<table>
<thead>
<tr>
<th>Title</th>
<th>Universal bound for isogenies of elliptic curves over number fields (Algebraic Number Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawamura, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2003, 1324: 161-173</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43157</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Universal bound for isogenies of elliptic curves over number fields

東京大学・大学院数理科学研究科 河村 隆 (Takashi Kawamura)
Graduate School of Mathematical Sciences,
University of Tokyo

1 Introduction

Let E and E' be isogenous elliptic curves defined over a number field k of degree d. Masser and Wüstholz [6] proved the existence of a constant c depending effectively only on d such that there is an isogeny between E and E' whose degree is at most $c\{w(E)\}^4$, where $w(E) = \max\{1, h(g_2), h(g_3)\}$ when E is identified with its Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$. Here h denotes the absolute logarithmic Weil height. But they did not give an explicit formula of c. The purpose of this paper is to express c as an explicit function of d bounded by a polynomial when E has no complex multiplication. The main result is as follows.

Theorem. Given a positive integer d, there exists a constant $c(d)$ depending only on d with the following property. Let k be a number field of degree at most d, and let E be an elliptic curve defined over k without complex multiplication. Suppose E is isogenous to another elliptic curve E' defined over k.

(i) Then there is an isogeny between E and E' whose degree is at most $c(d)\{w(E)\}^4$, where

$$c(d) = 6.55 \times 10^{64}\{\max\{1.09 \times 10^7d^{1.45}\{15.5 \max\{\log(88.8d + 2.8), 38.4\} + 342.3\}^{1.45}, 1.82 \times 10^{63}\}\}^{210}\{11.4d + 55.3\}^{20}.$$

In particular the function $c(d)$ in d increases as $1.9 \times 10^{1956}d^{325}$ when d goes to infinity.

(ii) $c(1) = 8.2 \times 10^{13415}$ when $d = 1$, i. e., $k = \mathbb{Q}$.

We proceed along the line of [6]. Main devices in calculating c are as follows. First we distinguish five constants which are unified as c_3 in [6, Lemma 3.3.] and those in [6, Lemmas 3.4 and 4.4]. Secondly we improve the relative degree of the field generated by the values of Weierstrass p-functions and their derivatives over k from 81 to 36.
Pellarin [8] found an upper bound of the form $4.2 \times 10^{61} d^4 \max\{1, \log d\}^2 h(E)^2$, where $h(E) = \max\{1, h(j)\} + \max\{1, h(1, g_2, g_3)\}$ and j is the j-invariant of E. But his Lemme 3.2 seems to contain some mistakes, because the cardinality of \mathbb{C}-linear independent monic monomials X^λ on G such that $\lambda \leq D$, M_D, is $\prod_n (D_n + 1)$ on line 21 of page 219. This lemma is used in the proof of Proposition 3.1, and plays a crucial role in the main estimate. We hope that his proof will be corrected.

2 Preliminary estimates

Let Ω be a lattice in the complex plane. Let (ω_1, ω_2) be a basis of Ω such that $\tau = \omega_2/\omega_1$ belongs to the standard fundamental region for the modular group. So $|\tau| \geq 1$, $x = \text{Re} \, \tau$ satisfies $|x| \leq \frac{1}{2}$, and $y = \text{Im} \, \tau$ satisfies $y \geq \frac{\sqrt{3}}{2}$. Let A be the area of the unit of Ω, which equals $y|\omega_1|^2$. Let g_2 and g_3 be the invariants of Ω, let $p(z)$ be the corresponding Weierstrass function, and $\gamma = \max\{|\frac{1}{4}g_2|^\frac{1}{2}, |\frac{1}{4}g_3|^\frac{1}{3}\}$.

Lemma 2.1. There exists a function $\theta_0(z)$ such that $\theta(z) = \gamma \theta_0(z)$ and $\tilde{\theta}(z) = p(z)\theta_0(z)$ are entire functions, with no common zeros, that satisfy

$$|\log \max\{|\theta(z)|, |\tilde{\theta}(z)|\} - \pi|z|^2/A| < 10.5y$$

for all complex z.

Proof. This is [4, Lemma 3.1] except for the estimation of the constant on the right-hand side of the inequality, which is 10.5. q. e. d.

Lemma 2.2. Let z be a complex number not in Ω, and $||z||$ be the distance from z to the nearest element of Ω. Then

$$|p(z) - p(\omega_2/2)| < 77244||z||^{-2}.$$

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 77244. q. e. d.

Let d be a positive integer, and k be a number field of degree at most d. Moreover, g_2 and g_3 are assumed to lie in k, and $w = \max\{1, h(g_2), h(g_3)\}$.

