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1 Introduction

We consider the motion of viscous incompressible fluid moving in some region O C
RY with free surfaces. The motion can be described by the Navier-Stokes equations
on the time-dependent fluid domain Q(¢) C O with certain boundary conditions and
an equation describing the motion of free surfaces. We show existence of solution
for initial data close to a (not necessarily flat) stationary free surface which restores
cxponentially to the stationary solution.

2 (Governing equations

We consider a mass of fluid moving in a domain O C R? under the effect of potential
force F = — V V. We assume that the boundary of O and the given potential V' are
smooth. Its physical state at some instance ¢ is represented by the domain Q(t) C O
occupied by fluid and the velocity vector field u defined on €(t). We assume that
the fluid is incompressible and viscous and its surface has surface tension.

We consider the usual Navier-Stokes equations

u+u-Vu+divT = F, dive =0 in Q(t), (2.1)
where the bulk stress are given by T = pl — 2vD(u). Here, D(u) = ;(Vu+'Vu) is
the deformation tensor of v and v > 0 is the viscosity coefficient of the fluid.

The boundary of the fluid consists of two parts, dQ(t) = B(t) U I'(t), where
B(t) := 0Q(t) N 0 and I'(t) := dQ(t) N O. On the part B(t) which is contained
in the boundary of container bounding the fluid, we require the slip condition,
u-1|gy =0and 0+ T- (I - fiefd)|pe = 0.



On the moving part I'(¢), we consider the stress balance
T-0 — p,il = oHIL (2.2)
Here, pa; is the constant of the pressure of the surrounding air, o > 0 is the surface
tension coefficient, which we assume to be constant and i and H is the outer normal
unit vector and the sum of the principal curvature (= (d — 1) x the mean curvature
of I'(t)). Furthermore, we require that the normal vector i at the points in JONT'(t)
is tangent to 00.

The motion of T'(¢) is described by the kinetic boundary condition
(normal speed of I'(t)) = u - i|r). (2.3)
This equation is just an expression of mass conservation for incompressible fluid.
We need to supplement these set of equations with initial conditions Q(0) = Qg
and u|—o = uo on Y. From the momentum conservation in €(t) and the stress
balance on I'(¢), by using integration by part formula
/0H<I> - idA + / o(®-0)f - figo = /a(l — fienl) : V ®dA, (2.4)
Jr Tnao JT
we obtain

(& ]
0=/ dt/ —u - @ —ueu: VO +2vD(u) : Vedz
0 Q(t)
—l—/ dt/ V. i+ ol — flei) : VOdA + / ug * D|s=odx (2.5)
0 T'(t) Qo

00
=: / (Tnuik + Lsurface) @t + Iinitial
0.

where ®(z,t) is an arbitrary divergence free vector field defined in O which satisfies
$.1nj, =0.

We assume that w satisfies divu = 0 and u - if]gp = 0. Then, the equation (2.5) is
equivalent, for sufficiently regular Q(¢) and u, to (2.1) and (2.2). We consider the
existence of solution of this set of equations for a given initial condition (€, uo).

This set of equations with O = R¢, V = 0 and Q close to the sphere was
studied in [So], and he obtained a global existence result for small initial conditions.
Another study was [B], which consider the case of horizontally infinite free surface
O ={zg>b(x1,  * ,24-1)}, V= —24 and Q close to {z4 < 0} and obtained some
result on the existence. For the horizontally periodic case, global existence result
can be proved (see [I]). Our result is a generalization of this result.

Remark . Due to incompressibility of the fluid, the volume of Q(t) is a constant of
motion of our equations. Energy equality

d u? .
__( —dz + Vdz + adA) + 2vD : Ddzx =0
dt \Jaw 2 (6) I(t) Q)

can be obtained by substituting ® = u to (2.5).
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3 Stationary solutions

The equation for the stationary solution without fluid motion(u = 0) reads

0 = Lsurface|$Y; 0] = /Vgo 0+ ol — flel) : V odA
-
where ¢ is an arbitrary vector field defined on O satisfying dive = 0inO and
@ - fi|p = 0. In this section, we consider a solution {2 = Q, of this equation.
Using (2.4), we obtain
0=/ cp-ﬁ'(V—f—oH)dA+/ o(p - 0)i - fgo.

