Uniqueness and error bounds for eikonal equations with discontinuities

Klaus Deckelnick & Charles M. Elliott

1 Introduction

Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with a Lipschitz boundary \(\partial \Omega \). We consider the eikonal equation

\[
|\nabla u(x)| = f(x) \quad x \in \Omega \\
u(x) = \phi(x) \quad x \in \partial \Omega,
\]

where \(f \) and \(\phi \) are given functions. The equation arises for example in geometric optics, computer vision or robotic navigation. In certain situations it is desirable to allow \(f \) to be discontinuous, e.g. in geometric optics, when light propagates through a layered medium. The aim of this paper is to study the well-posedness of (1.1), (1.2) for right hand sides \(f \) satisfying a one-sided continuity condition (see (2.2) below), that allows certain types of discontinuities. Furthermore, we shall be concerned with an error analysis for a finite difference scheme to approximate the solution of (1.1), (1.2).

The well-posedness of (1.1), (1.2) in the case of continuous \(f \) follows from the theory of viscosity solutions for Hamilton–Jacobi equations \(H(x, u, \nabla u) = 0 \) developed in [4]. The notion of viscosity solution was generalised by Ishii [5] to allow for discontinuous Hamiltonians \(H \). In [11], Tourin proves a comparison result for Hamiltonians, which are allowed to be discontinuous along a smooth surface. Soravia [10] obtains necessary and sufficient conditions for uniqueness of the solution to the boundary value problem. While the work in [11] and [10] is based on Ishii’s notion of solution, several other approaches have been suggested: in [7], Newcomb & Su consider the Dirichlet problem for \(H(\nabla u) = f \) and introduce a notion of solution which they call Monge solution. They obtain a comparison result as well as uniqueness for the Dirichlet problem provided that \(f \) is lower semicontinuous. Ostrov [8] studies an evolutionary Hamilton–Jacobi equation which occurs in the context of radar satellite tracking and obtains a unique solution as the limit of suitable upper and lower solutions. Recently, Camilli & Siconolfi [3] introduced a new notion of solution for Hamilton–Jacobi equations of the form \(H(x, \nabla u) = 0 \), which allows measurable dependence of \(H \) on \(x \) and involves measure-theoretic limits. They prove representation formulae, comparison principles and uniqueness results.

Our work uses Ishii’s definition of solution which we shall recall in §2. For a class of right hand sides \(f \), which satisfy a suitable one-sided continuity condition we obtain well-posedness of the problem (1.1), (1.2). In §3 we discretize the problem with the help of a finite difference scheme on a regular grid. Under a slightly more restrictive condition on \(f \) we prove that the error between viscosity solution and discrete approximation is of order \(O(\sqrt{h}) \). We have not included all the details of the proofs of existence and of the error analysis. However, a forthcoming paper, which generalises our approach to Hamilton–Jacobi equations of the form \(H(\nabla u) = f \), will provide a detailed convergence analysis for a wide class of finite difference schemes as well as numerical tests.
2 Existence and Uniqueness

In order to allow for discontinuous functions f in (1.1) we shall use the following generalisation of the concept of viscosity solution, which was introduced by Ishii in [5].

Definition 2.1. A function $u \in C^{0}(\bar{\Omega})$ is called a viscosity subsolution (supersolution) of (1.1) if for each $\zeta \in C^{\infty}(\Omega)$: if $u - \zeta$ has a local maximum (minimum) at a point $x_{0} \in \Omega$, then

$$|\nabla \zeta(x_{0})| \leq f^{*}(x_{0}) \quad (\geq f_{*}(x_{0})).$$

Here,

$$f^{*}(x) := \lim_{r \rightarrow 0} \sup \{f(y) \mid y \in B_{r}(x) \cap \Omega\}, \quad f_{*}(x) := \lim_{r \rightarrow 0} \inf \{f(y) \mid y \in B_{r}(x) \cap \Omega\}.$$

A viscosity solution of (1.1), (1.2) then is a function $u \in C^{0}(\bar{\Omega})$ which is both a viscosity sub- and supersolution and which satisfies $u(x) = \phi(x)$ for all $x \in \partial \Omega$.

