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Higher KdV equations approximating long waves
of two-dimensional water surface

Tadayoshi KANO
Department of Mathematics, Osaka University, Japan

1. There are more than 100 years now since Korteweg and de Vries have
discovered their nowadays very famous equation as the second nonlinear
approxmation for long waves of water surface in the two-dimensional flows
being characterized by the following physical structure:

82 = (h/)»)2 and €= a/h are of the same order as infinitesimals
when A tends to infinity and o tends to zero, A being the
wave length and o the wave amplitude.

We have given effectively a mathematical justification for THIS KdV
equation for analytic solutions in 1980's [1] .

Our discussion, however, has been a little bit obscure. In fact, the KdV
equation gives a good approximation for long waves propagating in the
direction of one of the characteristic of the linear wave equation being known
as the first approximation since L.Lagrange, but for long waves propagating
in the direction of the other characteristic is looser with the additional
inhomogeneous terms consisting of the differential polynomials of these long
waves.

2. Remember now our dimensionless equations for long waves in
Lagrangian coordinates in [5]:
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the equations of motion:

21) Xy +(U8DLOY) + 8°X (DX + 8%(3Y)yDg(3Y) + D¢P =0,
22)  (8Y)y + (1/8)D, (BY) + 62xttan + 5%(8Y) D ( 8Y) + D, P = 0;

and th equation of continuity:
2 — =

(2.3) DEX + DTIY + 0 (DEXDHY DnXDgY) 1,
in
(2.4) Q= {E&mn):0<n|<1},
where (DE’ Dn)E(alag, (1/8)0/0n).

Their solutions with initial data  X(0,Em)=X"En), X,(0,5m)=X &),
analytic, give us the Friedrichs expansion as follows:
2.5 %% X:— Xpp— (1/3)0% = o(s*
( . ) xtt + Xtth XEE ( ) XEEEE ( ),

for x(t,E)=X(t,E,1), in Banach spaces of analytic functions provided with
the norms E(DX®) and E(D™X"), m 21, for n21, defined by:

Definition 2.1 E(¢) forany ¢ E€CO(Q) &

& EB@=/ll+ IIDeolll + 1Dl + o + Db + @ XD

where



lloll = ol + iDelllg + D%y
o = lo@llg + DMl + D% Mg

with D=D§ or DTI and

1 oo o

oliz= 5 S pEnlam bol?=S bE?

-1 =00 - 00

And for m 21,
E(D™¢) for ¢ECT(Q)®

N E(D™9)=(ID™0||| + [[DgD 0l + I, D™ell| +
+ [0 ()] + DD )]l + @ D7 R)Dl

where

D™l = Zg <y <m B*IIDE™ Dy el 5
PP = Zp< < O™ PO O], 00=1.

This gives us actually

- xg + O(xgrgs - (Vgeee) = OO

since we have

117



118

(26) X/l + d%xg) - (1- 6%) Xep = 8*xg” Xgp/(1+ 8%x) + 0(8").
In particular, for initial data

(27) U(O,E) = XE(O,E) = XE(O’EJ)’ V(O,E) = xt(oag) = Xt(O,E,l)
satisfying
(2.8) E(XE(O’E) + x4(0,€)) = 0(1), E(xE(O,E) - x,(0,E)) = 0(62),

surface waves defined by f = (u+v)/2, g=(u-v)/2 with u = -Xg, V=X
satisfy

(2.9) £y - fe - zsz(ffE + (13)fegy) = o™,

and

(210) g + g + 8%(ggg + (13)gegg) = —8°(Hg + (13)figg) + O(8™),
since we have

U~ Vg = 0, v; - ug - 62(uug + (1/3)u§§§) = 0(64).

We have had in consequence [5] a mathematical justification for Korteweg-de
Vries equations

2.11) F, - Fe- 8%(FFyg+ (1/3)Feee) =0
(212) G+ Gg+ 5%(GGy+ (13)Gg) = ~O*(FFy + (1/3)Fee) ,



with initial data F(0) = f(0) and G(0) = g(0), as the approximate equations

for long waves of water surface. As we mentioned above, the approximations
for long waves by solutions G for inhomogeneous KdV equation above are
less accurate than the approximations by F.

3. We have now discovered long waves of water surface approximated
more accurately than f=u+v, g=u-v with u= Xg, V=X by solutions

of the KdV equations propagating not only in the direction of f, but also in
the direction of g. Let us, in fact, define now {u,v} by

@Bl we(xg+ (1/6)621&%&%))/(1+(1/4)62x§ V=X,

then we see readily that  f = —(u+v)/2, g = —(u-v)/2 satisfy

32) f, - £ - (U (Mfg + (2/3)gee) = o@%),
and
(33) g, + 8 + (1/4)5%(ggy + (2/3)8gxp) = o).

In fact, (3.1) assures us that there are no inhomogeneous terms of order

0(52) in (3.3) consisting of differential polynomials of f only as
coefficients, which differs essentially (3.3) from (2.12).

We see then readily that

F, - Fy, - (1/4)0(FF + (@2/3)Fgge) = 0
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and
G, + Gg + (1/4)8%(GGg + (2/3)Ggeg) = 0,
with initial data
F(0)=1(0)= x,(0)+(x(0) + (1/6)62x§§§(0))/(1+(1/4)52x§(0) = 0(1)
and
G(0)=g(0)= x,(0)~(x(0) + (1/6)62x§§§(0))/(1+(1/4)62x§(0) = 0(8%)

respectively, give approximations for (3.2) and (3.3). Thus f=-(u+v)/2
and g=-(u-v)/2 are approximated by F and G. We have in consequence
approximations for u = ~Xg, V= -Xy by F and G via u,v.