Lemma 2.3. There are constants $c_{1,i}$ ($1 \leq i \leq 5$), depending only on d, such that

(i) $c_{1,1}^{-w} \leq \gamma < c_{1,1}^w$,

(ii) $y < c_{1,2}w$,

(iii) $A > c_{1,3}^{-w}$,
(iv) $|\omega_1| > c_{1,4}^{-w}$,
(v) $A^{-1}|\omega_2|^2 < c_{1,5}w$,

where $c_{1,1} = 2e^{0.5d}$, $c_{1,2} = 3.2d + 1.2$, $c_{1,3} = 16.6e^{3.8d}$, $c_{1,4} = 4.37e^{1.9d}$, and $c_{1,5} = 3.2d + 1.5$.

Proof. This is [6, Lemma 3.3] except for the estimation of the constants $c_{1,i}$ ($1 \leq i \leq 5$).

Lemma 2.4. There is a constant c_2 depending only on d and a positive integer $b < 2.22^w$ with the following properties. Suppose n is a positive integer, ζ is an element of Ω/n not in Ω, and write $\xi = p(\zeta)$.

Then

(i) ξ is an algebraic number of degree at most dn^2 with $h(\xi) < 8.55w$,
(ii) $bn^2\xi$ is an algebraic integer, and $|\xi| < c_2^w n^2$,

where $c_2 = 2.951 \times 10^6 \exp(3.8d)$.

Proof. When $\frac{1}{4}g_2$ and $\frac{1}{4}g_3$ are algebraic integers, from the proof of [6, Lemma 3.4] ξ has degree at most dn^2, and $n^2\xi$ is an algebraic integer. In the general case we can find a positive integer $b_0 \leq (\sqrt[3]{2}e^{\frac{1}{6}})^w$ such that $\frac{1}{4}b_0^4g_2$ and $\frac{1}{4}b_0^6g_3$ are algebraic integers. These correspond to the lattice $\Omega_0 = \Omega/b_0$ with Weierstrass function $p_0(z) = b_0^2 p(b_0 z)$. So $\xi_0 = p_0(\zeta/b_0)$ has degree at most dn^2, and $n^2\xi_0$ is an algebraic integer. As $\xi = b_0^{-2}\xi_0$, $n^2\xi_0 = b_0^2 n^2 \xi$ is an algebraic integer, $b_0^2 n^2 \xi \leq (\sqrt[3]{4}e^{\frac{1}{3}})^w n^2 < 2.22^w n^2 \xi$, and ξ is an algebraic number of degree at most dn^2.

The Néron-Tate height $q(P)$ of the point P in \mathbb{P}^2 with projective coordinates $(1, p(\zeta), p'(\zeta))$ satisfies $q(P) = 0$. By [3, Lemme 3.4] the Weil height $h(P)$ satisfies $h(P) \leq q(P) + 3w + 8 \log 2 \leq (3 + 8 \log 2)w$. So $h(\xi) \leq h(P) < 8.55w$.

By Lemma 2.2

$$|\xi| < |p(\omega_2/2)| + c_3 \|\zeta\|^{-2},$$ \hspace{1cm} (1)

where $c_3 = 77244$. As $p(\omega_2/2)$ is a root of $4x^3 - g_2x - g_3 = 0$, from Cardano's Formula $|p(\omega_2/2)| \leq (|g_3| + \sqrt{|g_3|^2 + |g_2|^3/27})^{\frac{1}{3}} < (1.3e^{\frac{3}{2}})^w$.

By Lemma 2.3(iv) $\|\zeta\|^{-2} \leq n^2|\omega_1|^{-2} < n^2 c_{1,4} 2^w$. From (1)

$$|\xi| \leq (1.3e^{\frac{3}{2}})^w + c_3 c_{1,4} 2^w n^2 < \{2.951 \times 10^6 \exp(3.8d)\}^w n^2 = c_2^w n^2.$$
3 The Main Proposition: construction

Let E and E^* be elliptic curves defined over \mathbb{C}, and Ω and Ω^* be their period lattices respectively. Let φ be an isogeny from E^* to E. It is said to be normalized if it induces the identity on the tangent spaces. Then $\Omega^* \subset \Omega$, and $[\Omega : \Omega^*]$ is the degree of φ. It is said to be cyclic if its kernel is a cyclic group.

Main Proposition. Given a positive integer d, there exists a constant $c_4(d)$ depending only on d, with the following property. Let k be a number field of degree at most d, and let E and E^* be elliptic curves defined over k without complex multiplication. Suppose there is a normalized cyclic isogeny φ from E^* to E of degree N. Then there is an isogeny between E and E^* of degree at most $c_4(d)\{w(E) + w(E^*) + \log N\}^4$, where

$$c_4(d) = 1.47 \times 10^{16} \max\{(5910d15.5 \max\{\log(7.4d + 2.8)\}, 38.4) + 342.3\}^{1.45}, 1.82 \times 10^{63}\}^{42}.$$

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The body of the proof is described in Section 4.

