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GLOBAL EXISTENCE OF RADIALLY SYMMETRIC SOLUTIONS
OF THE ISENTROPIC COMPRESSIBLE NAVIER-STOKES
EQUATIONS WITH VACUUM

HI JUN CHOE AND HYUNSEOK KIM

1. INTRODUCTION
We consider the isentropic compressible Navier-Stokes equations in (0,00) x
(1.1) (pu) + div(pu @ u) — pAu — (A + p)Vdivu + Vp = pf,
(1.2) pt+div(pu) =0, p=A4p" (A>0, v>1),

where  is a bounded annulus in R™ (n > 1) and the given data are radially
symmetric. More precisely, the domain  and the external force f are given by

Q={xcR":a< x| <b}, £(t,x)=7F({ x| )!%
for some constants a,b with 0 < a < b < 00, and the initial and boundary conditions
are imposed as follows:

(1.3) (p, W)|t=0 = (po, wg) in € ; wu=0on (0,00) x 69,
where
(1.4) po(x) = po([x]) 20, uo(x) = uo(jx| ),—j‘{—l for x €.

Here p, u and p denote the unknown density, velocity and pressure, respectively.
The viscosity constants u and ) are assumed to satisfy the usual physical require-
ments u > 0, 2u+nA 2 0.

The main concern of this note is to study global existence of radially symmetric
solutions to the initial boundary value problem (1.1)-(1.3). The first existence
result was proved by D. Hoff [4]; he proved global existence of radially symmetric
weak solutions to the problem (1.1)—-(1.3) with the strictly positive initial densities.
Then it was extended by S. Jiang and P. Zhang [6] to the Cauchy problem with
general nonnegative initial densities. Roughly speaking, they proved the global
existence of radially symmetric weak solutions under the regularity assumption that
0 < po € LY(R™), \/p,uo € L*(R™) and f = 0, where n = 2 or 3.

In this note, we prove global existence and uniqueness of radially symmetric strong
solutions with nonnegative densities.

Theorem 1.1. Assume that the radially symmetric data pg, g, f satisfy the regu-
larity condition

(1.5) 0<po€H, uweHNH?, f, Vi f e L. (0,00;L2).
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Then there ezists a radially symmetric strong solution (p,u) to the initial boundary
value problem (1.1)—(1.3) satisfying the regularity

p € C([0,00); H'), u e C([0,00); Hy N H?),

(1'6) 2 2 1 2
pt € C([O:OO);L )a u € LlaC(O,OO;HO), \/But € L?:c(OvOO;L )’

if and only if the initial data (po,Wo) satisfy the compatibility condition

1
(1.7) —pAug — (A + w)Vdivug + V(4p]) = p 8

for some radially symmetric g € L2. In this case, the initial condition is satisfied
in the following sense:

(18) 10(t) — polen + [u(t) —uolus — 0 as t—0.

Here we used the simplified notations for the standard Sobolev spaces LY = L¢(2)
and H* = Wk2(Q), etc.

The compatibility condition (1.7) has been considered by Y. Cho, H. J. Choe
and H. Kim [1], H.J. Choe and H. Kim [2] and R. Salvi and I. Straskraba [11] to
prove local existence of a unique strong solution with nonnegative density. Hence
our result on the global existence of strong solutions is an extension of the previous
local ones in the case of radially symmetric data.

Finally, we remark that for the Navier-Stokes equations of compressible heat-
conducting gases, it is still an open problem to prove existence of strong solutions
with nonnegative densities. In the case of positive initial densities, the existence of
strong solutions has been well-known and in particular, S. Jiang [5] and V.B. Niko-
laev [10] proved global existence of radially symmetric strong solutions in annular
domains.

2. A PRIORI ESTIMATES

In this section, we derive various a priori estimates for radially symmetric solu-
tions of the Navier-Stokes equations (1.1) and (1.2), which are independent of lower
bounds of the initial density.

