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1 Introduction

In [5], P. Terwilliger defined subconstituent algebras of a distance-regular
graph, which are also called Terwilliger algebras. The algebra 7T(z) is defined
with respect to a base vertex z, and it is semisimple. Since then much work
has been done investigating the module structures of Terwilliger algebras.

We introduce a generalization of the definition of the algebra by replacing
the base vertex by a base subset. We give an exposition of the advantages of
this generalization.

Distance-regular graphs: Let I' = (X, R) be a connected graph with
the vertex set X and the edge set R. Let J(z,y) denote the distance between

vertices 2 and y in X. D = max{d(z,y) | z,y € X} is called the diameter
of T.

Definition 1 A connected graph I' = (X, R) is said to be a distance-regqular
graph (DRG) if the number

p?;j = I{Z eX | 6($, Z) = 2., and B(Z, y) =J}l

is independent of z,y € X with d(z,y) = h.
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Let I' = (X, R) be a DRG. Let Matx(C) denote the set of matrices
whose rows and columns are indexed by X. The i-th adjacency matrix
A; € Matx(C) is a symmetric matrix defined as follows.

1, ifd(z,y) =1
0, otherwise '

(Aey = {

Then the following hold.
<
AiA; = Zpi,jAh- (1)
h=0

A = A, is called the adjacency matrix of I". Let cx =ph_;;, an = p’{,h, and
br = pl44;. Then by (1) we have that

AiA = bi_1Ai—1 + aiAi + ciy14ia.

Hence by induction we can show that there exists a polynomial v;(t) of degree
i such that A; = v;(A).

Bose-Mesner Algebra: Let M = Span(Ay, A;,...,Ap). Then M =
C|A] and is called the Bose-Mesner algebra of I'. By (1) it becomes a com-
mutative semisimple algebra.
Let Ey, E1, Es, ..., Ep € Matx(C) be orthogonal primitive idempotents
of M. Then there exist real numbers p;(j) and ¢;(j) for 4,5 € {0,1,..., D}
and the following hold.
R 1
Ai =3 pi(j)Ej, and E; = X

=0

iQi(j)Aj'

§=0

Let 8; = p;(¢). Then 6,8,,...,0p are distinct eigenvalues of A = A;. We
order Ey, Es, ..., Ep so that

k=90>91>"'>9D.

Let m(6;) = rankE; > 0 be the multiplicity of ; in A.

Subset and Subconstituents: Let Y be a nonempty subset of X. Let
Ti(Y) = {z € X | 8(z,Y) = i}, where 8(z,Y) = min{d(z,y) | y € Y}
[5(Y) is called the i-th subconstituent with respect to Y. Note that ¥ =
I'o(Y). Now we have

X =To(Y)UT(Y)U---UTlp(Y) (disjoint union).
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We note that some of the subconstituents may be empty.

Let V = C*. For z € X, £ is the unit vector in V with 1 at z-entry and
0 otherwise.

For each i € {0,1, ..., D} a diagonal matrix E} = E}(Y) € Matx(C) is
defined as follows.

. 1, fz=yand 9(z,Y) =1
(E)es = { yand o(x,¥) =i

0, otherwise
E; is the projection onto the subspace E}V = Span(z | z € [;(Y)).
Definition 2 The subalgebra
T=TY)= (A E}, Ef,...,ED)ag
of Matx(C) is called the Terwilliger algebra of T' with respect to Y.

A T-module is a 7T-invariant subspace of V. Since T is generated by real
symmetric matrices, 7 is semisimple.
Let W be an irreducible 7-module. W is said to be thin if

dimE;W <1forallie {0,1,...,D}.

2 Terwilliger algebra and its modules
In the rest of this article, let I' = (X, R) be a DRG of diameter D, and @ #
YCX. Let Ef =E}(Y), T =T(Y) and w(Y) = max{8(z,y) | z,y € Y}.

w(Y') is called the width of Y. We adopt the convention that E}f = O ifi < 0
ori>D.

Lemma 1 Let W be an irreducible module of T. Then the following hold.
(1) AE}W C B, W +E;W +E;,W (0<j<D).
(2) There exist indices v and v+ 6§ with 0 < v < v+ § < D such that

E;W #0 if and only if v < j < v+,

(3) Suppose W is thin. Let E;W = Span(v). Then W = Tv = Mw.

Remarks.



1. The original definition of Terwilliger algebra is confined to the case
Y = {z}. Lemma 1 for the case Y = {z} can be found in {5].

2. The index v is called the endpoint of W. Every irreducible 7(Y)-
module of endpoint v can be regarded as an irreducible 7 (', (Y))-
module of endpoint 0. This is one of the advantages of our generaliza-
tion. Hence as far as we are concerned with one irreducible module, we
may assume by taking an appropriate base subset that it is of endpoint
0. Thus it is sufficient to take a nonzero vector v € EgV and study the
module Tv.

The following proposition suggests that whether 7Tv is a thin irreducible
module or not can be determined by investigating the vectors E} A;v.

Proposition 2 Let 0 # v € E{V. Then the following are equivalent.
(i) Tv is a thin irreducible T-module.
(ii) dim E}Mv < 1 for every i € {0,1,..., D}.
(iii) EfAinv € Span(E}Av) for every i € {0,1,...,D} and h € {0,1,2}.

3 Shortest Module

Let 0 # v € E}V. Since Eyv, Eyv,..., Epv are mutually orthogonal, we
have that

dim7v >dimMv = |{i| Eiv#£0, i€ {0,1,...,D}}|. (2)

Moreover, if Tv is thin, equality holds above by Lemma 1 (3). What is the
lower bound of the right hand side of (2). Let

r(v)=|{i| Eiv#0,i€{0,1,...,D}}| -1, and

1*vA'v

Pl = 572 Z o vilt) € R 3)
We obtain the following formula by a simple computation.