Let ω_1, ω_2 and ω_1^*, ω_2^* be bases of Ω and Ω^* respectively such that $\tau = \omega_2/\omega_1$ and $\tau^* = \omega_2^*/\omega_1^*$ lie in the standard fundamental region. Then there are integers m_{ij} ($i, j = 1, 2$) such that

$$\omega_1^* = m_{11}\omega_1 + m_{12}\omega_2, \quad \omega_2^* = m_{21}\omega_1 + m_{22}\omega_2 \quad (2)$$

and $m_{11}m_{22} - m_{12}m_{21} = N$. Write $h = w(E) + w(E^*) \geq 2$.

Lemma 3.1. We have $|m_{ij}| < (7.4d + 2.8)N1\frac{3}{2}h$ ($i, j = 1, 2$).

Proof. This is [6, Lemma 4.1] except for the estimation of the constant on the right-hand side of the inequality, which is $7.4d + 2.8$. Q. e. d.

Let C be a sufficiently large constant depending only on d, $L = h + \log N$, $D = [C^{20}L^2]$ and $T = [C^{39}L^4]$. Let $p(z)$ and $p^*(z)$ be the Weierstrass functions corresponding to Ω and Ω^* respectively. For $t > 0$ and independent variables z_1 and z_2 let $D_1(t)$ be the set of differential operators of the form

$$\partial = (\partial/\partial z_1)^{t_1}(\partial/\partial z_2)^{t_2} \quad (t_1 \geq 0, \ t_2 \geq 0, \ t_1 + t_2 < t).$$

Lemma 3.2. There is a nonzero polynomial $P(X_1, X_2, X_1^*, X_2^*)$ of degree at most D in each variable, whose coefficients are rational integers of absolute values at most $\exp(c_5TL)$, such that the function

$$f(z_1, z_2) = P(p(z_1), p(z_2), p^*(m_{11}z_1 + m_{12}z_2), p^*(m_{21}z_1 + m_{22}z_2))$$
satisfies $\partial f(\omega_1/2, \omega_2/2) = 0$ for all ∂ in $D_i(8T)$, where

$$c_5 = 156 \log C + 12 \max\{\log(7.4d + 2.8), \ 38.4\} + 251.3.$$

Proof. Let M denote any monomial of degree at most D in each of the four functions appearing in f, that is,

$$M = \{p(z_1)\}^{d_1}\{p(z_2)\}^{d_2}\{p^*(m_{11}z_1 + m_{12}z_2)\}^{d_3}\{p^*(m_{21}z_1 + m_{22}z_2)\}^{d_4}$$

with $0 \leq d_i \leq D (1 \leq i \leq 4)$, and let ∂ be any operator of $D_i(8T)$. Then ∂M can be written as a polynomial in the four numbers $m_{ij} (i, j = 1, 2)$ and the twelve functions obtained from the above four by replacing the Weierstrass functions by their first and second derivatives. From Baker's Lemma [2, Lemma 3]

$$\frac{d^j}{dz^j}\{p(z)\}^{k} = \sum u(t, t', t'', j, k)\{p(z)\}^{t}\{p'(z)\}^{t'}\{p'(z)\}^{t''},$$

where the sum is taken over nonnegative integers t, t' and t'' which satisfy $2t + 3t' + 4t'' = j + 2k$, and $u(t, t', t'', j, k)$ are integers of absolute values at most $j!48^j(7!2^8)^k$. So the total degree of ∂M is at most $3D + 8T - 1 + 0.5 \cdot (8T - 1) + D < 12(D + T)$. And its coefficients are integers of absolute values at most $(8T - 1)!48^{8T - 1}(7!2^8)^D < T^{8T}(2^{56} \times 3^8)^{D+T}$.

By Lemma 3.1 we have $\log |m_{ij}| < (\log c_6 + 1)L/2$, where $c_6 = 7.4d + 2.8$. From (2) the twelve functions at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ take the values

$$p^{(t)}(\omega_j/2), \ p^{*(t)}(\omega_j^*/2) (t = 0, 1, 2; j = 1, 2).$$

By Lemma 2.4 $h(p(\omega_j/2))$ and $h(p^*(\omega_j^*/2))$ are at most $8.55L$. Both $p'(\omega_j/2)$ and $p''(\omega_j^*/2)$ are zero. And

$$h(p''(\omega_j/2)) = h(6p(\omega_j/2)^2 - g_2/2) \leq 2h(p(\omega_j/2)) + h(g_2) + \log 12 + \log 2 < 19.7L.$$

