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1 Introduction

Throughout this paper, M[i, j] denotes the (%, j)-entry of a matrix M and w[h]
denotes the h-th entry of a vector u. Let M be an m x n matrix whose entries
are all nonzero. We associate an n x m matrix M~ defined by the following:

1
Mj,i)
Let I denote the identity matrix and let J denote the all ones matrix. Let
Mat,(C) denote the set of n x n complex matrices. W € Mat,(C) is said to
be a type II matriz if WW~ = nl. It is clear that if W is a type II matrix,
then the transpose W of the matrix and W~ are type II matrices as well.

The definition of type II matrices was first introduced explicitly in the
study of spin models. See [1, 6] for details.

M—[i’j] =

Example 1.1 (1) Let ¢ be a primitive n-th root of 1. Then the matrix
W € Mat,(C) defined by Wi, j] = (¢-Y0U-1 js a type II matrix. W is
called a cyclic type II matriz of size n.

(2) Let o be a root of the quadratic equation t* + nt +n = 0. Then the
matrix W € Mat,(C) defined by Wi, j] = 1 + d; jo is a type II matrix.
W is called a Potts type II matriz of size n.

Let W € Mat,(C) be a type I matrix. If S,5' € Mat,(C) are permutation
matrices and D, D’ € Mat,(C) are nonsingular diagonal matrices, then it is



easy to see that SDWD'S’ is also a type II matrix. We say that two type
IT matrices W and W' are type II equivalent if W' = SDW D'S' for suitable
choices of permutation matrices S, S’ and diagonal matrices D, D'. It is clear
that this defines an equivalence relation on the set of type II matrices.

For a type II matrix W € Mat,(C) and for 1 < 4,5 < n, we define an
n-dimensional column vector uzfj’- by the following:

Wih,i]
Wik, 5]

uf"; [h] =

Let
N(W) = {M € Mat,(C) | ul¥; is an eigenvector for M for all 1 <4, < n}.

It is known that N (W) is the Bose-Mesner algebra of a commutative asso-
ciation scheme. N (W) is called a Nomura algebra. Moreover, there exists a
duality map from N (W) to N(W). N (W) is called the dual of N'(W).

Suzuki and the author showed that W is decomposed into a generalized
tensor product if and only if (W) is imprimitive [4]. We are interested in
type II matrices associated with primitive association schemes. Well known
examples are the following:

Example 1.2 (1) Let W be a cyclic type II matrix of size p for a prime
p. Then N(W) is the Bose-Mesner algebra of the group scheme of the
cyclic group of order p.

(2) Let W be a Potts type II matrix of size n > 5. Then N(W) is trivial,
i.e., the Bose-Mesner algebra of the class 1 association sheme.

In this paper, we study the Nomura algebra of the type II matrix con-
structed on the conference graph. The conference graph is a strongly regular

graph with parameters (4u + 1, 2u, 4 — 1, ) and the eigenvalues are given as
p=loon, r=TIES 1BV

where v = 4p + 1.

Let I" be a formally self-dual strongly regular graph, and let A; be the i-th
adjacency matrices of I' for ¢ = 0,1, 2. For a matrix W = t0 A4y + t14; + t3Ap
(t: € C), Jaeger gave a condition of ¢; for W to be a type II matrix (See
Equation (33) in [5]); W is a type II matrix if and only if %o, 1,3 satisfy the
following: ,

t2 = tl—l,
4 (r+ 12 —s(r + D + ) = 1, (1)
to = —st + (r + 1)t @



where 7, s are the nontrivial eigenvalues of I. We write ¢; = ¢,t; = ¢~ 1.
Our main result is the following:

Theorem 1.1 Let W be the type II matriz constructed on the conference graph
with parameters (4p + 1, 2u, u— 1, ). If u > 2, then N(W) is trivial, i.e., the
Bose-Mesner algebra of the class 1 association scheme.

2 The Entries of Type II Matrices

In this section, we consider complex numbers ¢;’s, which appear in the type II
matrix W constructed on the conference graph.

Let (r,s) = (%ﬁ, :—1%@) where v = 4u + 1. Note that 7 + s = —1. Then
Equation (1) is equivalent to

t+t =251, 3)

Then we may regard ¢ € C as a root of the quadratic equation z?Fs~'z+1 = 0.
Let £ be the complex conjugate of . We have £ = 1, in other words, £ =¢"1.
Consider the Garois group G = Gal(K/Q) where K = Q(t). There exists
o € G such that o(t) =t~ = 1.
By Equation (2), we have
to = 1.

