)RY
Bk = =

| tmce(,-lé (Ip(%5)] — POx;)(P(%5))) Q(B(x;) (x5)) + 6T Qi )Q

Qr+1 = Rit1 + B Qs

7 Dual Penalized Logistic Regression Likelihood

We showed in [1] that the penalized logistic regression model also yields a certain duality
which leads intrinsically to the kernel methods.

Eq.(13) implies that the minimizer W~ of pls(W) is of the form
W =Vv3T, (24)

where V* = §7'T'"}(Y — P(W")). Therefore, by introducing the dual parameter matrix
V of size K x N in such a way as

W =VeT (25)
we only have to minimize the negative log penalized logistic regression likelihood
pls(V) = pls(W) = pls(VE'E ) ~(26)

with respect to V instead of matrix W. This transformation of the parameters naturally
leads to the kernel methods. Substituting Eq.(25) into Eq.(10), we have

f(x) =W @(x) = VB T '3(x) = Vru(x). (27)

The matrix P(W) is unchanged with this transformation, but can also be denoted by
P(V) = P(W) =P(VE®'T ), whose j-th column vector p(x;) = p(£(x;)) = P(VKw(X;))
can be computed by using the map «,(x) only. Since the parameter transformation is
linear, the function pls(V) is also a convex function with rerspct to the dual parameter
V, in terms of which it is represented by

Hs(V) = pls(VET™) = — 5" log e, (Vicu(x,)) + dtraceTVLVE.  (28)

Jj=1



Remark: The transformed negative log penalized likelihood p~l¢;(V) involves only the
matrix K¢, its column vectors {ku(x;)} and T'. Also the predictor probability vector

{p(x;)} involves only the kernel function, x,(x). They do not depend explicitly on ¥,
@(x) nor X.

Lemma 7: The derivatives of pls with respect to the dual parameter V are given as
follows.
Vpls(V) = (P(V) = Y +TV)KS, (29)

Vipls(V) = ; {(ku(33)K5,(%5)) ® ([P(x;)] — P(x;)P*(x;))} + 0K ® T (30)

The second derivatives are uniformly bounded. See [1} for more details.

8 Dual Penalized Logistic Regression Machines

We constructed in [1] the dual penalized logistic regression machine (dPLRM) for com-
puting a minimizer V** of the function pls(V).

If the matrix K¢ is nonsingular, V** = V* is the minimizer which is the unique
solution of the matrix equation,

D(V)=P(V) =Y +6I'V = Ogn. (31)

An algorithm([1] was given for this case.

dPLRM-0: Starting with an K x N matrix V°, generate a sequence of matrices {Vi}izc12,..

by the iterative formula for i=0,1,2,..., 00
Vit = Vi — o(P(VH) - Y + STVY). (32)

Theorem 8: The sequence generated by dPLRM-0 converges to the unique minimizer
V* of pAl‘; (V) for any choice of initial matrix VO under certain condition, which was
specified in [1], for example o; = (J|K2}| + 8||T'||)~*. Then its convergence rate is less than
1=8((IKg] + SITIDIT=H)~". See [1] for the proof.

Remark : The vector field defined by D(V) is not a gradient vector field. Since the dual
machine dPLRM-0 which employs this vector field is such a simple process as to require
only the evaluations of 13(V) — Y and I'V and no matrix inversion, the present author
cannnot help speculating if this dual machine is a better approximation to phisiological
reality of learing process than the existing machines.