So does $h(p^{*(2)}(\omega_j^*/2))$. Thus m_{ij} and the values of the twelve functions have heights at most c_7L, where

$$c_7 = \max\{0.5 + 0.5\log(7.4d + 2.8), \ 19.7\}.$$

As $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ are roots of cubic equations with coefficients in k, and $p''(\omega_j/2)$ and $p^{*(2)}(\omega_j^*/2)$ lie in the field generated by $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ over k, these values lie in k' whose degree is at most $36d$. The conditions of Lemma 3.2 amount to $R = 4T(8T + 1)$ homogeneous linear equations in $S = (D + 1)^4$ unknowns with coefficients in k'. By
Siegel's Lemma [1, Proposition], if $S \geq 2 \times 36dR$, these can be solved in rational integers, not all zero, of absolute values at most $S \exp(c_8)$, where c_8 is the height of linear equations. To satisfy the condition $S \geq 72dR$ it suffices that

$$C^{80}L^8 > 2305dC^{78}L^8,$$

so $C > 48.1\sqrt{d}$. \hfill (3)

Next we calculate c_8. By Lemma 2.4 there is a positive integer $b \leq 2.22^w$ such that $4bp(\omega_j/2)$ is an algebraic integer. Since $p''(\omega_j/2) = 6p(\omega_j/2)^2 - g_2/2$, and there is a positive integer $b_2 \leq e^w$ such that b_2g_2 is an algebraic integer, $16b^2b_2p''(\omega_j/2)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ by an integer at most $(16 \times 2.22^2L^e)^{12(D+T)}$, every term is an algebraic integer. As $h(\sum_{i=1}^n a_i) \leq \max h(a_i) + \log n$ for algebraic integers a_i,

$$S \exp(c_8) \leq (D+1)^4(16 \times 2.22^2L^e)^{12(D+T)}13H_{12(D+T)}
\exp(12c_8(D+T)L) < \exp(c_5TL).$$

q. e. d.

Let $\theta_0(z)$ and $\theta_0^*(z)$ be the functions in Lemma 2.1 corresponding to $p(z)$ and $p^*(z)$ respectively. So the function

$$\Theta(z_1, z_2) = \{\theta_0(z_1)\theta_0(z_2)\theta_0^*(m_{11}z_1 + m_{12}z_2)\theta_0^*(m_{21}z_1 + m_{22}z_2)\}^D$$

is entire. Let $F(z_1, z_2) = \Theta(z_1, z_2)f(z_1, z_2)$.

Lemma 3.3. The function $F(z_1, z_2)$ is entire. Further, for any complex number z and any operator ∂ in $D_i(4T+1)$ we have

$$|\partial F(\omega_1z, \omega_2z)| < \exp\{c_9L(T + D|z|^2)\},$$

where

$$c_9 = 234\log C + 154.8d + 2\log(7.4d + 2.8) + 12\max\{\log(7.4d + 2.8),
38.4\} + 423.5.$$

Proof. Let $\gamma, \gamma^*, \theta, \theta^*, \tilde{\theta}, \tilde{\theta}^*$ be as in Lemma 2.1 corresponding to p, p^*. Then $F(z_1, z_2)$ can be expressed as a polynomial in the eight functions

$$\gamma^{-1}\theta(z_i), \tilde{\theta}(z_i), \gamma^{-1}\theta^*(m_{i1}z_1 + m_{i2}z_2), \tilde{\theta}^*(m_{i1}z_1 + m_{i2}z_2) \ (i = 1, 2),$$

so it is entire. It is the quadrihomogenized version of P in Lemma 3.2.
Let $M_0 = \max |m_{ij}|$, $A_0 = \min(A, A^*)$, and $\delta = M_0^{-1}A_0^{\frac{1}{2}}$, where A and A^* are determinants of Ω and Ω^* respectively. For any complex number z let z_1 and z_2 be complex numbers satisfying

$$|z_i - \omega_i z| = \delta \quad (i = 1, 2). \quad (5)$$

We claim that $|F(z_1, z_2)| < \exp\{c_{10}L(T + D|z|^2)\}$, where $c_{10} = 156\log C + 147.2d + 12\max\{\log(7.4d + 2.8), 38.4\} + 404.3$. By Lemma 2.1

$$\log \max\{|\theta(z_i)|, |\tilde{\theta}(z_i)|\} < 10.5y + \pi A^{-1}|z_i|^2$$

$$\leq 10.5(y + A^{-1}\delta^2 + A^{-1}|\omega_i|^2|z|^2) \quad (i = 1, 2).$$

As $A^{-1}\delta^2 \leq M_0^{-2} \leq 1$, from Lemma 2.3(i)(ii)(v) the first two functions in (4) have absolute values at most

$$c_{1,1}^L \exp\{10.5(c_{1,2}L + 1 + c_{1,5}L|z|^2)\} < \exp\{(11.5c_{1,5} + 5.25)L(1 + |z|^2)\},$$

for $c_{1,5} > c_{1,2} > \log c_{1,1}$.