T.noo
Since ¢ - fi|, can be any function on I'; with vanishing average, we obtain that
potential force and surface tension must be balanced

V' + oH = const. on I’y

and that Ty and &0 must meet at right angles. This problem is known as the capil-
lary surface problem, which is extensively investigated in [F]. (When the potential
is absent (V = 0), a stationary surface I, is a hypersurface with constant mean
curvature.)

Capillary surface problem can be formulated as the variational problem for the
energy functional

Esurfaﬁe[Q] =/ UdA+/ ‘rdl'
r Q

in {Q C O : the volume of Q is prescribed} as stated in the following proposition.

Proposition 3.1. Let Q be a domain in O with finite perimeter and ¢ be a C' —vector
field satisfying ¢ - Alsgo = 0. We define deformation Q° of Q by ¢ by QF = X.(Q)
where X, 1s the flow map generated by ¢. Then,

d
Isurfa.ce[Q; (P] = 7= Esurfa.ce [QE]
e=0

de

From this proposition, Isuace€2s;+] = 0 is equivalent to its stationarity with re-
spect to the energy functional Egype under the constraint of volume prescription
and, in particular, a region with minimal energy with prescribed volume is station-
ary.

In the following, we assume that €, is smooth and bounded. Stability of a solution
of a variational problem can be examined by investigating the second variation of
the functional at the solution. For Fayrace, the second variation at a capillary surface
€, can be expressed as([Si])

B 9] = [ (0 Vi 9+ (0S(a) + 8- T V)YP)A = b4 ¥),

3

where 9, a function defined on Ty, represents the infinitesimal normal variation of
T, and S(z) is the sum of the square of the curvature of I's. We assume that b(-, )
is positive definite on H!(I';). We refer to this as geometrical stability. We note
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that, for smooth €, the positive definiteness of b(:,-) implies the local minimality
of 'y with respect to Egyrrace-

Our result is that, under some additional assumption on asymmetry of (2, geomet-
rical stability of a capillary surface implies its linear stability and then its nonlinear
local stability as a stationary solution of our fluid mechanical system.

Assumption. B is nonempty and is not contained in a hypersurface with
translational or rotational symmetries.

Under this assumption, Korn’s form

(u, ©) =/Q 2uD(u) : D(p)dx

is positive definite on H}(S2,) = {u € H* : divu = 0,u - | = 0} ([SS]).

The above assumption excludes, for example, (a) O = R", Q, is a sphere, and
(b) O = {z4 > -1}, Qs = {0 > z4 > —1}. In such cases, uniform translations or
rigid rotations obviously violate Korn’s inequality.

4 Reduction to a problem on a fixed domain

In this section, we describe the procedure of reducing our moving boundary problem
to a problem on a fixed domain, which is basically a generalization of that used in
[B] with some modifications. A major difference to [B] is that we directly work
in integral formulation of equation without getting back to the local differential
equations.

First, we will choose a coordinate (&;,&,) on a tabular neighborhood of I'y and
write Q(t) as {& < n(t, &)} by a function n(t,&,) defined on I',, 'We choose a
smooth divergence—free vector field @ defined in a tabular neighborhood of Ty in O
which is parallel to 80 and satisfies @|r, - fl; = 1 where i, is the outer unit normal
vector of T',. Then, we define a coordinate (&,&,) (& € Ts,|én| < €) in a tabular
neighborhood of I'; by

x(&p, &) = integrating @ in time &, from &,.
We represent ['(¢) as a graph of a function n on I'y in this coordinate, that is
L(t) = {(&n,n(€n)) : & € T}

We choose amap X : Q, — Q(2) by (&, &) — (Er, 71(€)) where 7(€) is an extension
of n(&,) to Q, vanishing outside the tabular neighborhood of I';, by some extension
operator compatible with Sobolev space estimate ||7j|| g=+1(q,) < Clnll gr+1/2r,). We
need to transform ficlds defined on Q(t) to Q,. We transform vector u to @ on €2
as a (d — 1)-form : u; = J7 X, 4ll,, where X;, = 0X;/0Zq, J = det(X;,). (We
also transform the vector test function ® as a (d — 1)-form.) This transformation
preserves divergence freeness and

