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Abstruct

The adjacency algebra of an association scheme is defined over an
arbitrary field. This is always semisimple over a field of character-
istic 0, but not semisimple over a field of prime characteristic p,
in general. The structure of the adjacency algebra over a field of
prime characteristic was not studied enough before now. Therefore,
we considered the structure of the modular adjacency algebra of
the Hamming scheme H(n,gq), that is one of the most basic and
important association schemes.

In this paper, we will decide the structure of the adjacency algebra
of H(n,q) over any field for any n and ¢, and describe the algebra
as a factor algebra of a polynomial ring.

1 Introduction

In this paper, we consider the modular adjacency algebra of the
Hamming association scheme H(n,q). The modular adjacency alge-
bra means an adjacency algebra over a positive characteristic field.
For any prime p such that p { ¢, the adjacency algebra of H(n,q)
over a field of characteristic p is semisimple (see [2, Theorem 2.3],
[1, Theorem 1.1] and [5, Theorem 4.2]). For each prime p, the prime
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field I, of characteristic p is a splitting field for the adjacency alge-
bra of H(n,p) over F, (see [4, Theorem 3.4, Corollary 3.5]). For all
prime p such that p | ¢, F,H(n,p) = F,H(n,q) (see §2.3). There-
fore it is enough to decide the structure of F,H(n,p) for all prime
p, for deciding the structure of the modular adjacency algebra of
any H(n,q) over any field. It is known that the algebra F,H (n,p)
is commutative and local, and that any local commutative algebra

is isomorphic to a factor algebra of a polynomial ring.

2 Preparation

For the definitions in this section, refer to [2].

2.1 Association schemes

Let X be a finite set with cardinality n. We define Ry := { (z,z) |z €
X }. Let R; C X x X be given. We set R} :={ (2,y) | (v,2) € R;i }.
Let G be a partition of X x X such that Ry € G and the empty set
@ ¢ G, and assume that, R} € G for each R; € G. Then, the pair
(X, G) will be called an association scheme if, for all R;, R, Ry € G,
there exists a cardinal number p;;; such that, for all y,z € X

(y,2) € R = §{ z € X | (y,2) € Ri,(z,2) € R; } = pijk.
The elements of {p;;x} will be called the intersection numbers of
(X,G). | |

For each R; € G, we define the n x n matrix A; indexed by the

elements of X,

0 otherwise,

(Ai)sy = {1 if (z,y) € R;,



and this matrix A; will be called the adjacency matriz of R;.

Let the cardinal number of G be d + 1 and let J be the n x n all
1 matrix. Then, by the definition, it follows that Ziio A, =J. It
follows that for all A;, A;,

d
AiA; = Z Dijk Ak
k=0
From this fact, we can define an algebra naturally. For the com-
mutative ring R with 1, we put R(X,G) = @iio RA; as a matrix
ring over R, and it will be called the adjacency algebra of (X,G)
over R. |
Foralli,j, k€ {0,1,...,d }, we define the matrix B; by (B;)x =
pijk- This matrix B; will be called the i-th intersection matriz. It
follows that for all B;, B;, B;B; = de:O Pijk Br. Therefore we can
define an algebra RB = @,%, RB; for a commutative ring R with
1, and it will be called the intersection algebra of (X,G) over R.
Then the mapping from the adjacency algebra to the intersection
algebra of (X, G) over R, A; = B;, is an algebra isomorphism.

2.2 P-polynomial schemes

A symmetric association scheme is called a P-polynomzial scheme
with respect to the ordering Ry, Ry, ..., Ry, if there exist some com-
plex coeflicient polynomials v; of degree i (0 < i < d) such that
A; = v;(A,), where A; is the adjacency matrix of R;.
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We use the following notation: a tridiagonal matrix

/ao cq 0\
by a; "-.

B = b,

Cd

\ 0 bat ad)

is denoted by

* € -+ Cd-1 Cd
ap a1 -** Gg-1 a4
bo b1 bd—l %

Then the following (i) and (ii) are equivalent to each other (see
[2, Proposition 1.1}).

