The Prime Graph of a Sporadic Simple Group 熊本大学・自然科学研究科 流合 未奈 (Mina Hagie) Department of Mathematics Faculty of Science, Kumamoto University ## 1. Introduction Let G be a finite group and S a sporadic simple group. We denote by $\pi(G)$ the set of all primes dividing the order of G. The prime graph $\Gamma(G)$ of G is defined in the usual way connecting p and q in $\pi(G)$ when there is an element of order pq in G. The main purpose of this paper is to determine finite group G satisfying $\Gamma(G) = \Gamma(S)$. G. Chen characterized S by $\Gamma(S)$ and |S|. Let $\pi_e(G)$ be the set of orders of all elements in G. W. Shi proved that G satisfying $\pi_e(G) = \pi_e(S)$ is isomorphic to S, except for J_2 , Co_1 . Our main theorem generalizes their results. Moreover, we prove that a simple group G satisfying |G| = |S| is isomorphic to S as a corollary of our main theorem. ## 2. Theorem Let S be a sporadic simple group. Suppose that G is a finite group satisfying $\Gamma(G) = \Gamma(S)$. - (1) If S is one of J_1 , M_{22} , M_{23} , M_{24} , Co_2 , then G is isomorphic to S. - (2) If S is M_{11} , then $G \simeq M_{11}$ or $L_2(11)$. - (3) If S is one of J_3 , J_4 , Suz, O'N, Ly, Fi_{23} , Fi'_{24} , M, BM, Th, Ru, Co_1 , then $G/O_{\pi}(G) \simeq S$ where π is a subset of the numbers in the 2nd column of the following. | S | π | | |----------------------------------|----------|--| | J_3, Suz | 2,3,5 | | | J_4 | 2, 3, 11 | | | $\overline{Ly,Fi'_{24},Th,Co_1}$ | 2,3 | | | M | 3 | | | $O'N, Fi_{23}, BM, Ru$ | 2 | | (4) If S is HS, He, M^cL , Co_3 , Fi_{22} or HN, then $G/O_{\pi}(G)$ is one of the groups in the 2nd column where π is a subset of the numbers in the 3rd column of the following. | \overline{S} | $G/O_{\pi}(G)$ | π | |-----------------|--|------------| | \overline{HS} | $HS,U_6(2)$ | 2, 3, 5 | | He | $L_2(16), L_2(16).2,$ | 2, 3, 5, 7 | | | $L_2(16).4, O_8^-(2),$ | | | | $O_8^-(2).2, S_8(2), He \text{ or } He.2$ | | | M^cL | $M_{22}, M_{22}.2, HS, HS.2, U_6(2), U_6(2).2, M^cL$ | 2,3,5 | | Co_3 | M_{24},Co_3 | 2 | | Fi_{22} | $Suz, Suz.2, Fi_{22}, Fi_{22}.2$ | 2,3,5 | | \overline{HN} | HN,HN.2 | 2,3,5,7 | - (5) If S is M_{12} , then one of the following holds: (a) $G \simeq 11^{2n} : SL_2(5)$ for any $n \in \mathbb{Z}$, $G \simeq 11^{2n} : SL_2(5).2$ for any $2 \leq n \in \mathbb{Z}$, (b) $G/O_{\pi}(G) \simeq L_2(11)$, $L_2(11).2$, M_{11} , M_{12} or $M_{12}.2$ where $\pi \subseteq \{2, 5\}$. - (6) If S is J_2 , then one of the following holds: (a) G is solvable and G is a Frobenius group or a 2-Frobenius group, (b) $G/O_{\pi}(G) \simeq J_2$, $L_3(4)$, $L_3(4).2_1$, $L_3(4).2_3$, $S_6(2)$, $O_8^+(2)$, $U_3(5)$, $U_3(5).2$, $U_4(3)$, $U_4(3).2_2$, $U_4(3).2_3$, A_7 , $A_7.2$, A_8 , $A_8.2$, A_9 , $L_2(7)$, $L_2(7).2$, $L_2(8)$, $L_2(8).3$, $U_3(3)$ or $U_3(3).2$ where $\pi \subseteq \{2,3,5\}$. ## 参考文献 [1] M. Hagie, The prime graph of a sporadic simple group, Communications in algebra, accepted.