W(z)u - GdArg = / W(X(€))a - FudAr,
'(t) T

holds for any v (see [H] p.80). Since the normal speed of surface is (&l - @)n, (2.3)
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can be expressed as
u- 1

n =

- =

G-n F(t)‘
The area elements of I'(¢) and T’ are related by (i - @)dAry) = dAr, due to the
incompressibility of @ Using the above formula and w - fdAry) = 4 - 6,dAr,, we
obtain
= - I_l‘sll"s .
The integral Ty, becomes through the above transformation the sum of the linear
part

Lyuix = / —%- 8,8 + (Vi + Vi) : VOd
Qs
where V is the gradient in %, and the quadratic part

Qb = | Ac@.X)ad + A(VX = 1)(70,® + VaVd) + B(VX) iV edz,
Ja,
where Ay, A, B_are some function satisfying |40(8:X)| < Clo: X1, A(VX — )| <
C|VX —1|, |B(VX)| < C(1+|VX]).
The fact that the surface integral could be expressed as the sum of

Lgurface = / aVr,n- VI“Q((b : ﬁ) + (I—f Vi — 05)7}@ - 1dA.

and

Quutace = | OV, 0l* + Inf*) (Vi (& - ) + @ - )dA

1"
can be shown by using Iutace[S% @) = 2|, _; PourtaceQ°].

We also need to rewrite Iinitial 28 Linisiat|Qo, Uo; @li=o] = jQ g - é[tzoda} where g
is determined by ug and €. This g is small in H7~! when ug is small in H™~(Qo)
and 7y is small in H™~Y2(T,).

We have reached the equations on time-independent domain

Iy Nlt=0 = 7o, / Lin, @; ‘i‘] + Q[n, ; ‘i’]dt + Linitia1 = 0 vd
0

where L = Ly + Lsurface; @ = Qbuik + Qsurface- Using the result on the linear system
with homogeneous initial conditions

| ) n’t=0 = 07 / ['[771 ﬂ" ]dt = F()
0

for given F(-) in the next section, we can show our existence result.

m=4a-1

=141

Theorem . We assume r > 1+d/2 and (r — 1)/2 € Z and that Q) is geometrically
stable. Then, (i) there emists v < O so that the linearized system has a unique
solution (n,@) € KY'*(T,) x K'(Q,) for data F € K™%, (ii) We assume that
initial condition ny € H™=Y2(T'y) and ©p € H™"*(€) is small. Then, there exists a

exponentially decaying solution (n,4) € Kf,’l/z(f‘s) x K7(Qs).



The function spaces in the statement of the theorem are defined in the next
section.

5 The linear problem

The linearization of our system of equations is the evolution for n defined on I',

T = u - i|p,
complemented with an initial condition 7~y = 7 coupled with the equation for
u(t,-) € {divu = 0,u - @i|gp = 0},

(&Y
/ / —u - ®; + 2vD(u) : D(®)dzdt
0 s

+ / / (0 Vr,n- V(@ - 0) + a1 (z)n® - 0)dAdt

/ /F @dl-l—/ Up * Ply=odz
8 2.3

for all ®(t, z) satisfying div® = 0 and ®-1i|gp = 0. For the following results, absence
of inhomogeneous terms in the equation for 7 is crucial. We assume v > 0 and
o> 0.

We assume that the initial condition satisfies f 19dA = 0, then, due to incom-
pressibility of the flow, divu = 0, fr 7dA = 0 holds.

In the rest of this section, we omit subscript s for stationary state and write 2
and I’ for 0, and T;.

