<table>
<thead>
<tr>
<th>Title</th>
<th>Canonical subgroups and p-adic vanishing cycles on abelian varieties (Algebraic Number Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Abbes, Ahmed</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 数理解析研究所講究録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43155</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Canonical subgroups and p-adic vanishing cycles on abelian varieties

Ahmed Abbes

Kyoto, December 5, 2002

This is a report on a joint work with A. Mokrane [1]. Our motivation is to develop a theory of Siegel p-adic modular forms (and for other Shimura varieties) on the model of the elliptic theory developed by Dwork [8], Katz [9], Coleman [5, 6], The first step, achieved in [1], provides analogues of the compact Atkin operator U.

Let k be an algebraically closed field of characteristic $p > 0$, $W = W(k)$ be the ring of Witt vectors with coefficients in k and σ be the Frobenius endomorphism of k or W. Let A be an ordinary abelian variety over k of dimension g and let \mathfrak{M} be the formal moduli space of deformations of A over artinien W-algebras with residue field k. By Serre-Tate theorem, there exists a canonical isomorphism of formal W-schemes

$$\mathfrak{M} \xrightarrow{\sim} \text{Hom}_{\mathbb{Z}_p}(T_pA(k) \otimes T_p\hat{A}(k), \hat{\mathbb{G}}_m),$$

where \hat{A} is the dual abelian variety of A and T_p is the Tate module. Dwork developed another approach to this structure theorem. He proved that a toric formal Lie group structure on \mathfrak{M} is imposed by a W-morphism $\Phi : \mathfrak{M} \to \mathfrak{M}(\sigma)$ lifting the Frobenius. In particular, the group structure of Serre-Tate is completely determined by the canonical lifting of the Frobenius $\Phi_{\text{can}} : \mathfrak{M} \to \mathfrak{M}(\sigma)$ defined as follows. Let A/\mathfrak{M} be the universal formal abelian scheme, pA be the kernel of multiplication by p and $pA^\circ \subset pA$ be the neutral connected component. Notice that pA° is the unique closed subgroup scheme of pA, finite and flat over \mathfrak{M} of rank p^2, that lifts the kernel of the isogeny of Frobenius $A \to A(\sigma)$. Then the morphism Φ_{can} is defined by the isomorphism of formal abelian schemes $\Phi_{\text{can}}^*(A(\sigma)) \simeq A/pA^\circ$.

In a global situation, Dwork conjectured that the canonical lifting of the Frobenius is overconvergent. This problem is known as the excellent lifting problem. Deligne, Dwork [7] and Lubin-Tate [9] proved this conjecture for families of elliptic curves. Then Dwork [8] used it to prove that the unit L function of the Legendre family of ordinary elliptic curves has a meromorphic continuation to \mathbb{C}_p. In [1], we prove the overconvergence for higher dimensions.
under the assumption $p \geq 3$ and we deduce an application to the study of unit L functions attached to Siegel modular varieties.

In this report, we will review only the overconvergence result. We start by reformulating the problem in modular terms. Let K be a complete discrete valuation field of characteristic 0, with perfect residue field k of characteristic $p > 0$, \mathcal{O}_K be its ring of integers and v_p be its valuation normalized by $v_p(p) = 1$. We put $S = \text{Spec}(\mathcal{O}_K)$ and $S_1 = \text{Spec}(\mathcal{O}_K/p\mathcal{O}_K)$. Let M be a φ-\mathcal{O}_{S_1}-module, i.e. a free \mathcal{O}_{S_1}-module of finite type equipped with a semi-linear endomorphism $\varphi : M \to M$. We define the Hodge height of M as the (truncated) p-adic valuation of the determinant of a matrix of φ. It is a well defined rational number between 0 and 1. Let A be an S-abelian scheme of relative dimension g, $A_1 = A \times_S S_1$ and pA be the kernel of multiplication by p. The Frobenius of A_1 makes $H^1(A_1, \mathcal{O}_{A_1})$ as a φ-\mathcal{O}_{S_1}-module. The problem is to construct, under the assumption that the Hodge height of $H^1(A_1, \mathcal{O}_{A_1})$ is strictly less than a rational number $b(g) > 0$, a canonical closed subgroup scheme $H_{\text{can}} \subset pA$, finite and flat over S of rank p^g. If A_k is ordinary, we require that H_{can} is the neutral connected component of pA. We solve this problem by studying the ramification of finite flat group schemes over S using the ramification theory of Abbes-Saito [2, 3]. Let G be a finite flat S-group scheme. We define on G a canonical exhaustive decreasing filtration $(G^a, a \in \mathbb{Q}_{\geq 0})$ by closed subgroup schemes, finite and flat over S. For a real number $a \geq 0$, we put $G^{a+} = \cup_{b>a} G^b$ (where $b \in \mathbb{Q}$).