To construct radially symmetric solutions, we first consider the following initial
boundary value problem in (0, 00) x (a, b):

(21) pet(pu)r +mE= =0,
@0 (et (demE v (u +m) + o=,
@3 O =pl), w0 =wl), b =u(by) =0

where p=Ap", v=A4+2u>0andm=n—-120.
Using a standard technique(for instance, a fixed point argument), we can prove
the following local existence result.

Theorem 2.1. Assume that
po € H¥(a,b), o € Hi(a,b) N H%(a,b), f, fry fi € Le(0,00; L*(a,b))

and
po>€ on [a,b] for some constant € > 0.
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Then there exist a small time T > 0 and a unique strong solution (p,u) to the initial
boundary value problem (2.1)—(2.3) such that
p € C([0,T]; H*(a,b)), p1 € C([0,T); H' (a,b)),
u € C([0,T); Hy(a,b) N H?(a,b)) N L*(0, T; H*(a, b)),
u € C([0,T); L%(a, b)) N L3(0, T; H (a, b)),
p>0 on [0,T) X [a,b].

(2.4)

Remark 2.2. In fact, the strong solution ezists globally in time, as is proved later.

Let (p, u) be a strong solution to the problem (2.1)-(2.3) satisfying the regularity
(2.4), and let us define

p(t,x) = p(t,|x|) and u(t,x)=u(t,txl)|—:—|-

Then a direct calculation shows that
(2.5) Au = Vdivu = (u, + mg)  with r= |x].
r/rT

Thanks to this identity, we can easily show that (p, u) is a radially symmetric strong
solution to the original problem (1.1)-(1.3). From now on, we will derive some a
priori estimates for (p, u), independent of € = inf py > 0.

To begin with, we recall the following elementary result (the conservation of mass
and energy inequality).

Lemma 2.3.

(26) (VP + 1@l + pO1) + [ [Vufade <.

sup
0<t<T

Throughout this paper, we denote by C a generic positive constant depending
only on v, a, T and the norms of the data, but independent of & = inf pg.

Next, we prove the boundedness of the density, which is one of the most important
estimates in this paper. Following the arguments in {7], we prove

Lemma 2.4.
(2.7) sup |p(t)|Le < C.
o<t<T

Proof. We introduce the Lagrangian mass coordinates (t,y), defined by

t=t and y=/ p(t,r)r™dr
a

Then since

dty ( 1 0 ar) (1 0
ot,r) (-pur’" m‘"‘) By (u (pr"‘)‘l)’

the problem (2.1)—(2.3) can be rewritten in Lagrangian coordinates as
( Pt + Pz(rmu)y = Os
= v (p(ru)y), + By = TS (),
(28) | r”-—a"+n/y 1 dz
0 p(t’ z) ’
L (0,9) = po(y), w(0,9) =uo(y); u(t0) =u(t,Y)=0,

68



HI JUN CHOE AND HYUNSEOK KIM

69

where 0 <t <T,0<y<Y = fb po(r)r™dr and p = p(t,y) = Ap(t,y)". Note also

that Y = f p(t,r)r™dr for all t € [0, T] (conservation of mass).
Now we have only to show that p(t,y) < Cfor 0 <t <Tand 0 <y <Y. To
begin with, we observe from (2.8) that

v(log p)y = v (%) =-v (P("'mu)y)y =—r""u—py+r "f
Yy

-m —-m u?
=—(r"™u), -py+7 <f—m7>.
Thus, integrating over (0,t) x (0,y), we deduce that

pt,y) _ p@ . [Y i -m -m
ulogm = vlog pg(O) +/(; ((r~™u)(0,2) = (v u)(t, z)) dz

+ [ (ple,0) ~pls)as+ [ [ (f—mf‘;) dads

zg:z; Poggg exp (u _/oy ((rm™u)(0,2) — (r"™u)(t, 2)) dz)

X exp (-11; /:(p(s, 0) - p(s,1)) ds) exp (-11; /Ot /Oy pm (f _ mﬂ::> dzds) .