(i) B; is a tridiagonal matrix with non-zero off-diagonal entries:

* 1 Cy -+ Cd-1 Cq
0 a; ag --- ag-1 a4 (bi 7{: O,Ci 5!’: 0).
b() bl bg s bd—l *

(i) (X, {Ri}o<i<d) is a P-polynomial scheme with respect to the
ordering Ry, R;,..., Ry, l.e.,

A,-=v,-(A1) (z'::O,l,...,d)

for some polynomials v; of degree 3.

2.3 Hamming schemes

Let ¥ be an alphabet of ¢ symbols { 0,1,...,4—1 }. We define
Q) to be the set X" of all n-tuples of elements of ¥, and let p(z,y)

be the number of coordinate places in which the n-tuples z and y
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differ. Thus p(z,y) is the Hamming distance between z and y. we
set
Ri={(z,9) € A x Q| p(z,y) =i },
and then (Q, { Ri}o<i<n) is an association scheme. This will be called
the Hamming scheme, and denoted by H(n,q).
We consider the intersection numbers pg.‘,’cq) of H(n,q). For the

convenience of the argument, we extend the binomial coefficient as

0 1 ifz=0,
r 0 otherwise,
and for each integer x and each negative integer y,

b))

Then we can obtain that

n—k .
(ng) _ k i—pB n—Fk\ B oviti-k—28
Pijk _pzz:o(k"“'ﬂ) (k—j+,8)( 3 )(‘1 1)%(¢-2) '

Therefore if p|q for some prime number p, pz(;-',f) = p,(;,;p )

follows.

(mod p).
Since the intersection numbers are the structure constants of the
adjacency algebra, Fp,H(n,q) = F,H(n,p).

The Hamming scheme H(n,q) is P-polynomial scheme (see [2]),

and

0 g—2 o i(g—-2) -+ n(g-2)
n(g—1) (n—-1)(g-1) -+ (n—i)(g—-1) --- *

In this paper, let p be a fixed prime number. Therefore we set

B,

H(n) := H(n,p). And we denote the intersection numbers, the ad-



jacency matrices, and the intersection matrices of H(n) respectively
by pgl,z, Ag"), B™ and so on.

We can consider the elements of £ on H(n) as the p-adic number
of n figures. Therefore we index the adjacency matrices by the
ordinary order on the p-adic number. Then it follows that

AP 1AM K@ A™,  forVie{0,1,...,n+1},

]

where I is the p X p identity matrix, K is the p X p matrix such
that the diagonal entries are 0 and the others 1, Agll) = A,(:Ql =0
( the p™ x p" zero matrix), and ® is the Kronecker product. The
Kronecker product A® B of matrices A and B is defined as follows.
Suppose A = (a;;). Then A ® B is obtained by replacing the entry
a;; of A by the matrix a;;B, for all ¢ and j. The most important
property of this product is that, provided the required products

exist,

(A9 B)(X®Y) = AX ® BY.

3 H(p-1)

Since the intersection numbers are the structure constants of the
adjacency algebra, if we consider over a field of characteristic p, we
may consider the intersection numbers in modulo p. Since the size of
the adjacency matrix of H(n) is p", the adjacency algebra of H(n)
over a field of characteristic p is local and the unique irreducible
representation is A; — p; i+ o (see [4, Theorem 3.4, Corollary 3.5]).
So the prime field F, of characteristic p is a splitting field for the
adjacency algebra of H(n) over F,.

In this paper, since we consider the adjacency algebras only over
F,, we set A, :=F,H(n).
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By the definition,

B%P"'l)

B(P‘l)

B£Pr -1) — 1

B]fp‘l)

therefore if we set Agp U= 'u,-(Ag _1)), it follows that for 0 < a <

pb— 13
AT AT DAY,

pita

(

=1 2 0 (mod p) , we can define v, over F, for

(p-1
sz'+a )7

Then since any c
0 < a < p—1. For calculating we prepare the following

theorem and corollary.

Theorem 1. (Lucas’ theorem [3, Theorem 3.4.1]) Let p be
prime, and let
m = ag+ap + - + arp’,
n=by+bp+--+bp",
where 0 < a;,b; <p fori =0,1,...,k—1. Then

k
(:) = H (Z“) (mod p).
i=0 !