Theorem 1 Assume that $p \geq 3$ and let e be the absolute ramification index of K and $j = e/(p-1)$. Let A be an S-abelian scheme of relative dimension g such that the Hodge height of $H^1(A_1, \mathcal{O}_{A_1})$ is strictly less than

$$\inf \left(\frac{1}{p(p-1)}, \frac{p-2}{(p-1)(2g(p-1) - p)} \right).$$

Then the level pA^{j+} of the canonical filtration of pA is finite and flat over S of rank p^g. Moreover, if A_k is ordinary, then pA^{j+} is the neutral connected component of pA.

Let \overline{K} be an algebraic closure of K, $\mathcal{O}_{\overline{K}}$ be the integral closure of \mathcal{O}_K in \overline{K}, $\overline{S} = \text{Spec}(\mathcal{O}_{\overline{K}})$ and \overline{s} and $\overline{\eta}$ be its closed and generic points. In order to prove Theorem 1, we give a description of the canonical filtration of pA using differential forms. We proceed in two steps. First, we describe the dual filtration on $H^1(A_{\overline{S}}, \mathbb{Z}/p\mathbb{Z})$ via the spectral sequence of p-adic vanishing cycles, in terms of filtration by symbols ([4] Section 1). Then by a syntomic calculus, we deduce a description of the level $pA^{j+}(\overline{K})$. In particular, we prove that $pA^{j+}(\overline{K}) = \ker(\theta(-1))$, where

$$\theta : H^1(A_{\overline{K}}, \mathbb{Z}/p\mathbb{Z}(1)) \to H^0(A, \Omega^1_{A/S}) \otimes_{\mathcal{O}_K} \mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}}$$
is a classical homomorphism in Kummer theory. Notice that this simple description is not enough to compute the rank of pA^{j+}.

Finally we review the result on p-adic vanishing cycles. Let $\overline{A} = A \times_{S} \overline{S}$. Consider the cartesian diagram

$$
\begin{array}{ccc}
A_{\overline{s}} & \xrightarrow{i} & \overline{A} & \xrightarrow{j} & \overline{A}_{\overline{\eta}} \\
\downarrow & & \downarrow & & \downarrow \\
\overline{s} & \xrightarrow{\overline{i}} & \overline{S} & \xrightarrow{\overline{j}} & \overline{\eta}
\end{array}
$$

and the étale sheaves on $A_{\overline{s}}$

$$
\Psi^q = i^* R^q j_* (\mathbb{Z}/p\mathbb{Z}(q)).
$$

The Kummer exact sequence $0 \to \mu_p \to G_m \to G_m \to 0$ on $A_{\overline{\eta}}$ induce a symbol map

$$
h_{\overline{A}} : i^* j_* \mathcal{O}_{A_{\overline{\eta}}}^\times \to \Psi^1.
$$

We put $U^0 \Psi^1 = \Psi^1$ and $U^a \Psi^1 = h_{\overline{A}}(1 + m_a i^*(\mathcal{O}_{\overline{A}}))$ for a rational number $a > 0$, where $m_a = \{x \in O_{\overline{K}}; v(x) \geq a\}$ and the valuation v is normalized by $v(K) = \mathbb{Z}$.

There is a spectral sequence

$$E_2^{t,t} = H^t(A_{\overline{s}}, \Psi^t)(-t) \Rightarrow H^{t+t}(A_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z})$$

that induces the exact sequence

$$0 \to H^1(A_{\overline{s}}, \mathbb{Z}/p\mathbb{Z}) \to H^1(A_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{u} H^0(A_{\overline{s}}, \Psi^1)(-1)$$

Theorem 2 Let $e' = ep/(p-1)$. Under the canonical pairing

$$pA(\overline{K}) \times H^1(A_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z}) \to \mathbb{Z}/p\mathbb{Z},$$

we have, for any rational number $a > 0$,

$$pA^{a+}(\overline{K}) \perp = \begin{cases}
 u^{-1}(H^0(A_{\overline{s}}, U^{e'-a} \Psi^1)(-1)) & \text{if } 0 \leq a < e', \\
 H^1(A_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z}) & \text{if } a \geq e'.
\end{cases}$$

References

Address: CNRS UMR 7539, LAGA, Institut Galilée, Université Paris-Nord, 93430 Villetaneuse, France
E-mail: abbes@math.univ-paris13.fr