From this identity, we derive a representation formula for p:

and

t
(2.9) p(t,y) = P(t)Q(t,v) exp (-—% /0 p(s,y)dS),
where ( 0 .
t t
P(t) = 20(0) XP( /0 p(s,Q)d8>
and

Q) =@ (- [ (0,2 - (e 2) az)

con ([ [fre(r-n) )

Moreover, p can be represented only in terms of P(t) and Q(t,y). Since p = Ap?,
it follows from (2.9) that

a 7 [* _ A v (1/t )
7 &P (V/O p(s,y)dS) == p(t,y)7 exp | ~ A p(s,y) ds

= 2L P@QE)Y

o (3 | t_p(s,y> as) =142 / POy as| i

Therefore, substituting this into (2.9), we obtain

P(t)Q(t,
(2.10) p(t,1) = QL) N
(1442 [3{P()Qs v} ds]”

and thus




RADIALLY SYMMETRIC SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 70

To prove the boundedness of p, it thus remains to estimate P(t) and Q(t,y).
First, converting back into the Eulerian coordinates and using the previous lemma,

we have
Y b 1 b
/ ™ u| dy =/ plu|dr < 7/ plulr™ dr
0 a a a

1
Sﬁ/plu]dzsc for 0<t<T

/oT /OY w (If! +m[—ur|_2) aydt = /OT /ab (plfl +m£l$ﬁ) drdt
= *}n‘ AT/ (P|f1 + T—:-p|u|2) dzdt < C.

Hence it follows from the definition of Q(t,y) that

log Q(t,y) <0
Po(y)

and

or equivalently

(2.11) C ™ po(y) < Q(t,y) < Cpo(y).
Next, to estimate P(t), observe that

Y 1 b b" — gt
—_d =/ rmdr = .
./0 oty VT, n

Then we deduce from (2.10) and (2.11) that

2=

b — anP(t) _ /OY P(%) . /OY [1 +~&fOt{P(s )Q(s, 1)} ds] "

n (t, ) Q(t,y)

<[ atyo (2) [ [ (o) o]
<cb +o(/ P(s)"ds);

Therefore, dividing both sides by & ;“ , taking the ~-th power and then using
Grownall’s inequality, we deduce that

(2.12) P(t) < Cexp ((b-"TCaTﬁ) for 0<t<T.

Combining (2.10), (2.11) and (2.12), we complete the proof of Lemma 2.4. O

To obtain further estimates, we make use of the following versions of Sobolev
inequalities for radially symmetric functions:

(2.13) plz= < Clolms, [flz= < Clfln and |ulzee < C|Vutjpa.
Moreover, we need to introduce the effective viscous flur G = v divu — p.

Lemma 2.5.

T
@10) s (juls + i) + [ (VO +IGO:) dt <.

0<t<
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Proof. In view of the continuity equation (1.2) and the identity (2.5), the momentum
equation (1.1) can be rewritten as

pu; + pu- Vu — vVdivu + Vp = pf.

Multiplying this by u;, integrating (by parts) over ! and using Young’s inequality,
we have

1 2 v, 2
Z/p[utl d:z:+dt —z—(dlvu) dz
S/p|f|2dz:+/p[u|2{Vu|2da:+/pdivutd:r.

Using the continuity equation (1.2), we obtain

(2.15)

/pdiv u dz = gt-/pdivudm+/(div(pu) + (v — 1)pdivu)divudz
jt/pdwuda:—/pu-\?divudx-&-(7—1)/p(divu)2dm

pdlvud:z:+4 2V3/p2divudx

Tt
-1 1
+ly—2—/p(G’2 2)daz————/pu VGdz
——p°d
=% pdivudz — 21/(27_1);) T

- 1
'71/21 p(G2 ) d ——fpu VGdz.

Substituting this identity into (2.15), integrating over (0,¢) and using the obvious
inequality .