Let us next formulate our assumptions on the data of the problem. We suppose that $f : \Omega \rightarrow \mathbb{R}$ is Borel measurable and that there exist $0 < m \leq M < \infty$ such that

$$m \leq f(x) \leq M \quad \forall x \in \Omega.$$ \hspace{1cm} (2.1)

Furthermore, we assume that for every $x \in \Omega$ there exist $\epsilon_{x} > 0$ and $n_{x} \in S^{n-1}$ so that for all $y \in \Omega$, $r > 0$ and all $d \in S^{n-1}$ with $|d - n_{x}| < \epsilon_{x}$ we have

$$f(y + rd) - f(y) \leq \omega(|y - x| + r), \hspace{1cm} (2.2)$$

where $\omega : [0, \infty) \rightarrow [0, \infty)$ is continuous, nondecreasing and satisfies $\omega(0) = 0$. A similar type of condition was used in [11]; however, in (2.2) it is sufficient to estimate values of f for vectors whose difference is close to a given direction.

Example: Suppose that a surface Γ splits Ω into two subdomains Ω_{1} and Ω_{2}, that $f_{|\Omega_{1}} \in C^{0}(\bar{\Omega}_{1})$, $f_{|\Omega_{2}} \in C^{0}(\bar{\Omega}_{2})$ and that

$$\lim_{y \rightarrow x, y \in \Omega_{1}} f(y) < \lim_{y \rightarrow x, y \in \Omega_{2}} f(y) \quad \text{for all } x \in \Gamma.$$

In addition, assume that the following uniform cone property holds: for every $x \in \Gamma$ there exists a neighborhood U_{x} and a cone C_{x} (which is congruent to a fixed given cone C_{0}) such that $y \in U_{x} \cap \bar{\Omega}_{1}$ implies that $y + C_{x} \subset \Omega_{1}$. Then (2.2) holds with $n = n_{x}$ given by the direction of the cone C_{x}.

To see this, observe that the cone condition prevents a situation where $y \in \Omega_{1}, y + rd \in \Omega_{2}$, which would lead to a violation of (2.2) (cf. [11], where Γ is assumed to be smooth).

One can also consider e.g. a two–dimensional domain Ω, where three curves of discontinuity meet at a triple junction.

It is not difficult to verify that (2.2) implies

$$f^{*}(y + rd) - f_{*}(y) \leq \omega(|y - x| + r) \hspace{1cm} (2.3)$$

for all $y \in \Omega$, $r > 0$ and $d \in S^{n-1}$, $|d - n_{x}| < \epsilon_{x}$. Finally, we suppose for simplicity that $\phi \equiv 0$.

Lemma 2.2. There exists a viscosity solution $u \in C^{0,1}(\bar{\Omega})$ of (1.1), (1.2).
Proof. We only sketch the main ideas. Consider the sup-convolution of f, i.e.

$$f_\varepsilon(x) := \sup_{y \in \Omega} \{ f(y) - \frac{1}{\varepsilon} |x - y|^2 \}, \quad x \in \Omega, \varepsilon > 0.$$

Clearly, f_ε is continuous and $f^*(x) \leq f_\varepsilon(x)$ for all $x \in \Omega$. Let

$$L_\varepsilon(x, y) := \inf \left\{ \int_0^1 f_\varepsilon(\gamma(t)), \frac{1}{2} \lambda'^2(t) \, dt \mid \gamma \in W^{1,\infty}((0,1); \bar{\Omega}) \text{ with } \gamma(0) = x, \gamma(1) = y \right\}.$$

It is well-known that $u_\varepsilon(x) := \inf_{y \in \partial \Omega} L_\varepsilon(x, y)$ is a solution of

$$|\nabla u^\varepsilon| = f_\varepsilon(x) \quad x \in \Omega$$

$$u^\varepsilon(x) = 0 \quad x \in \partial \Omega$$

in the viscosity sense. Furthermore, it can be shown that

$$\| u^\varepsilon \|_{C^{0,1}(\bar{\Omega})} \leq C(M, \Omega) \quad \text{uniformly in } \varepsilon > 0.$$

Thus, there exists a sequence $(\varepsilon_k)_{k \in \mathbb{N}}$ with $\varepsilon_k \searrow 0$, $k \to \infty$ and $u \in C^{0,1}(\bar{\Omega})$ such that $u^{\varepsilon_k} \to u$ uniformly in $\bar{\Omega}$ as $k \to \infty$. Using well-known arguments from the theory of viscosity solutions one verifies that u is a solution of (1.1), (1.2).