Here the choice of sign depends on sign of r, s.

Equation (3) has in general four solutions in ¢, which can be obtained from
one of them by inversion or change of sign. We can obtain at most 4 kinds of
type II matrices depending on the value of ¢ for fixed r and s. We can, however,
verify that if one of them is obtained from the other by inversion or change of
sign of ¢, they are type II equivalent to each other, which means we have only
one type II matrix up to type II equivalence for given r and s.

3 The Graph Description of Nomura Algebras

We restate the results of (6] about the description of Nomura algebras for type
IT matrices.

Let W be a type II matrix in Matx(C). Let [(W) be a graph whose vertex
set is X x X. For two vertices (a,b) and (c,d) € X x X, we say that (a,b)
is adjacent to (c,d) if and only if the Hermitian inner product (uq,p, Uc,d) =
v x Yap(Z)Uoq is nonzero. The graph I'(W) is said to be a Jones graph.
Since (,p, Uc,q) is nonzero if and only if (ucq,u,.p) is nonzero we obtain an
undirected graph ['(W). :



Let Cy,Ch,...,Cy denote the connected components of a Jones graph I
Let A; be a matrix in Matx(C) with (a, b)-entry equal to 1 if (a,b) € C; and
to 0 otherwise. Let V = CX, and let V; := Span{u,; | (a,b) € C;}. It is easy
to see that V is decomposed into an orthogonal direct sum of V;,...,V;. Let
E; be the projection of V to V, for: =0,...,d.

Proposition 3.1 ([6] Theorem 5) (1) Theset {A;|i=0,1,...,d} is the
basis of Hadamard idempotents of N (‘W).

(2) The set {E; | i = .0,1,...,d} is the basis of primitive idempotents of
N(W).

In order to prove that A'(W) is trivial, it suffices to show that the number
of the connected components of I'(W) is equal to 2.

It is trivial that {(a,a) € X x X | a € X} becomes a connected component
of T'(W). We write Cp := {(a,8) € X x X | a € X}.

Proposition 3.2 Let W be a type II matriz of size | X| > 5. If (Uqp, Ue,d) 8
nonzero where a,b,c,d € X are all distinct, then N (W) is trivial.

4 Proof of Theorem 1.1

Let W be the type II matrix constructed on the conference graph with param-
eters (4u + 1,2u, 4 — 1, u). Let X be the vertex set of the graph with order
v = 4u + 1. In this section, we show that (usp,u.q) is nonzero for distinct
a,b,c,d € X where v > 9, which implies that Theorem 1.1 holds.

- Let t satisfy Equation (3). It is easy to see that (w,p, u.q) is a linear com-
bination of 1,¢,t71,t%,¢72,43,¢73,¢%,¢t~* over Q. We can see that ¢,¢7},3,¢73
appear if and only if £ = a,b, ¢, or d. Set Uw (,t71) := 10 c,a Ua (2] tc,a]z],
which is a polynomial in ¢,¢~'. Hence we have the following:

(Uap, Ucg) = Uw(t, t71) + Ut + lat™2 + mat* + mat™ +n,

where 4+ 1; + 2 + m; +my+n = v. Then +Uw(¢,t7!) is a linear combination
of t,t71, 13,42 in which the coefficients sum to 4. The sign depends on that of
to.

Let r = %@ Since t +t7! = 2(r + 1)7! and o = (r + 1){t + t71),
we can choose plus sign for ¢ + ¢~! so that t; = 1 without loss of generality.
We will show that (w,p, u.q) is nonzero by way of contradiction. Assume
(Wapy Uc,a) = 0. Since (uqp, u.,qa) can be regarded as a polynomial in ¢,¢7! over
Q, we may write f(t,t7!) = (Uap, Ucqa). As we have seen before, there exists



0 € G = Gal(K/Q) such that o(t) = =t~!. Hence f(¢t71,t) = o(f(¢,t71)) =
0. Therefore we have f(t,t7) + f(t~1,¢) = 0, which is equivalent to

L+ B)E )+ (my+ma)(t* + 1) + 2n + Uw(t, ™) + Uw(t ™', t) = 0.