Corollary 2. We assume the same condition for theorem 1 and
0<a,8<p. Then

pm+« m a
= (mod p).
pn+f3 n) \B
Now we want to culculate Bg;;l), that is the coefficients of A;f:;l) Ag::ﬂl )

But it is enough to investigate A(’;r_l)A;’;r—l) (p"-1)

» y 1€ Pk because
we know va (AP "D)us(4% )
al/] B\ :



Here we set k = pk'+k" (O <K' <p- 1) Using Lucas’ theorem we

can obtain that if p | k, sz pi )k = Pg';/ - ,and if p{ k, sz p_]l)k =0.

Thus
T r__ T r__ 1'_1 1'_1
A(p I)A(p 1) = ’Ua (Agp 1))1)’3(14%1) 1))AI(,I: )Ag; )

pita “pj+B
r—l lp—-l .
(pr~t-1),_(p—1) (p -1)
Z mek paﬁ7 pk+vy °
k=0 =0

By the above argument, it follows that
gw-1) _ gFr-1) ® BPY,

p+a H
Repeating the same argument, we know that for all non-negative
integer m such that 0 < m < p" — 1 and m = mgp® + myp* +--- +

mr-——lpr—lv
BY-1) = Br-1) g B(p-l) R ® Br(fn_l)-

my—1

From this fact, we obtain that

A1 = 1 QA1 Q- R Ay
Theorem 3. 2A,_; = F,C, = F,[X]/{X?)
Therefore the following theorem holds.

Theorem 4. For all positive integer r, A, is isomorphic to the
group algebra of the elementary abelian group of order p™ over F.

4 The structure of %,

In the previous section, we considered the structure of Ar_1. To
determine the structure of %A, in general, we construct an algebra

homomorphism A, +; — A,.
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From § 2.3, A" =TI © A™ + K ® A™,. This means that 2,
is a subalgebra of A; ® A,. The unique lrredumble representation
of U is AV o 1,40 5 —1.

Therefore we can define naturally the mapping f,,; for each pos-
itive integer n by

far1 1 %np1 = A,
AP =10 AW + K@ A s A — A7,

Proposition 5. For each positive integer n, frni1 @ Anyr — An
above is an algebra epimorphism.

By Theorem 4, 2,-_; is isomorphic to Fp(gp X Cp X ++- x Cp) for

r
all positive integer r. Furthermore, there exists the algebra isomor-
phism g from the quotient ring P, = Fp[ X1, Xo, ..., X, ] /(X -, XP)
of the polynomial ring of r variables over I, to F,(Cp, x Cp, X - - X Cp)

S

by 9(X;) = 1 — z;. Therefore we can define an algebra isomorphism

Sr - "pr - r—1 by
5p(X;) = AF 7D — AEY

We define a weight function wt on the set of the monomials of B,

by
wt(X;) =p, w([[X77) = kipi.
J J

Proposition 6. For all positive integers m such that1 < m < p—1,

(A(P -1) A(P “1 ;Z ( ) nA(P —1).

n=0
And ifi #j,0< o, <p-1,

(P -1) (p' 1) _ 40"-1)
A apt A Aap‘+ﬂp’



Let Y; = X[°X[" ... X be the monomial of B, such that wt(Y;) =
i. Then by the above two equations, the following Proposition holds.

Proposition 7.

Hk' ) ()( 1)"AF-D.

n=0
Then the following theorem holds that is the main theorem in this
paper.

Theorem 8. We set P = F,[X1, Xo, - ]/(X5, X7 ), and for all
positive integer n, we set

W, ={z | x is the monomial of P such that wt(zx) > n).

Then it holds that P/W, = AU, as algebras.

Proof. 1t is enough that we show that,
B /W, =, forn<p.

Furthermore it is enough that we show that for each positive
integer n such that n < p" — 1, ¥, € Kerf,fnt1--* fyr—15-, but

fnfn+1 Tt fp’—lsr(Yn) = 0. O

Remark 1 We set G, , = S, wr Sy, Hng = Sg-1 wr Sy, for positive
integers n,q. Let K be a field. Then KH(n,q) and the Hecke
algebra Endkg, (15 "") are isomorphic as algebras (see (2, 111.2]).
Therefore we also could decide the structure of Endgg, (1 H’“’)
In particular, Theorem 4 means that for all positive integer r, if
n = p" — 1, the Hecke algebra Endy,g, (1 HC::"‘:’ ) is isomorphic to the
group algebra of the elementary abelian group of order p".
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