Uniqueness of the viscosity solution follows from

Theorem 2.3. Suppose that $u \in C^0(\bar{\Omega})$ is a subsolution of (1.1), $v \in C^0(\bar{\Omega})$ is a supersolution of (1.1) and that at least one of the functions belongs to $C^{0,1}(\bar{\Omega})$. If $u \leq v$ on $\partial \Omega$ then $u \leq v$ in Ω.

Proof. Let us assume that $v \in C^{0,1}(\bar{\Omega})$. We shall use the approach presented in [6] (see also [11]). Fix $\theta \in (0,1)$ and define $u_\theta(x) := \theta u(x)$. Next, choose $x_0 \in \Omega$ such that

$$u_\theta(x_0) - v(x_0) = \max_{x \in \Omega} (u_\theta(x) - v(x)) =: \mu,$$

(2.4)

and suppose that $\mu > 0$. Upon replacing u, v by $u + k, v + k$, we may assume that $u \geq 0$ in $\bar{\Omega}$, so that $u_\theta \leq u$ in $\bar{\Omega}$. In particular, $u_\theta \leq v$ on $\partial \Omega$, which implies that $x_0 \in \Omega$. Choose $\varepsilon = \varepsilon_{x_0}$ and $n = n_{x_0} \in S^{n-1}$ according to (2.2) and define for $\lambda > 0, L \geq 1$

$$\Phi(x, y) := u_\theta(x) - v(y) - L \lambda |x - y - \frac{1}{\lambda} n|^2 - |x - x_0|^2, \quad (x, y) \in \bar{\Omega} \times \bar{\Omega}.$$

Choose $(x_\lambda, y_\lambda) \in \bar{\Omega} \times \bar{\Omega}$ such that

$$\Phi(x_\lambda, y_\lambda) = \max_{(x, y) \in \bar{\Omega} \times \bar{\Omega}} \Phi(x, y).$$

Since $x_0 \in \Omega$ we also have $x_0 - \frac{1}{\lambda} n \in \Omega$ for large λ; using the relation $\Phi(x_\lambda, y_\lambda) \geq \Phi(x_0, x_0 - \frac{1}{\lambda} n)$ together with (2.4) we infer

$$L \lambda |x_\lambda - y_\lambda - \frac{1}{\lambda} n|^2 + |x_\lambda - x_0|^2 \leq u_\theta(x_\lambda) - v(y_\lambda) - u_\theta(x_0) + v(x_0 - \frac{1}{\lambda} n)$$

$$= (u_\theta(x_\lambda) - u_\theta(x_0)) - (u_\theta(x_0) - v(x_0)) + v(x_\lambda) - v(y_\lambda) - v(x_0) + v(x_0 - \frac{1}{\lambda} n)$$

$$\leq \text{lip}(v)(|x_\lambda - y_\lambda| + \frac{1}{\lambda})$$

$$\leq \text{lip}(v)(|x_\lambda - y_\lambda - \frac{1}{\lambda} n| + 2 \lambda).$$