4’)/ 3 2

27 -2
< - —_—p
v 3 (divu)? < v(divu)? — 2p(divu) + = 1)
we derive
t
/ /plut|2 dzds + / |divu(t)|? dz
(2.16) 0

t
<040 [ [ (pluPIvuP +pG* + plullVG]) dods.
0

We estimate each term of the right hand side of (2.16). By virtue of the estimates
(2.6), (2.7) and (2.13), we have

4 t 4
[ [ ouivup dods < [ iplimlulelVuliads < C [ 10ultads
0 0 0

t t
/ / pGldzds < C / / p(|Vu|? + p?) dzds < C.
0 0

Using the identity

and

(2.17) VG = pu; + pu - Vu — pf
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together with (2.6) and (2.7), we also have
t t 1
¢ [ [ piullveidads < C [0l Vpule VG ds
0 0
t
<C [ (pulzs + ou- Fulzs + lof]12) ds

1 t
0

Substituting these estimates into (2.16) and recalling that (divu|zz = [Vu|z2, we
finally obtain

t t
/ I\/ﬁutliz ds + lvu(t)lzz <C+ C/ qul‘iz ds.
0 0

Since fOT [Vu|2, ds < C, it follows from Gronwall’s lemma that

T
/ |v/Put|22 ds + sup |Vuf3, < C.
0 0<t<T

Then utilizing (2.13) and (2.17), we complete the proof of Lemma 2.5. O

Lemma 2.6.

T
(2.18) sup [Vp(0lza+ [ (IVu®)Ee +[u(0ffn) de <

0<t<T

Proof. First, since G is a radially symmetric scalar function, we can apply Sobolev
inequality (2.13) and use the estimate (2.14) to obtain

T T
(2.19) / |G dt < C / 1G4 dt < C.
0 0]

A simple calculation shows that
2 2 2
2.2 (7 u U
|Vu|* = u; + m—g <2 (ur + m;) + m(2m + 1);—2—
2
< 2(divu)? + m(2m + 1)%5 < C(G? + p? + [u?).

Hence it follows from the estimates (2.7), (2.14) and (2.19) that

T T
(2.20) f |Vuf2e dt < C / (IG[3e + D3 + [ulfe) dt < C.
0 0
To obtain the estimate for Vp, we differentiate the continuity equation
(2.21) pt+u-Vp+pdiva=0
with respect to z; and obtain
(Pz;)t + Uz, - Vp+u- Vg, + pgdiva+ pdivug, = 0.

Then multiplying this equation by ps;, integrating over {2 and summing over j, we
deduce that

d
- / Vpl2ds < C / V]|Vl + p|Vpl|Vdivu| do

<C / VG2 dz + C(|Vu|r~ + 1) / |Vp|?dz
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Thanks to the estimates (2.14) and (2.20), we thus obtain

sup |Vp|e < C.
0<t<T

Finally, in view of the well-known elliptic regularity estimate and the identity
(2.5), we obtain

T T T
/0 V2ul2, dt < Co /0 (1Auf, + |VulZs) di < C /0 (IVdivuf, +1) dt
T
< c/ (IVG]3: +|Vpl3a +1) dt < C.
0
This completes the proof of Lemma 2.6. O

Now we prove the key estimate.

Lemma 2.7.
T
(2:22) o (If us(t)|g2 + [u(t)|g2) + / (Jue()lzn + IG(t)|}2) dt < Co

for some Cy depending only on C{pg,ug) as well as the parameters of C. Here the
functional C is defined

(2.23) C(po,ag) = /pgl|pAuo + (A + p)Vdivug — V(Apg)l2 dz.
Proof. To begin with, rewrite the momentum equation (1.1) as
(2.24) pu; + pu - Vu — vAu+ Vp = pf.
If we differentiate this with respect to time, then
pug + pu - Vug — vAw + Vp = (pf)e — pe(ug +u-Vu) — pus - Vu

and thus by virtue of the continuity equation, we obtain

1
(plue?), +§div (puju?) — vAu; - us + Vpg - e

N =

= div(pu)(us +u-Vu—£) -u, — p(u; - Vu) - ug + pfy - ue.
Hence integrating over (2, we obtain

d
dt

=/pu-V((f—ut—u-Vu)-ut)-.-p(ut-Vu)-ut+pft-ut dz.