Remark . This system is equivalent, for smooth n and u, to the Stokes equations
divu=0, u—-divT =F in Q
where T = pl — 2uD(u), with boundary conditions,
on = u- i,
w-filp=0and #-T- (I - 7iwf)|; =0 on B
and
T.dl, = (—divro Ve + ain)it on T.
At this point, we define some function spaces to state our result of this section.
We use spaces of functions defined on (0, 0c0) x 2
R* = K*(Q) = H°((0, 00); H*(Q)) N H*/2((0, 00); H(2))
used in [B] and its weighted version
K2 =K3(Q) = {f: fe " € K*(Q)}
and similar spaces K3(I') of functions defined on (0,00) x I.  Their norms are

denoted as ||| - |||,s and ||| - |llr.,s- We denote K 5(0) the closure of C2°((0, 00) x Q)
in K. When (r — 1)/2 ¢ Z, this subspace is expressed as {f € K5 : 0ffli=o =
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0(0 < k < (s —1)/2,integer)}. We also use K*1/2(I') = H°((0,00); H*F/*(')) N
H*2((0,00); HY*(T)) and denote its norm ||| - |||r,s,1/2-

Our result of this section is the following proposition for our linear system with
homogeneous initial conditions.

Proposition 5.1. We assume r > 2 and b(-,-) be positive definite on HY(T'). There

erist v < 0 so that, a solutionn € K;%f (T),ue Kf/,(o)(Q) exists for data F € K;"(g).

We use spaces of vector field defined on Q2

Dy, ={p€eC®Q):divp=0 in Q, -1z = 0},

H? = (the closure of D, in H®) = {u € H*(2) : dive =0 in Q, u-fi|z =0}
and we use over-dot notation as H'(I") to indicate that this space consists of func-
tions with vanishing average. The inner products of H = L2 and L*(T') are
denoted as (u,y) and (7, ¥)r, respectively. We denote by R the restriction op-
erator Ru = wu - i, which send a divergence free vector field to a function de-
fined on I' with vanishing average. (In fact, we interpret the definition of R as
Jp RuypdA = [y u - V) where ¢ is any smooth function on I' and ¥ is an ex-
tension of ¢ defined by A4y = 0,9|r = ¥,¥|p = 0.) We denote Q the adjoint
operator of R : L2 — L*(T'). R and Q are bounded as R : H} — Hs-1/2(T) and
Q : H-Y%(T) - H: (s € R). P is the orthogonal projection to {Ru = 0} in L.
We use the following notations for Korn’s form and bilinear form of surface terms:

(u, @) = / 2vD(u) : D(p)dz, b(n,y) = /aVl‘ n- V¢ + anypdA.
o) r

With these definitions, the Stokes system can be written as

(O, ) + (u, ) + b(n, Rp) = (F, ) Vo €D,
dn = Ru can be rewritten as b(d,n,1) = b(Ru, ), where 1 is an arbitrary test
function defined on T’ with vanishing average. By summing these, we has reached
the final formulation : (1, u) € L%(0, oc; H(T) x H})

(Beu, ) + b(Bim, ¥) + (u, ) + b(n, Rp) — b(Ru,¢) = (F,¢) (5.1)
where test functions ¢ and ¢ runs through D, and D(I') = {¢ € C*() : [, ¥ = 0}
respectively.

Under the assumption on € in section 3, there is no affine ¢ in D,, thus, Korn’s
inequality 36 > 0, (u,u) > 6||ul|%. (Yu € H,) holds (see [SS]).

The equations for the Laplace transforms /() and 4(A) of n and u in ¢ reads as
follows : @ € H}, 1 € H(T'),

M@, 0) + b(A, )} + (8, ) + (7, Rp) — (R, ) = (F, ¢)
Vo € D,V € D(T).

We can prove the existence of solution and estimates for this spectral problem. The
above result for the evolution equation is the direct consequence of the following
result for the spectral problem.

Proposition 5.2. We assume r > 2. There exist v so that, when ReX > 7,
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there exist a unique solution (4,7) € H? x H™Y*(T) holomorphic in A for data
F()X) € H"2 holomorphic in Re\ > v which satisfies estimates

(IA2lfallo + ally) + (A2l e + 19 ll1/20)
< C(|[Fls—z + M2 Fllo).
When b(-,-) is positive definite on HY(T'), the above v can be taken to be negative.

U
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