(2.5)
This implies
\[L\lambda |x_\lambda - y_\lambda - \frac{1}{\lambda} n|^2 + |x_\lambda - x_0|^2 \leq \frac{C}{\lambda}, \]
where \(C \) depends on \(\text{lip}(v) \) and as a consequence,
\[x_\lambda, y_\lambda \to x_0, \quad \text{as} \quad \lambda \to \infty \quad (2.6) \]
\[\lambda |x_\lambda - y_\lambda - \frac{1}{\lambda} n| \leq \frac{C}{\sqrt{L}} \leq \frac{\epsilon}{2 + \epsilon} \quad (2.7) \]
provided that \(L \) is large enough. Since \(u \) is a subsolution, we may deduce from the relation \(\Phi(x_\lambda, y_\lambda) \geq \Phi(x, y_\lambda) \) for \(x \in \overline{\Omega} \) that
\[2L\lambda (x_\lambda - y_\lambda - \frac{1}{\lambda} n) + 2(x_\lambda - x_0) \leq \theta f^*(x_\lambda) \]
for large \(\lambda \) and similarly,
\[2L\lambda (x_\lambda - y_\lambda - \frac{1}{\lambda} n) \geq f_*(y_\lambda). \]
Combining the above inequalities, we infer
\[(1 - \theta)f^*(y_\lambda) \leq \omega(|y_\lambda - x_0| + r_\lambda) \quad (2.8) \]
In order to apply (2.2) we write \(x_\lambda = y_\lambda + r_\lambda d_\lambda \), where
\[d_\lambda = \frac{n + w_\lambda}{|n + w_\lambda|}, \quad r_\lambda = \frac{1}{\lambda} |n + w_\lambda|, \quad w_\lambda = \lambda \left(x_\lambda - y_\lambda - \frac{1}{\lambda} n \right). \quad (2.9) \]
Recalling (2.7) we deduce
\[|d_\lambda - n| \leq \frac{2|w_\lambda|}{1 - |w_\lambda|} \leq \frac{2\epsilon}{2 + \epsilon} = \epsilon \]
and (2.3) therefore yields
\[f^*(x_\lambda) - f_*(y_\lambda) = f^*(y_\lambda + r_\lambda d_\lambda) - f_*(y_\lambda) \leq \omega(|y_\lambda - x_0| + r_\lambda). \quad (2.10) \]
If we send \(\lambda \to \infty \) in (2.8) we finally obtain from (2.1), (2.10) and (2.6) that \((1 - \theta)m \leq 0 \), a contradiction. Thus, \(u_\theta \leq v \) in \(\overline{\Omega} \) and sending \(\theta \nearrow 1 \) gives the desired result.

3 Numerical scheme and error analysis

Let us assume that \(\Omega = \Pi_{i=1}^n (0, b_i) \) and that the grid size \(h > 0 \) is chosen in such a way that \(b_i = N_i h \) for some \(N_i \in \mathbb{N}, i = 1, \ldots, n \). We then define
\[\Omega_h := Z^n_h \cap \Omega, \quad \partial \Omega_h := Z^n_h \cap \partial \Omega, \quad \tilde{\Omega}_h := \Omega_h \cup \partial \Omega_h, \]
where \(Z^n_h = \{ x_\alpha = (h\alpha_1, \ldots, h\alpha_n) \mid \alpha_i \in \mathbb{Z}, i = 1, \ldots, n \} \). Our aim is to approximate the viscosity solution \(u \) of (1.1), (1.2) by a grid function \(U : \tilde{\Omega}_h \to \mathbb{R} \) and to prove an estimate for \(\max_{x_\alpha \in \Omega_h} |u(x_\alpha) - U(x_\alpha)| \). Let us abbreviate \(U_\alpha = U(x_\alpha) \) and recall the usual backward and forward difference quotients,
\[D^-_k U_\alpha := \frac{U_{\alpha} - U_{\alpha-e_k}}{h}, \quad D^+_k U_\alpha := \frac{U_{\alpha+e_k} - U_\alpha}{h}, \quad x_\alpha \in \Omega_h, \quad k = 1, \ldots, n. \]
In order to define the numerical method we introduce the function \(G : \mathbb{R}^{2n} \to \mathbb{R} \) as
\[
G(p_1, q_1, ..., p_n, q_n) := \left(\sum_{k=1}^{n} \max(p_k^+, -q_k^-)^2 \right)^{\frac{1}{2}},
\]
where \(x^+ = \max(x, 0), x^- = \min(x, 0) \). The discrete problem now reads: find \(U : \bar{\Omega}_h \to \mathbb{R} \) such that
\[
G(D^-_1 U_\alpha, D^+_1 U_\alpha, ..., D^-_n U_\alpha, D^+_n U_\alpha) = f(x_\alpha) \quad x_\alpha \in \Omega_h \quad (3.1)
\]
\[
U_\alpha = 0 \quad x_\alpha \in \partial \Omega_h. \quad (3.2)
\]