It K2 is a singular matrix, then we have the following algorithm, whose convergence
is generally slower than dPLRM-0.

dPLRM-1: Starting with an K x N matrix V°, generate a sequence of matrices {Vitiz12,..

by the iterative formula for i=0,1,2,..., oo,

Vitl = Vi— (P(VH) — Y + 8TVHKL. (33)
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We also give a dPLRM which has rapid converge property.

dPLRM-2: Starting with an K x N matrix VO, generate a sequence of matrices {V'};=1 2
by the iterative formula,

yees

VH'l =Vi—aiAVi, ] -_—'0,1,27""001 (34)

where AV is the solution of the linear matrix equation,

> (P(x))] = p(x4) (P (7)) YAV (s ()55, (%)) + STAVIKE

= (P(V%) =Y + T'VHK2, (35)

which, if K¢ is nonsingular, is equivalent to the linear equation,

; (lp(x))] — (%) (P(%;)))) AV (K, (x;)€%) + STAV?

=P(V) —~Y + IV (36)
where e; is the j-th unit vector.

Theorem 9: The sequence generated by PLRM-2 converges to the unique minimizer V*
of pls for any choice of initial matrix V°, if o; is chosen so that

~ i AV — pls (Vi
y S pla(v + azAY ) ?l‘s(v ) < -V, (37)
a; trace (AVH)tVpls(V?)

for a scalar v such that 0 < v < %, with a; = 1 whenever it satisfies Ineq.(37). Further,
there exist a number 7 such that the stepsizes a; = 1 is possible whenever i > 4, and the
convergence is superlinear.

Theorem 10: The sequence generated by dPLRM-2 converges quadratically to the
unique minimizer V* of plsif the initial matrix V© satisfies

5~ [T HIAEH + SITINIAV|lr < % (38)

and if o; = 1 is chosen.
Eventually dPLRM-2 has the quadratic convergence property if the stepsize is controlled

in such a way as in Theorem 21, because ||[AV?|| tends to zero, satisfying Ineq.(38) in a
final stage of the iteration.

The linearer equation (35) can be conveniently solved by the following algorithm.



CG Method: Starting with an arbitrary initial approximation AV, which is usually
-aken to be zero matrix, we generate a sequence AV} of matrices which converges to a
solution of Eq. (22) by the following iterative formula.

Ro =P(V)) - Y +4TV? (39)

= > (Ip(x)] = p(x;)(P(x;)))AVor;ej + TAV,
j=1

N

Qo = Y ([p(x5)] — P(x;) (P(x;))*)Roe;; + 6T Ro

=1

2

5% (190x3)] — P(xy)(Px,))VRusesr + AR
o = i g'
5* (I0(%5)] — POx;)(P(%;))!) Qukset + ST*Q
j=1 F
AV = AV + axQ, (40)
Ry = P(VY) =Y +6TV* k (41)
N
- Z—:1 (Ip(x;)] = P(X;)(P(X;)))) AV 15565 + T AV
N 2
| ()~ D 00 R + TR
Br = e AE
55 (1p(x)] — () (P(xs))) Reent + STRy
j=1 F

N
Qi1 = Y (Ip(x5)] — P(x;)(P(%;))") Rec18555 + ST Ries1 + BrQu
i=1

where k; = k,(x;) and || || is the Frobenius norm of a matrix.

Remark: We can work out the process of getting the predictor only with the quantities
related to the symbols V, P(V), K2, k. (x) and T' without resorting at all to W, P(W),
P, ¢(x) nor T, which we can also do without for evaluation of the functions, '

£ (%) = V*Ku (%), (42)
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and the predictive probability

P (x) = p(f*(x)) = p(V"ru(x)), (43)

for the prediction given x. This implies that we could perform the above mentioned
learning and prediction process only with the kernel function K(x,y) without resort to
the original map ¢(x) itself. It does not even matter whether the kernel function is
constructed from such a map. The situation is largely parallel to that of SVM. See
Scholkopf et al.(1999). The methods described in this and the previous sections will be
called dual penalized logistic regression methods and the method described in Sections 4
and 5 are called primal methods. Likewise, the algorithms given in Section 5 are called
primal PLR machines as against dual PLR machines.

The full reference is not included here due to space limitation. For the literatures cited
in this paper and other related works, see the extensive refereces of{1)].
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