Lemma 3 The following hold.
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Note that 'vA;T = 0 if j > w(Y). Hence the polynomial py(t) in (3) is
of degree at most w(Y'). Thus the first part of the following theorem follows
from Lemma 3.

Theorem 4 LetT' = (X, R) be a DRG of diameter D, and @ #Y C X. Let
0#ve EJ(Y)V. Let T =T (Y). Then the following hold.

(1) {i| EBv=0,i€{0,1,...,D}}| <w(Y), i.e, r(v) > D - w(Y).

(2) Equality holds in (1) if and only if Tv is a thin irreducible module of
dimension r(v) +1 =D +1—w(Y).

Definition 3 0 # v € Ej(Y)V with Y C X is said to be tight with respect
to Y, if |{i | pp(8:) = 0} = w(Y), i.e, if r(v) > D ~ w(Y).

The first main theorem states that each tight vector generates a thin
irreducible module with an extremal condition.

4 Thin Modules
Let © = {6y,61,...,0p}, 0# v € EjV, r =r(v) and
O(v) = {6 € © | po(6) #0}.
of cardinality r + 1. Let w = m - py. Then
w:0(v) — R : (8 m(0)pv(0)).

Now there is a system of orthogonal polynomials {go(t), g1(t), . .., g-(t)} asso-
ciated with the weight function w. We may assume that the leading coefficient
of g;(t) coincides with that of v;(t), where v;(t) is a polynomial of degree ¢
such that v;(A) = A;. Then such a system of polynomials is unique.

Theorem 5 Let u; = g;(A)v forie {0,1,...,7 +1}. Then
Tv D Mv = C[A]v = Span(u, uy, ..., u,)
and the following hold.
(1) For everyi e {0,1,...,7},

“%—3’”2 < (9u(0), 9:®))u = g )12 Q)

Moreover, equality holds above if and only if u; = E} A;v.
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(2) The following are equivalent.

(i) T-module Tv is thin and irreducible.
(i) Equality holds in (4) for everyi € {0,1,...,7}.
(iii) Equality holds in (4) for i =r.

Definition 4 A nonzero vector v € E§(Y)V with @ # Y C X is said to be
a T-vector with respect to Y, if 7(Y)v is a thin irreducible 7 (Y)-module.

Theorem 4 states that this bound is automatically attained if r(v) =
D — w(Y), i.e., tight vectors are T-vectors.

5 Applications and Examples
For z € T4(Y), let

mi=mi(z) = |{y € Y | 8(2,y) = j}I.

Definition 5 A nonempty subset Y of the vertex set X of a DRG is called
a completely regular code if 7r;- (2) is independent of z € T';(Y).

Proposition 6 Let ' = (X,R) be a DRG and let 0 # Y C X. Let T =
T(Y). Then the following are equivalent.

(i) Y is a completely regular code of T

(ii) The characteristic vector 1y of Y is a T-vector.

Hence Theorem 5 gives an algebraic characterization of a completely reg-
ular code, and T-vector can be viewed as a generalization of a completely
regular code. The investigation of 7'(Y)-modules concerns not only the char-
acteristic vector of a subset Y, or a code, but also the vectors whose supports
lie in Y. For algebraic characterization of completely regular codes, see [1, 4].

Tight Subgraphs and T-Subgraphs:

Definition 6 1. Aninduced subgraph on Y is said to be a tight subgraph,
if E3V is spanned by tight vectors.

2. An induced subgraph on Y is said to be a T-subgraph, if E5V is spanned
by T-vectors with respect to Y.
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Example 1 1. The tight graphs defined in [3] can be characterized as
follows:

A nonbipartite distance-regular graph is tight (in the sense
defined in [3)) if and only if E*(Y)V NSpan(1y)* is spanned
by tight vectors with Y = I';(z) for some vertex z.

See [2].

2. Let Y = I'p(z). Then Y is a completely regular code. Since T(z) =
T(Y), if T is thin in the sense of Terwilliger, i.e., if every 7 (z)-module
is thin, then Y is a T-subgraph. There are many DRGs I such that
I'p(z) is a T-subgraph; J(n,D), H(D,q), all bipartite @Q-polynomial
DRGs. In these cases Y has rich structure.

3. H(d,q) is embedded in H(D,q) if d < D. This subgraph is a tight
subgraph.

4. All dual polar graphs have many tight subgraphs. The natural embed-
dings of dual polar graphs of smaller ranks seem to be tight.

5. Tightness can be defined in Hecke algebras or C-algebras level as well.

To close this exposition we give two more propositions, which can be
regarded as generalizations of results on tight graphs in [3].
In the following for z € C \ {-1}, let

Proposition 7 Let I' be a DRG of diameter D > 3 such that 'p(z) is a
clique.

(1) The following hold.
k(al -+ élép)
< (a1 —61)(a:1 - 0p) + ap(ap — bp_y — 61)(ap — bp_1 — Op)
(2) The following are equivalent.

(i) Every irreducible T (z)-module of endpoint 1 is thin.
(ii) Equality holds in (1)
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Proposition 8 Let A = (Y, Ryyxy) with Y C X is a k-regular subgraph of
sizem = |Y| such that d(Y) = 2. Letmy =Kk > mp > -+ > 1m be eigenvalues
of A. Then the following hold.

mrb?
> 0.
i) (m—r=1) ="

(2) The equality holds in (1) if and only if the following holds.

{n?a reey nm} - {élv é-D}a

i.e., E§(Y)V N Span(ly)* is spanned by tight vectors.

(1) (61— R)(0p — k) +
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