The above scheme was examined for continuous \(f \) in [9] in the context of shape-from-shading and convergence to the viscosity solution was obtained as a consequence of a result of Barles and Souganidis [2]. In the case of a constant right hand side \(f \equiv 1 \), Zhao [12] recently obtained an \(O(h) \) error bound. The scheme can be derived by interpreting the viscosity solution \(u \) as the value function of an optimal control problem. For further information and a corresponding list of references we refer to Appendix A (written by M. Falcone) in [1].

The function \(G \) has the following crucial properties:

a) **Consistency**:
\[
G(p_1, p_1, ..., p_n, p_n) = |p| \quad \text{for all} \quad p = (p_1, ..., p_n) \in \mathbb{R}^n. \quad (3.3)
\]

b) **Monotonicity**:

Let \(a = (a_1, a_2, ..., a_{2n-1}, a_{2n}) \), \(b = (b_1, b_2, ..., b_{2n-1}, b_{2n}) \) \(\in \mathbb{R}^{2n} \) with \(a_k \geq b_k \) for \(k = 1, ..., 2n \). Then
\[
G(t-a_1, a_2-t, ..., t-a_{2n-1}, a_{2n}-t) \leq G(t-b_1, b_2-t, ..., t-b_{2n-1}, b_{2n}-t) \quad \forall t \in \mathbb{R}. \quad (3.4)
\]

Note that the above properties imply in particular that the solution of (3.1), (3.2) cannot have a local minimum in \(\Omega_h \) and therefore \(U_\alpha \geq 0 \) in \(\Omega_h \). In order to carry out our error analysis we need to strengthen (2.2) in that we assume that there exist \(\epsilon > 0 \), \(K \geq 0 \) such that for all \(x \in \Omega \) there is a direction \(n = n_x \in S^{n-1} \) with
\[
f(y + rd) - f(y) \leq K r \quad \forall y \in \Omega, \quad |y - x| < \epsilon \quad \forall d \in S^{n-1}, \quad |d - n| < \epsilon \quad \forall r > 0. \quad (3.5)
\]

Theorem 3.1. Let \(u \) be the viscosity solution of (1.1), (1.2) and \(U \) a solution of (3.1), (3.2). Then there exists a constant \(C \), which is independent of \(h \) such that
\[
\max_{x_\alpha \in \bar{\Omega}_h} |u(x_\alpha) - U(x_\alpha)| \leq C \sqrt{h}.
\]

Proof. We again only sketch the main ideas. As it seems difficult to use the argument from the uniqueness proof in order to control the maximum of \(u - U \), we shall resort to the Kružkov transform. Thus, let \(\tilde{u} : \bar{\Omega} \to \mathbb{R}, \tilde{U} : \bar{\Omega}_h \to \mathbb{R} \) be defined by
\[
\tilde{u}(x) := -e^{-u(x)}, \quad x \in \bar{\Omega}, \quad \tilde{U}_\alpha := -e^{-U_\alpha}, \quad x_\alpha \in \bar{\Omega}_h.
\]

One verifies (cf. [4]) that \(\tilde{u} \) is a viscosity solution of
\[
f(x)\tilde{u} + |\nabla \tilde{u}| = 0 \quad x \in \Omega \quad \tilde{u}(x) = -1 \quad x \in \partial \Omega, \quad (3.6)
\]
\[
\tilde{u}(x) = -1 \quad x \in \partial \Omega. \quad (3.7)
\]
and that \(\bar{U} \) satisfies
\[
f(x_{\alpha})\bar{U}_{\alpha} + G(D_{1}^{-}\bar{U}_{\alpha}, D_{1}^{+}\bar{U}_{\alpha}, \ldots, D_{n}^{-}\bar{U}_{\alpha}, D_{n}^{+}\bar{U}_{\alpha}) = F_{\alpha}^{h} \quad x_{\alpha} \in \Omega_{h} \tag{3.8}
\]
where
\[
\max_{x_{\alpha} \in \Omega_{h}} |F_{\alpha}^{h}| \leq Ch. \tag{3.10}
\]