The last two expressions in (4) are estimated similarly. From (2) and (5) $z_i^* := m_{i1}z_1 + m_{i2}z_2$ satisfy $|z_i^* - \omega_i^* z| \leq 2M_0\delta \quad (i = 1, 2)$. Thus

$$\log \max\{|\theta^*(z_i^*)|, |\tilde{\theta}^*(z_i^*)|\} < 10.5(y^* + 4M_0^2A^{*-1}\delta^2 + A^{*-1}|\omega_i^*|^2|z|^2)$$

$$\quad (i = 1, 2).$$

By Lemma 2.3 the last two functions have absolute values at most

$$c_{1,1}^L \exp\{10.5(c_{1,2}L + 4 + c_{1,5}L|z|^2)\} < \exp\{(11.5c_{1,5} + 21)L(1 + |z|^2)\}.$$

By Lemma 3.2

$$|F(z_1, z_2)| < \exp(c_5TL) \exp\{(46c_{1,5} + 84)DL(1 + |z|^2)\}(D + 1)^4$$

$$< \exp\{c_{10}L(T + D|z|^2)\},$$

which is the claim.

By the Cauchy Integral Formula

$$|\partial F(\omega_1 z, \omega_2 z)| = \left| \frac{t_1!t_2!}{(2\pi i)^2} \oint \oint \frac{F(z_1, z_2)}{(z_1 - \omega_1 z)^{t_1+1}(z_2 - \omega_2 z)^{t_2+1}} dz_1 dz_2 \right|$$

$$< t_1!t_2!\delta^{-(t_1+t_2)} \exp\{c_{10}L(T + D|z|^2)\},$$

where the integrals are around the circles (5). From Lemma 2.3(iii) and Lemma 3.1

$$\delta = M_0^{-1}A_0^{\frac{1}{2}} > (7.4d + 2.8)^{-1}N^{-\frac{1}{2}}h^{-1}c_{1,3}^{-\frac{1}{2}}$$

$$> \{6.72(7.4d + 2.8)^{\frac{1}{2}} \exp(1.9d)\}^{-L} =: c_{11}^{-L}.$$
$|\partial F(\omega_1 z, \omega_2 z)| < (4T)!c_{11}^{4LT} \exp\{c_{10}L(T + D|z|^2)\} \exp\{c_9 L(T + D|z|^2)\}.$

q. e. d.

Let Q be the unique integral power of 2 that satisfies

$C^{17/8} < Q \leq 2C^{17/8}.$

Lemma 3.4. For any odd integer q and $\zeta = q/Q$, we have

$|\Theta(\omega_1\zeta, \omega_2\zeta)| > \exp(-84DLQ^2).$

Further, for any ∂ in $D_i(4T + 1)$ such that $\partial f(\omega_1\zeta, \omega_2\zeta) \neq 0$, we have

$|\partial f(\omega_1\zeta, \omega_2\zeta)| > \exp(-c_{12}TLQ^6),$

where $c_{12} = 16d[290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3].$

Proof. By Lemma 2.3(i) and Lemma 2.4(i)

$$\max\{\gamma, |p(\omega_j\zeta)|\} < \exp(8.55dhQ^2) (j = 1, 2).$$

From Lemma 3.1 and Lemma 2.3(ii)

$$|\theta_0(\omega_j\zeta)| > \exp(-10.5y - 8.55dhQ^2) > \exp(-10.5d(1 + c_{1,2}/Q^2)hQ^2),$$

and the same bound holds for $|\theta_0^* (\omega_j^* \zeta)| (j = 1, 2).$ Thus

$$|\Theta(\omega_1\zeta, \omega_2\zeta)| > \exp(-4D \times 10.5d(1 + c_{1,2}/Q^2)hQ^2) > \exp(-84DLQ^2),$$

for by (3) $Q^2 > C^{11/4} > 48^4d^2 > 3.2d + 1.2 = c_{1,2}$.

$\alpha := \partial f(\omega_1\zeta, \omega_2\zeta)$ is estimated as in the proof of Lemma 3.2. α is a polynomial in the m_{ij} ($i, j = 1, 2$) and the twelve numbers $p^{(t)}(\omega_j\zeta)$, $p^{*(t)}(\omega_j^* \zeta)$ ($j = 1, 2; t = 0, 1, 2$). Let ∂M be as in the proof of Lemma 3.2, and ∂ be any operator of $D_i(4T + 1).$ From Baker's Lemma the total degree of ∂M is at most $6(D + T)$, and the absolute values of its coefficients are at most $T^{4T}(2^{24} \times 3^4)^{D+T}$.