2,0| utlzdz+V/|Vut|2da; /ptdlvutd:z:
(2.25)

This identity can be proved rigorously by means of a standard regularization tech-
nique. For a simple proof, see Y. Cho, H.J. Choe and H. Kim [1]. Using the
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continuity equation again, we have
— / pe divug dz
= /(Vp -u + ypdivu) div u; dz
_ . d (v . 2 Y . 2
= [ Vp - (udivu,)dz + 7 | 3P (divu)*dz - 5 [ P (divu)? dz
= %/%p (divu)? dz + /Vp-(udivut) dz

+7 / —pu- V(diva)? + (y - L)p (divu)® dz.

Substituting this identity into (2.25), we deduce that

% lp[utl2 + %p (divu)? dz + u/ |Vug? dz

< /2p|u|IUtHVUtl + plulfu||Vul? + pluffus][V2u| + pluf*| Vu|[Vu|
+ plue*|Vu] + | Vp|lu||Vuy| + v plul|Vu|[V?u| + +* p|Vul?
+ plullus|[VE| + plul|f]|Vue| + plu||fi| d.

Using the previous lemmas and Young’s inequality, we can easily show that

gf p| ut|2+'yp(divu)2d:c+/|Vutl2dx'

1
< C(1+ |Vulle + [V2ul; + | £2; + |VEZ,) + C|Vu| 1 / Ep]ut|2dz.

Then integrating over (7,t) CC (0,T) and using the lemmas again, we obtain

t
lv/Pue(t) |22 +/ V|2, ds
(2.26) T

: t
S C + l\/ﬁut(‘i’)liz + C/ |VU|Lw'\/ZUt'%2 ds.
0
On the other hand, we can deduce from the momentum equation (2.24) that
lvpu(r)f3a < lv/p(a - Vu-£)(r)3: + [(vp) " (vAu — Vp)(7) 2,
— |v/po(uo - Vug — £(0))[22 + C(po, w0) < C as T —0,

where C(po,ug) was defined in (2.23). Therefore, letting 7 — +0 in (2.26), we
conclude that

t t
lv/Pus(t)| 22 +/0 V|2, ds < Co + C’o/o |Vu| e |/pus)2s ds.

Now since fg |Vu|2. dt < C, we can apply Gronwall’s lemma to obtain

T .
sup [vBu(®)ffa + [ fur(t)iy ds < o
0<t<T 0 0
The remaining estimates for |u|g2 and |V2G|;2 can be easily derived from this
estimate and the previous lemmas by using elliptic regularity estimates on the mo-
mentum equation. This completes the proof of the lemma. 0
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Lemma 2.8.

T
(2.27) sup (1p(t)lm2 + [pe(®)| 1) + /O [u(t) s dt < C(e)

0<t<T

for some C(e) depending only on € and the parameters of Cq.

Proof. If we take the differential operator V2 to the continuity equation (2.21),
multiply by V2p and then integrate over ), we get

d .
2 [ 1R az < G [ 1Val[ V30 + V[ lI920 + oI div ul 9Pl
Using the previous lemmas and Sobolev inequality (2.13), we have
d
+IV20l1a < C[[Vulm| Vel + (IV*Clze + IV?plL2) |V2plL2 ]

< C (10" = + 1) Vol + ClGlIha
and thus

t
)13 < C (1+|V2p0)2:) +C /0 (167~ 2|z + 1) |pl%a ds.