Next, choose \(x_{\beta} \in \bar{\Omega}_{h} \) such that
\[
|\bar{u}(x_{\beta}) - \bar{U}_{\beta}| = \max_{x_{\alpha} \in \bar{\Omega}_{h}} |\bar{u}(x_{\alpha}) - \bar{U}_{\alpha}|
\]
and assume that \(\bar{u}(x_{\beta}) \geq \bar{U}_{\beta} \). The opposite case can be treated similarly. If \(\text{dist}(x_{\beta}, \partial \Omega) \leq \sqrt{h} \), it follows from (3.7), (3.9) and the Lipschitz continuity of \(\bar{u} \) that
\[
\max_{x_{\alpha} \in \Omega_{h}} |\bar{u}(x_{\alpha}) - \bar{U}_{\alpha}| = \bar{u}(x_{\beta}) - \bar{U}_{\beta} \leq C\sqrt{h}.
\]

Now suppose that \(\text{dist}(x_{\beta}, \partial \Omega) > \sqrt{h} \) and define
\[
\Phi(x, x_{\alpha}) := \bar{u}(x) - \bar{U}_{\alpha} - \frac{L_{1}}{\sqrt{h}} |x - x_{\alpha} - \sqrt{h}n|^{2} - L_{2}\sqrt{h} |x_{\alpha} - x_{\beta}|^{2}, \quad (x, x_{\alpha}) \in \bar{\Omega} \times \bar{\Omega}_{h}.
\]
Here, \(n = n_{x_{\beta}} \) and \(L_{1}, L_{2} \geq 0 \) are constants that do not depend on \(h \) and which will be chosen later. There exists \((x_{h}, x_{\alpha_{h}}) \in \Omega \times \bar{\Omega}_{h} \) such that
\[
\Phi(x_{h}, x_{\alpha_{h}}) = \max_{(x, x_{\alpha}) \in \bar{\Omega} \times \bar{\Omega}_{h}} \Phi(x, x_{\alpha}).
\]
Since \(\text{dist}(x_{\beta}, \partial \Omega) > \sqrt{h} \), we have \(x_{\beta} + \sqrt{h}n \in \Omega \) and therefore
\[
\Phi(x_{h}, x_{\alpha_{h}}) \geq \Phi(x_{\beta} + \sqrt{h}n, x_{\beta}).
\]

From this we infer in a similar way as in (2.5) that
\[
|\alpha_{h} - x_{\beta}| < \epsilon, \tag{3.11}
\]
\[
\frac{1}{\sqrt{h}} |x_{h} - x_{\alpha_{h}} - \sqrt{h}n| < \frac{\epsilon}{2 + \epsilon} \tag{3.12}
\]
provided that \(L_{i} = L_{i}(\text{lip}(\bar{u}), \epsilon), i = 1, 2 \) are sufficiently large (\(\epsilon \) from (3.5)).

Suppose first that \((x_{h}, x_{\alpha_{h}}) \in \Omega \times \bar{\Omega}_{h} \). Since \(\bar{u} \) is a subsolution of (3.6) we infer
\[
f^{*}(x_{h})\bar{u}(x_{h}) + \frac{2L_{1}}{\sqrt{h}} (x_{h} - x_{\alpha_{h}} - \sqrt{h}n) \leq 0. \tag{3.13}
\]