By Lemma 2.4 there is a positive integer $b < 2.22^w$ such that $bQ^2 p(\omega_j\zeta)$ is an algebraic integer. Since $p'(\omega_j\zeta)^2 = 4p(\omega_j\zeta)^3 - g_2 p(\omega_j\zeta) - g_3$, and there is a positive integer $b_3 \leq e^w$ such that b_3g_3 is an algebraic integer, $(b^3 b_2 b_3)\frac{1}{3} Q^3 p'(\omega_j\zeta)$ is an algebraic integer. And $2b^2 b_2 Q^4 p''(\omega_j\zeta)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1\zeta, \omega_2\zeta)$ by
a positive integer at most \((2 \times 2.22^{2L} e^{1.5L} Q^{4})^{6(D+T)}\), every term is an algebraic integer. By Lemma 2.4 \(h(p(\omega_j \zeta))\) and \(h(p^*(\omega_j^* \zeta))\) are at most \(8.55L\),

\[
h(p'(\omega_j \zeta)) \leq \frac{1}{2} \{2h(p(\omega_j \zeta)) + \log 4 + h(g_2) + h(p(\omega_j \zeta)) + h(g_3) + \log 3\} < 2 \times 8.55L + L + \log 3 < 19.7L,
\]

and \(h(p''(\omega_j^* \zeta)), h(p'''(\omega_j^* \zeta))\) and \(h(p'\prime\prime(\omega_j^* \zeta))\) are at most \(19.7L\). Thus at \((z_1, z_2) = (\omega_1 \zeta, \omega_2 \zeta)\),

\[
\exp(h(\partial M)) \leq (2 \times 2.22^{2L} e^{1.5L} Q^{4})^{12(D+T)} 17H_{6(D+T)} T^{4T}(2^{24} \times 3^{4})^{D+T} \exp\{6c_7(D + T)L\}.
\]

\(\alpha\) is a linear combination of \(\partial M\) with rational integer coefficients whose absolute values are at most \(\exp(c_5 T L)\). So

\[
h(\alpha) \leq \log(D + 1)^4 + c_5 TL + h(\partial M)
\]

\[
< [290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3]TL.
\]

Next we estimate the degree of \(\alpha\), \(\deg \alpha\). Since

\[
Q(\alpha) = Q(p^{(t)}(\omega_j \zeta), p^{*^{(t)}}(\omega_j^* \zeta)) (j = 1, 2; t = 0, 1, 2)
\]

\[
\subset k(p(\omega_j \zeta), p^*(\omega_j^*), p'(\omega_j \zeta), p''(\omega_j^* \zeta)),
\]

the degrees of \(p(\omega_j \zeta)\) and \(p^*(\omega_j^* \zeta)\) are at most \(dQ^2\) by Lemma 2.4(i), and \([k(p(\omega_j \zeta), p'(\omega_j \zeta)) : k(p(\omega_j \zeta))]\leq 2\),

\[
\deg \alpha = [Q(\alpha) : Q] \leq d(Q^2)^4 2^4 = 16dQ^8.
\]

Hence \(|\alpha| \geq \exp\{-(\deg \alpha)h(\alpha)\} > \exp(-c_{12} T L Q^8)\). q.e.d.

Lemma 3.5. If \(C\) satisfies \(C > (256/\log 2)c_{12}\) with the constant \(c_{12}\) in Lemma 3.4, then for any odd integer \(q\) and any \(\partial\) in \(D_t(4T + 1)\) we have \(\partial f(q \omega_1/Q, q \omega_2/Q) = 0\).

Proof. Assume that there exist an odd integer \(q\) and an operator \(\partial\) in \(D_t(4T + 1)\) such that \(\alpha = \partial f(\omega_1 \zeta, \omega_2 \zeta) \neq 0\) for \(\zeta = q/Q\). We can suppose that \(0 < \zeta < 1\), and that

\[
\alpha \Theta(\omega_1 \zeta, \omega_2 \zeta) = G(\zeta),
\]

where \(G(z) = \partial F(\omega_1 z, \omega_2 z)\) and \(\partial\) is of minimal order.

\(G^{(t)}(z)\) is a linear combination of the \(\partial f(\omega_1 z, \omega_2 z)\) for \(\partial\) in \(D_t(t + 1 + 4T)\), so by Lemma 3.2 and periodicity

\[
G^{(t)}(s + 1/2) = 0
\]
for any integer \(t \) with \(0 \leq t < 4T \) and any integer \(s \). We apply the Schwarz Lemma to (7) for \(0 \leq s < S \), where \(S = |C^{18}L| \). Then \(|G(\zeta)| \leq 2^{-4TS} M_1 \), where \(M_1 \) is the supremum of \(|G(z)| \) for \(|z| \leq 5S \). By Lemma 3.3 \(M_1 < \exp\{25c_9 L(T + DS^2)\} \) \(< \exp(50c_9 LDS^2) \). If \(C > (25/\log 2)c_9 \), then \(\exp(50c_9 LDS^2) < 2^{2TS} \), so \(|G(\zeta)| < 2^{-2TS} \). By (6) and Lemma 3.4

\[
|\alpha| < 2^{-2TS} \exp(84DLQ^2) < 2^{-TS},
\]

where the second inequality follows, because \(C > (84/\log 2)^{4/131} \). But also from Lemma 3.4 we have the lower bound

\[
|\alpha| > \exp(-c_{12}TLQ^8).
\]

If

\[
C > (256/\log 2)c_{12}
\]

\[
= 5909d[290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\}
+ 342.3],
\]

then \(2^{TS} > \exp(c_{12}TLQ^8) \), which contradicts (8) and (9). As \(256c_{12} > 25c_9 \), (10) implies that \(C > (25/\log 2)c_9 \). q. e. d.