Note that the continuity equation (2.21) yields

t
inf p(t) > (inf po) exp (—/ |div u|Leo ds) > e Ct,
0

Then we can easily show that |p7~2|ze < C(e). Therefore, in view of Gronwall’s
inequality, we get the desired estimate for p. The estimate for p; follows from
this estimate by using the continuity equation. Finally, using an elliptic regularity
estimate, we can obtain the estimate for u. This completes the proof of the lemma.

a

Combining Theorem 2.1 and all the lemmas in this section, we conclude that the
solutions of Theorem 2.1 exist globally in time.

Theorem 2.9. If the data (po,uo, f) satisfy the hypotheses of Theorem 2.1, then
there ezists a unique global strong solution (p,w) to the initial boundary value problem
(2.1)~(2.3), which satisfies (2.4) for each T > 0.

3. PROOF OF THEOREM 1.1

We first prove the necessity of the compatibility condition (1.7), an easy part of
the theorem. Let (p,u) be a strong solution to the problem (1.1)-(1.3) satisfying
(1.6) and (1.8). Since (/pu; € L{5.(0, 00; L?), we can find a sequence {tx}, tx — 0,
such that {,/pus(tx)} converges weakly in L?. Therefore, letting tx — O in the
momentum equation (1.1), we obtain

(3.1) ~p&u(0) = (A + p)Vdivu(0) + V(4p(0)") = p(0)*8
for some g € L2. Since p(0) = po and u(0) = up, this proves the necessity of the
condition (1.7).

To prove the converse, let {po, ug, f) be a given data satisfying the conditions (1.5)

and (1.7). To begin with, we construct a sequence p§ € H %(a,b) of smooth radial
functions such that

0<e< pS, ps — 00 in Hl(a,b) and ]pngl(ﬂ) < C,
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where p§(x) = p§(|x|) for x € €, and let u§ € H{(a,b) N H*(a,b) be the solution to
the boundary value problem

3

U 1
v (ws)r 4 m—}) + (Agf) = (P5)ba, a<r<b
T

Then, let (o°,uf) be the strong solution in (0,00) x (a,b) to the radial problem
(2.1)-(2.3) with the initial data (of,u§). As shown in the last section, if we define

p(x) = £ (5, ]x) e () =l x])
then (p%, u®) is a global radially symmetric strong solution to the problem (1.1)—(1.3)
with the initial data (p§, uf), where u§(x) = ug(|x|) (x/|x|).

Note that the regularized initial data (pf, uf) satisfy the same compatibility con-
dition as (1.7) of (po, up):

—pAug — (A + p)Vdivu§ + V(A(E)") = (5§)? &
In particular, it follows from the elliptic regularity estimate that u§ — ug in H 2
as € — 0 since p§j — po in L N H! as ¢ — 0. Therefore, using Lemma 2.3 to

Lemma 2.7, we conclude that (p°, u®) satisfies the following uniform estimate: for
each 0 < T < o0,

] |
sup (161 + [0 ggrrs + IW/APuL12 ) + / juf 34 dt < Co(T).
0<t<T 0 0

Now it can be easily shown that a subsequence of approximate solutions (g%, u®)
converges, in a weak sense, to a radially symmetric strong solution (p, u) satisfying
the regularity (1.6) except the continuity.

We first prove the continuity of p. From the continuity equation (1.2), it follows
that p; € L$2,(0,00; L?). Hence the well-known embedding result shows that p €
C([0, 0); L?). Then we deduce that p € C([0, 00); H! — weak), that is, p is weakly
continuous with values in H*. For a proof, we refer to Chapter 3 in R. Teman [12].
It thus remains to show that Vp € C([0,00); L?). Note that the linear transport
equation (1.2) is invariant under the translation and reflection. Hence it suffice to
show that

(3.2 Jim [Vp(t) = Vo(0)]a = 0.