Set | =1; + l; and m = m; + my. Then we have

4+t +mt +t7) + 2n + Uw(t, t™1) + Uw(t74,t) = 0,- - - (%)
where 4 + 1 +m +n =v. Uyp(t,t71) + Uw(t™1,1) is one of the following:
4(t4t7Y), 4(834473), 208+ 1) 4 2(83+47%), ()33 +273), B8+t + (2 +¢72).

Note that
B+t 2=(t+t1)2 -2
B+t 3=+t =30 +1t71),
Bt =+ ) -4+t 2
Equation (*) can be written as follows:
m(t+t 1) 44 (I—4m) (t+t71) 24+ 2m+2n—20+Upw (t, t ) +Uw (t71,2) = 0. - - - (%)
Let X =t+t!. Then the left hand side of Equation (**) can be expressed as
a polynomial in X with degree at most 4, which is denoted by g(X), i.e.,
g(X) =mX* +aX® + (I —4m)X? 4+ fX + 2m + 2n - 2l,

where aX?® + X = Uw(t,t71) + Uw(t71, ).
Note that
At +t7) = 4X,
482 +173) = 4(X3 - 3X) =4X° - 12X,
2t +t7Y) + 2082 +7%) = 2X + 2(X3 - 3X) = 2X°® — 4X,
E+t1)+3 +t7%) = X +3(X® - 3X) =3X° - 8X,
3+t + (8 +17%) =3X + (X*-3X) = X°.

Hence the value of (, §) is given as follows:

Uw(t,t D)+ Uw(t 1) (a,8)
At +t7) 0,4)

48 +t73) (4,-12)

2+t ) +2B +t72)  (2,-4)

(t+t ) +3E+t72)  (3,-8)
3¢+t )+ (2+¢%) (1,0)




Lemma 4.1 Letv be a square. Let W be the type 11 matriz constructed on the
conference graph of order v =v? > 9 where v’ is an integer. Then (uqp, Ue,a)
is nonzero for any distinct a,b,c,d € X.

Proof. The minimal polynomial of {+¢~1 is A(X) = X — ;&5 for t+¢t~! =

27+ The constant part of the remainder of g(X)/h(X) is

2 2 2 2m
2m+2n_2l+l:l:v'(ﬂ+1:l:v’(l_4m+ lzi:v’(a+ lztv’)))’

which is equivalent to

26 4(l—4m) 8a + '16m
1xv " (Qxv)E T Q2P Qo)

2m+n—-1)+

The constant part of the remainder must be zero if (u,3, u.q4) = 0. Hence
we have
g 2(l — 4m) 4a 8m

mAn=lt St ey T Axep T GEv)

=0.

Since 4+1+m+n = v, we have m+n—1 = v?—4—1. So the above equation
is equivalent to

o —d— 9+ g +2(l—4m) 4a 8m

120 T (1zvye TAzve T Gzoy

Multiplying (1 & v")*, we have

(W2—4-20(1 )+ 81+ 03 +2(l —4m)(1 £ V') +4a(1 £ )+ 8m = 0.

This is equivalent to

(W -4 (1) +8(1 v +4a(1+0) - 2((1 £ )2 = 1)—8m((1£0')?—1) = 0.

Therefore we have

(W' +2)(v' = 2)(1£v')* + F(1 £ ") + 41 £ v') = 200/ (v £ 2) — 8mo' (v £2) = 0.
Set B = (1 £+ v')® + 4a(1 £ /). Then the above equation is equivalent to

(W +2)(v" —2) 1) + B -2V £2) —8mv/ (v £2) =0.

So B must be divisible by (v' & 2). However we have the following:



(a, B) B

(0,4) +4(' £ 2)(V £V +1) -4
(4,-12) F4(/ £2)(3?£30 — 1) — 4
(2,-4) F4(/' £2)(4w"?+4 1) -4
(3,-8) F4( £2)(?+ 20 ~1) -4

(1,0) FA( £2) — 4

If B is divisible by v’ & 2, then 4 will be divisible by v/ + 2. So

o £2= 41,42, 44,

Hence

v =+1,43,0, +4,+2, 6.
Since v =v? =1 (mod 4) and v > 1, v/ # 0, %1, 42, +6. It is only possible
v = £3. Therefore B is not divisible by v’ & 2 except for the case v = v? =9,
which is a contradiction. Hence (%,,p, c4) is nonzero whenever v > 9. n

Lemma 4.2 Let v be a nonsquare. Let W be the type 1I matriz constructed on
a conference graph of order v > 5. Then (uqp, Ucq) is nonzero for any distinct
a,b,c,d € X.