4 Proof of Main Proposition: deconstruction

Let \(G = E^2 \times E^{*2} \) embedded in \(\mathbb{P}^{81} \) by Segre embedding. Let \(\epsilon \) be the exponential map from \(\mathbb{C}^4 \) to \(G \) obtained from the functions \(p(z_1), p(z_2), p^*(z_1^*), p^*(z_2^*) \) and their derivatives for independent complex variables \(z_1, z_2, z_1^*, z_2^* \). Define a subspace \(Z \) of \(\mathbb{C}^4 \) by the equations

\[
z_1^* = m_{11}z_1 + m_{12}z_2, \quad z_2^* = m_{21}z_1 + m_{22}z_2.
\]

Write \(O_G \) for the zero of \(G \), and let \(\Sigma \) and \(\Sigma_0 \) be the sets of even and odd multiples of the point \(\sigma = \epsilon(\omega_1/Q, \omega_2/Q, \omega_1^*/Q, \omega_2^*/Q) \) in \(G \) respectively. We use Philippon’s zero estimate.

Lemma 4. There is a connected algebraic subgroup \(H = \epsilon(W) \neq G \) of \(G \) such that

\[
T^\rho R \Delta < c_{13} D^r,
\]

where \(W \) is a subspace of \(\mathbb{C}^4 \), \(\rho \) is the codimension of \(Z \cap W \) in \(Z \), \(R \) is the number of points in \(\Sigma \) distinct modulo \(H \), \(\Delta \) is the degree of \(H \), \(r \) is the codimension of \(H \) in \(G \), and \(c_{13} = 4.032 \times 10^7 \).
Proof. By Lemma 3.5 there is a polynomial, homogeneous of degree D, that vanishes to order at least $4T + 1$ along $\epsilon(Z)$ at all points of Σ_0, but does not vanish identically on G. Let $\Sigma(4) = \{\sum_{i=1}^{4} \sigma_i | \sigma_i \in \Sigma\}$, so $\Sigma_0 = \sigma + \Sigma(4)$. From [5, Lemma 1] translations on an elliptic curve are described by homogeneous polynomials of degree 2. Accroding to Philippon's zero estimate [9, Theorème 1], there exists a connected algebraic subgroup $H = \epsilon(W) \neq G$ of G such that

$$T^r \Delta \leq \deg G \times 2^\dim G (2D)^r.$$

As $\deg G = 3^{2\dim G} \times 4! = 2^3 \times 3^9$ and $r \leq 4$, $T^r \Delta < c_{13} D^r$. q. e. d.

Now we can give the proof of Main Proposition. We want to find a nontrivial graph subgroup of an isogeny $E \to E^*$ of small degree. We consider the three cases $\rho = 2, 1, 0$ in (11).

When $\rho = 2$, $T^2 \Delta < c_{13} D^2$. So

$$R < c_{13} D^2 \Delta < 4.04 \times 10^7 C^2 D^{r-4} = c_{14} C^2 D^{r-4}.$$ (12)

Thus $r = 4$, $H = O_G$, and $R = Q/2$. If

$$C > 2^8 c_{14}^8 \approx 1.817 \times 10^{63},$$ (13)

then $Q/2 > C^{17/8}/2 > c_{14} C^2$ contradicting (12). Hence the case $\rho = 2$ is ruled out under (13).

Next when $\rho = 1$, $Z \cap W$ has dimension 1, so $r \leq 3$. If H is nonsplit, then by [8, Lemma 2.2] there is an isogeny of degree at most $9\Delta^2$ between E and E^*. From (11) $\Delta < c_{13} D^2 \Delta < 9c_{13} C^{40} L^2$. Thus we get an isogeny of degree at most

$$9 \times (4.04 \times 10^7)^2 C^{42} L^4 \approx 1.469 \times 10^{16} C^{42} L^4.$$ (14)

If H is split, we can not have $r = 3$ by the proof of [6, Proposition]. If $r \leq 2$, then $R = Q/2$ by [6, Lemma 5.2], and $R < c_{13} D^2 \Delta < c_{14} C$. The assumption of no complex multiplication is used to prove [6, Lemma 5.2] in applying Kolchin’s Theorem. Since $C > (2c_{14})^{8/9}$ from (13), $Q/2 > C^{17/8}/2 > c_{14} C$. Hence a contradiction.

Lastly when $\rho = 0$, then $Z \subset W$ and $r \leq 2$. If $r = 2$, then from the proof of [6, Proposition] $N \leq 9\Delta < 9c_{13} D^2 \leq 9c_{13} C^{40} L^4$, so the original isogeny ϕ satisfies the required estimate.