Keeping the first component of \(\Phi \) fixed we obtain on the other hand for all \(x_{\alpha} \in \bar{\Omega}_{h} \)
\[
\bar{U}_{\alpha} \geq \bar{U}_{\alpha_{h}} + \frac{L_{1}}{\sqrt{h}} (|x_{h} - x_{\alpha_{h}} - \sqrt{h}n|^{2} - |x_{h} - x_{\alpha} - \sqrt{h}n|^{2})
\]
\[
+ L_{2}\sqrt{h} (|x_{\alpha_{h}} - x_{\beta}|^{2} - |x_{\alpha} - x_{\beta}|^{2})
\]
\[
= : \tilde{V}_{\alpha}.
\]
Since $\tilde{U}_{\alpha_{h}} = \bar{V}_{\alpha_{h}}$, (3.4) and (3.3) imply
\[
G(D_{1}^{-}\tilde{U}_{\alpha_{h}}, D_{1}^{+}\tilde{U}_{\alpha_{h}}, \ldots, D_{n}^{-}\tilde{U}_{\alpha_{h}}, D_{n}^{+}\tilde{U}_{\alpha_{h}}) \leq G(D_{1}^{-}\bar{V}_{\alpha_{h}}, D_{1}^{+}\bar{V}_{\alpha_{h}}, \ldots, D_{n}^{-}\bar{V}_{\alpha_{h}}, D_{n}^{+}\bar{V}_{\alpha_{h}})
\]
\[
\leq \left| \frac{2L_{1}}{\sqrt{h}}(x_{h} - x_{\alpha_{h}} - \sqrt{h}n) - 2L_{2}\sqrt{h}(x_{\alpha_{h}} - x_{\beta}) \right| + C\sqrt{h}.
\]
Combining this inequality with (3.8) and (3.10) then yields
\[
f(x_{\alpha_{h}})\tilde{U}_{\alpha_{h}} + \frac{2L_{1}}{\sqrt{h}}(x_{h} - x_{\alpha_{h}} - \sqrt{h}n) \geq -|F_{\alpha_{h}}^{h}| - C\sqrt{h} \geq -C\sqrt{h}.
\] (3.14)
As a result of (3.13), (3.14)
\[
f(x_{\alpha_{h}})(\bar{u}(x_{h}) - \tilde{U}_{\alpha_{h}}) \leq C\sqrt{h} + e^{-u(x_{h})}(f^{*}(x_{h}) - f(x_{\alpha_{h}}))
\]
\[
= C\sqrt{h} + e^{-u(x_{h})}(f^{*}(x_{\alpha_{h}} + r_{h}d_{h}) - f(x_{\alpha_{h}}))
\] (3.15)
where similar to (2.9), $d_{h} = \frac{n + w_{h}}{|n + w_{h}|}$, $r_{h} = \sqrt{h}|n + w_{h}|$, $w_{h} = \frac{1}{\sqrt{h}}(x_{h} - x_{\alpha_{h}} - \sqrt{h}n)$. Since
\[
\bar{u}(x_{h}) - \tilde{U}_{\alpha_{h}} = \Phi(x_{h}, x_{\alpha_{h}}) + \frac{L_{1}}{\sqrt{h}}|x_{h} - x_{\alpha_{h}} - \sqrt{h}n|^{2} + L_{2}\sqrt{h}|x_{\alpha_{h}} - x_{\beta}|^{2}
\]
\[
\geq \Phi(x_{\beta}, x_{\beta}) = \tilde{U}_{\beta} - \tilde{u}(x_{\beta}) - L_{1}\sqrt{h},
\]
we finally deduce from (2.1), (3.15) and (3.5) that
\[
m(\bar{u}(x_{\beta}) - \tilde{U}_{\beta}) \leq C\sqrt{h} + Kr_{h} \leq C\sqrt{h}.
\]
The cases $x_{h} \in \partial\Omega$ or $x_{\alpha_{h}} \in \partial\Omega_{h}$ can be examined with the help of the boundary conditions (3.7), (3.9). Transforming back to u and U implies the desired error bound.

References

Klaus Deckelnick
Institut für Analysis und Numerik
Otto–von–Guericke–Universität Magdeburg
Universitätsplatz 2
39106 Magdeburg
Germany

Charles M. Elliott
Centre for Mathematical Analysis and Its Applications
School of Mathematical Sciences
University of Sussex
Falmer Brighton BN1 9QH
United Kingdom