Proof. The minimal polynomial of ¢ + ¢! is A'(X) = X? — - X + 1%
for t + ¢! = ;725 The constant part of the remainder of g(X)/h'(X) is

4 4m 4 4m
2m+2n—2l——l_v(l—4m—1_v+l_v(a+

which is equivalent to

4 4m 16m 4o
2(m+n—1) - 1___v{l—4m— 1—v+(1—v)2 l—v}'.

Set B’ = 4a.. Then we have the following:

Uw(t,t™) + Uw(t't) B
4t +¢71) 0
4(t3 +t73) 16
20+t )+ 23 +¢t7%) 8
E+t )+ 33 +t3) 12
3+t )+ +t7%) 4

The constant part of the remainder must be zero if (o, Ucq) = 0. Hence
we have

16 B’
2(m+n—l)—%{l—4m— 4m + e

1-w (1—v)2+1—v}=0’




Multiplying (1 — v)3, we get
(m+n-1)(1-v)*-2(-4m)(1 —v)?* +8m(l —v) — 32m — 2B'(1 —v) = 0.

Since 4 + [ +m +n = v, we can eliminate n by puttingm+n—-I=v—-4-2I.
Hence we have

(v—4-20)(1-v)®-2(0-4m)(1 —v)* +8m(l —v) —32m — 2B'(1 —v) = 0.
We can rewrite the above equation with respect to [, m as follows:
(w=4)(w-12=-2(v-2)(v-1)*-8m((¥?* ~3v—2)—2B'(v—1) = 0.+ (x*%)
Since v = 4u + 1, where u is a positive integer, we have
v—1=4u,
(v—1)* = 4p(v - 1),

(v=1)% = 16p%(v —1).

Note that B’ is even. Therefore (v — 1), (v — 1), 2B'(v — 1) are divisible by
4(v — 1), although v? — 3v — 2 is not. So 4(v — 1) must divide 8m, in other
words, 44 must divide 2m. Hence there exists a non-negative integer a such
that m = 2ua. Since 4 +1+m+n=v=4u+ 1, we have m < 4u — 3 < 4u.
So 2pa < 4y, or equivalently a < 2. Hence a = 1, i.e.,, 8m = 164 = 4(v — 1).
By Equation (* * %), we have the following:

1
I CEE A

(v—4)(v —1)* —4(v* — 3v — 2) — 2B’}

I = v—18 —4(v—-1)(v? - 3v—-2)-2B'(v-1)}

s
2v—-2)(v—-1)
1 (v* — 100® + 21v + 4 — 2B')

2(v—-2)(v—1)

_ '
= (v=7(*—-3v+2) - v-9+5

w-2)w-1)

Since v = 4u + 1 is a positive nonsquare, we have
v=>5,13,17,....

Note that B’ is a non-negative integer. Then we have

v—9+B' >0and (v—2)(v—1)>0if v> 5.



Moreover if v > 5, we have
(v=2v-1)—(w=-9+B) = v*-w+ 5B
= v(v—4)+11+ B
> 0.

So ﬁ% is not an integer if v > 5, which contradicts the fact that [ is an
integer.
Therefore we have a contradiction if v > 5. This completes the proof. m.

Proof of Theorem 1.1 By Proposition 3.2,Lemma 4.1, and Lemma 4.2, it is
clear. ]

Remarks.

(1) The type II matrix constructed on the conference graph of order 5 is.

type II equivalent to the cyclic type II matrix of size 5, and the Nomura
algebra is the Bose-Mesner algebra of the group scheme of the cyclic
group C's.

(2) If r is negative, the type II matrix W constructed on the conference
graph of order 9 is type II equivalent to the tensor product of 2 copies of
Potts type II matrices of size 3, and N (W) is the Bose-Mesner algebra
of the group scheme of C3 ® Cj. If r is positive, N (W) is trivial.
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