If $r = 1$, then by the proof of [6, Proposition] H is nonsplit, and there is an isogeny of degree at most $9\Delta^2$ between E and E^*. As by (11)
\[\Delta < c_{13}D \leq c_{13}C^{20}L^{2} \text{, we get an isogeny of degree at most } 9 \times (4.04 \times 10^{7})^2C^{40}L^{4} = 1.469 \times 10^{16}C^{40}L^{4}. \]

Next we estimate \(C \), the conditions for which are (10) and (13), for (10) implies (3). Let \(C_0 \) be the solution of the equation

\[C_0 = 5910d[290 \log C_0 + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3]. \]

Let \(x_0 = \log C_0 \), \(A_1 = 5910 \times 290d \), \(A_2 = 5910d[15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3] \), and \(f(x) = e^x - A_1x - A_2 \), so \(f(x_0) = 0 \). If \(x_1 = \{A_2/(A_2-A_1)\} \log A_2 \), then \(f(x_1) > 0 \). As \(f(x) \) increases monotonously, \(x_0 < x_1 \), that is, \(C_0 < \exp x_1 < A_2^{1.45} \).

Thus \(C = \max\{A_2^{1.45}, 1.82 \times 10^{63}\} \) satisfies both (10) and (13). From (14) we have proved Main Proposition with \(c_4(d) = 1.47 \times 10^{16}C^{42} \).

5 Proof of Theorem

We normalize the isogeny by Lemma 5 to apply Main Proposition.

Lemma 5. Given a positive integer \(d \), there exists a constant \(c_{15} \) with the following property. Let \(k \) be a number field of degree at most \(d \), let \(E \) and \(E_1^{*} \) be elliptic curves defined over \(k \), and let \(\varphi \) be an isogeny from \(E \) to \(E_1^{*} \) of degree \(N \). Suppose \(k' \) is the smallest extension field of \(k \) over which \(\varphi \) is defined. Then \([k' : k] \leq 12 \), and there is an elliptic curve \(E^{*} \), defined over \(k' \) and isomorphic over \(k' \) to \(E_1^{*} \), such that the induced isogeny from \(E \) to \(E^{*} \) is normalized. Further we have

\[w(E^{*}) < (11.4d + 54.3)w(E) + 13 \log N =: c_{15}w(E) + 13 \log N. \]

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is \(11.4d + 54.3 \). q. e. d.

Now we give the proof of Theorem. Let \(N \) be the smallest degree of any isogeny between \(E \) and \(E' \). By [6, Lemma 6.2] there is a cyclic isogeny from \(E \) to \(E' \) of degree \(N \). According to Lemma 5 there are an extension \(k' \) of \(k \) with \([k' : k] \leq 12\) and an elliptic curve \(E^{*} \) defined over \(k' \) and isomorphic to \(E' \) such that the induced isogeny \(\varphi \) from \(E \) to \(E^{*} \) is normalized and \(w(E^{*}) < c_{15}\{w(E) + \log N\} \).

As \(\varphi \) is cyclic, by Main Proposition there is an isogeny between \(E \) and \(E^{*} \) whose degree \(N_1 \) satisfies

\[N_1 \leq c_4(12d)\{w(E)+w(E^{*})+\log N\}^4 < c_4(12d)(c_{15}+1)^4\{w(E)+\log N\}^4. \]
So there is an isogeny of degree N_1 between E and E', and

\[N \leq N_1 < c_4(12d)(c_{15} + 1)^4\{w(E) + \log N\}^4. \]

Thus $N < c_{16}\{w(E)\}^4$ for a constant c_{16} depending only on d.

Lastly we estimate c_{16}. Let $c_{17} = c_4(12d)(c_{15} + 1)^4$, $w = w(E)$, N_0 satisfy $N_0 = c_{17}(w + \log N_0)^4$, and $c_{18} = N_0/w^4$. Then $N < N_0$, and $c_{18}w^4 = c_{17}(w + 4\log w + \log c_{18})^4$. Therefore

\[c_{18} = c_{17}(1 + 4\log w/w + \log c_{18}/w)^4 < c_{17}(5 + \log c_{18})^4. \]

Let c_{19} satisfy $c_{19} = c_{17}(5 + \log c_{19})^4$. Then $c_{18} < c_{19}$, and c_{19} is estimated similarly as C_0 in the proof of Main Proposition. So $c_{19} < 5^{20}c_{17}^5$, and $N < N_0 = c_{18}w^4 < c_{19}w^4 < 5^{20}c_{17}^5w^4 = 5^{20}\{c_4(12d)\}^5(c_{15} + 1)^{20}w^4$.

Hence $c_{16} = 5^{20}\{c_4(12d)\}^5(c_{15} + 1)^{20} < c(d)$.

Acknowledgements. The author is most grateful to Professor Takayuki Oda for helpful advice. He thanks Professor David W. Masser, Professor Sinnou David and Professor Noriko Hirata-Kohno for valuable advice about the estimation of heights.

References