Thus we have renewed and modified our theory in 1986 giving another
mathematical justification for KdV equations as the second nonlinear
approximate equations for long waves of water surface in two-dimensional
flows, propagating in both directions of the characteristics of the linear wave
equation as the first approximation.

If we have done this here in the Lagrangean coordinates system, it is to
show that our theory is absolutely valid both in Euler's and Lagrange's point
of view. And also, it is suggested by (2.5) that the KdV equation
approximates long waves of rather complicated nonlinear structure. This
observation faciliates our deeper analysis of long waves of water surface in
two-dimensional flows.

Let us make here a remark, very important for the passage to the higher
approximations, that g(t) itself is of order 0(64) for initial data g(0) of

order 0(64) by the continuous dependence of solutions on inhomogeneous
second terms.



121

4. In this paragraph, we return once more to the analysis in Euler
coordinates system. The above analysis in mos. 2.-3. isofa general
character. By a deepen study of our Friedrichs expansion in [2),[3],[4], we
discovered, in fact, certain nonlinear transformations of long waves of the
water surface approximated by solutions for the higher KdV equations, the
first of which is

@1) £, HOM2)NGREPH1B) )y +
+(842)((5/2)E+(5/3)EE,  +H(B/6)E, 2+ (19 )y = O-

Firstly, we see that dimensionless equations governing long waves of water
surface in two-dimensional flows are

@2) 8%, + dyy=0in Q={(xy): - ®<x<,0< 1+0%y},

43) 9y =0, - 00<x <00, y=0,

2ne 2 2 _ )
(4.4) G+ (87/2)0 "4y + (1/2)¢y =0, - o0<x <o, y=1+0%,
4.5) Y+ 0%, 0, - a'2¢y _0, - 00<x <00, y=1+3%,

with initial data  ¢(0,x,)=0¢ o(X,¥), ¥(0,X)=Yq(X) -

For analytic solutions, we have the following Friedrichs expansion for
(4.4) - (4.5), i.e. on the water surface we have:



0, +1 +(822)0 - (8%2)0 1, % ~ 851013 > H(1/3)0 23® 1000 0%)

Yo+ 02105 H8%/3)0 rny PO H O x0n 15 grnnd =
S (G S WEY G V) VAN ST CY) VRN S /) . S

27,0 px F 2PN ynx H(17/315)0 XXXXXXXXX}=0(t‘>8).

Secondly, we renew the definition of w,v as follows:

={y +G(6%/2)u- H*2)u, 2} / {1 +A 8%u+A,0%?),

v={u+8?D(yu)+(8%/6)u,, +8*E(yu,), +(2/15)Fu

X) X XXXX} /

1 +A;6%u+A0%%,
with u=¢  onthe surface y= 1+62y. Starting from these, we get our

above mentioned conclusion by discussions of the same order as those in 3.

We see in fact that the redefined f = (u+v)/2 satisfies

[, +(O7 2GR+

+ 0252+ (53)E, +(S/6), 2+(1/9)f = 0(2%),

XXXX)X
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for suitable constants Al’ AZ,D,E,F,G and H which assure us the absence
of coefficients consisting of differential polynomials of f only in terms of

order 0(64) in the development of g.

§. We show now how this first higher KdV equation approximates the long
waves of water surface. Remind first the KdV hierarchy {Fn}, n=1,2,3,...

defined by

(5.1) Foyqy=fxFy+ 2F o + (3)F

n+1,x for n20 with Fy=f,

n,XXX ’

for solutions (periodic or rapidly decreasing etc) f of KdV equation:
2
fo+ £+ (172)0°(3ff, + (1/3)f41y) = 0,

th

namely, f +f +F .= 0 isthen™ KdV equation.

We see now that our first higher KdV equation can be written by these KdV

hierarchy as follows:

(5.2) £y + £+ (112002, + (1/2)8%Fp = 0.

These F; and F, satisfy the following linearized KdV equations:
(5.3) Fy o+ Fpp+ (172)5%(38F 1y + (U3)F ] ) = 0

and
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(5.4) Fpy+Fpy+ (1/2)8°(3fF 5 + (1/3)F) 1) = 0

Applying the Cauchy-Kowalevski theorem in Nirenberg-Nishida version
to this system  (5.2) - (5.4) of KdV equations for analytic initial data, we get
analytic solutions for (5.1) which approximate long waves f.

Remark  One can write (5.2) as

4
£+ £, + (1/2)62F1’X + (U2)8%(EFy + 2F ) 4 + (13 43y = 0.

6. After that, our attempt has been to analyse these " liaisons secrétes"
between a concrete problem of water surface in mathematical physics and the
theory of completely integrable systems which seems totally stranger to the
former in her character. Very briefly speaking, for N, an integer, we have a
set of nonlinear transformations  {uy,vy} of {uyv} = {u=¢,,y} for

which we have an asymptotic expansion such that
f,+f, +(62/2)F1’X +(64/2)F2’x + ot (62N/2)FN’X=0(52(N+1)),

f Dbeing long waves defined by f=fy= (uy+vy)/2 and {F } _123
being "pseudo-KdV hierarchy" defined as above by

Fppqx = FxFpy + 20F ) o + (U3)Fy o, for n20 with Fo=f.
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We are preparing an article on these " liaisons secrétes" to be published
clsewhere. We gave a talk on it in the International Conference in Honour of
Professor Jean Vaillant held in Karlskrona, Sweden, in june 2002.
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