To show this, we differentiate (1.2) with respect to z;, multiply by p;; and inte-
grate over Q. Then summing over j, we obtain

% / |Vpl2dz < C / [Vu]|Vp|? + p|Vpl||Vdiv u| dz.
In view of Sobolev inequality (2.13) and the regularity of p, we deduce
%/|Vp|2 dz < C|Vulm|p/3: € C|Vum
and thus
(33) Vo0l <90 +C [ 19u(6)lp d.

This inequality can be proved rigorously by using a standard regularization tech-
nique. Now letting ¢ — +0 in the inequality (3.3), we deduce that

(3.4) lim sup IVa(t)|2s < |Vp(0)] 2.
—+
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The strong convergence (3.2) follows from (3.4) and the weak continuity of p in H L
This completes the proof of the continuity of p.

Next we prove the continuity of u. The weak-type continuity of u follows from
the standard embedding results: u € C([0, c0); Hg) N C([0, 00); H? — weak). Hence
it remains to prove the strong continuity of u in H 2. We first prove the conti-
nuity of pu; in L?. From the momentum equation (2.24), we easily deduce that
(pug); € L2 (0,00; H™1), where H~! is the dual space of Hj. Then since pu; €
L2 (0, 00; HY), it follows from a standard embedding result that pu; € C([0, 00); L?).

loc
Therefore, we can conclude that for each t € [0,00), u = u(t) € H}nH? is a solution

of the elliptic system
vAu = pu; + pu - Vu + V(4p?) — pf.

Now it is not difficult to show that u € C([0,00); H?). Recall from the elliptic
estimate that for s,¢ > 0,

fu(t) — u(s)|a2
35  <ClouValt) - pu- Vu(s)izs + CIV(40")(0) ~ V(AF)(o)lra
+0 (1pus(t) — pue(s)lzs + IoE(®) = pE(&)1a +[u(®) — (o)) -
Using Sobolev inequality together with the regularity of (p, u), we obtain
lou - Vu(t) — pu - Vu(s)|2
< Cl(p(t) — p(s))u(t) - Vu(t)|za + Clo(s)(u(t) — uls)) - Vu(t)|ra
+ Clp(s)u(s) - (Vu(t) — Vu(s))|La
< Clp(t) = p(8)|ze= | Vu(t) 32 + Clp(s) LoV (u(t) — u(s))|La|Vu(t)|z2
+ Clp(s) L= |Vu(s)|z2|V(u(t) — u(s))lz
< C(lp(t) = p(s)| L + ju(t) — uls)|zy)

and
[V(p")(t) — V(p")(8)|L2
< C| (5" (t) = p77H(s)) Vo(t)| 2 + Clo™ 1 (V(t) = Vp(s)) |12
< C (|p77H(t) = p77H(8) Lo +1Va(t) = Vp(8)La) -

Substituting these results into (3.5), we conclude that |u(t) — u(s)|pz < 6(t,s) for
some function ©(t, s) such that lm; O(t,s) = 0.
We have proved the existence of a radially symmetric strong solution (p, u) satis-

fying the regularity (1.6). Hence to complete the proof of the sufficiency, it remains
to prove the convergence property (1.8) of (p,u) as t — 0. Now we show that

(3.6) p(0)=po and u(0)=u in Q

which is equivalent to (1.8) because of the continuity of (p,u). The first identity
in (3.6) follows easily from the weak formulation of the continuity equation (1.2).
But from the momentum equation (1.1), we deduce only that (pu)(0) = poug in Q.
Hence we have to show that u(0) = ug in the set Qo = {x € @ : po(x) = 0}. Define
w = u(0) — up. Then since (p(0),u(0)) also satisfies the condition (3.1) for some
g € L?, we find that the radial part w of w satisfies

(3.7) —v (w,--{-m%—) =0 in V,

r
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where V = int{r € (a,b) : po(r) = 0}. It is clear that w € Hj(V) N HY(V).
Moreover, since V' is a countable union of open intervals, we easily prove that w =10
in V, that is, u(0) = up in the set Q. Therefore, the proof of Theorem 1.1 has been
completed.
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