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1Introduction
In this article, we consider the structure of the stalldard modules of associa-
tion schemes. Firstly, we consider the relations between representation theory
of some algebraic objects. If we consider representation theory of afinite di-
mensional algebra, we can only use its algebra structure. For a(generalized)
table algebra [1] or agroup-like algebra [4], we call use its distinguished basis.
Group-like algebras are defined by Y. Doi as ageneralization of adjacency
algebras of association schemes from aviewpoint in the tbeory of bialgebra.
For representation theory of $\mathrm{t}_{r}\mathrm{h}\mathrm{e}$ adjacency algebra of an association scheme,
we can use the standard module (representation), which is the main subject in
this article. For representation theory of association schemes, we can use tbe
standard module with the distinguished basis. The information of the stan-
dard module with the distinguished basis is equivalent to the combinatorial
structure, since we can reconstruct the $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{t},\mathrm{i}\mathrm{o}\mathrm{n}$ scheme from it.

If two association schemes have isomorphic adjacency algebras over the
complex number field $\mathbb{C}$ , then so are the standard modules since they are
completely determined by the degrees and the multiplicities of irreducible
characters. But this is not true for over apositive characteristic field. We
show an example.

Fxample 1.1. There exist association schemes $(X, G)$ and $(X, G’)$ of order
27 and class 2, such that their adjacency algebras are isomorphic over the
rational integer ring $\mathbb{Z}$ (so they are isomorphic over an arbitrary commutative
ring with 1). Let $F$ be afield of characteristic 3. Then their adjacency
algebras are isomorphic to $A=F\mathrm{I}x$ ] $/(\prime x^{3}.)$ , where $\Gamma\prec[\ell x]$ is $\mathrm{l}\mathrm{h}\mathrm{e}$ usual polynomial
ring over $F$ . The set of isomorphism classes of indecomposable $A$-modules is
{ $M_{1},$ $M_{2}$ , A#3}, where $\mathrm{d}\mathrm{i}\mathrm{I}\mathrm{n}_{F}M\dot{.}=i$ . The standard modules are

$FX_{FG}\cong M_{3}\oplus 12M_{2}$ , $F_{\wedge}.\mathrm{v}FG’--\simeq-$ A#3 $\epsilon \mathrm{D}hM_{2}\oplus 2M_{1}$ ,
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and they are not isomorphic. We can find similar observations in [2] and [8].

This example shows us that the structure of astandard module plays an
important role in representation theory of association schemes. We consider
the structure of standard modules, especially their block decompositions.

2Definitions
We use the notations in the book of Zieschang [9].

Let $X$ be afinite set, and let $G$ be acollection of subsets of $X\mathrm{x}X$ .
For $g\in G$ , we define the adjacency matrix $\sigma_{g}$ of $g$ as the following. Let $\sigma_{g}$

be amatrix over the rational integer ring whose both rows aztd columns are
indexed by $X$ . The $(x,y)$-entry of $\sigma_{g}$ is 1if $(x, y)\in g$ , and 0otherwise. If
$\{\sigma_{g}|g\in G\}$ satisfies the condition (1) $-(4)$ , we call $(X, G)$ an association
scherne.

(1) The matrix $\sum_{g\in G}\sigma_{g}$ is the all one rnatrix.

(2) There exists $g\in C_{t}$ such that $\sigma_{g}$ is the identity matrix (we will denote
this $g$ by 1).

(3) For any $g\in G$ , there exists $g^{\mathrm{s}}\in G$ such that $\sigma_{q^{l}}.={}^{t}\sigma_{q}.$ ’where ${}^{t}\sigma_{g}$ is
the transposed matrix of $\sigma_{g}$ .

(4) There exist rational integers $a_{efg}$ , such that $\sigma_{e}\sigma_{f}=\sum_{y}\epsilon ca_{efg}\sigma_{g}$.

By the condition (4), we can define a $\mathbb{Z}$-algebra $\oplus_{g\in G}\mathbb{Z}\sigma_{g}$ . For all arbitrary
commutative ring $R$ with 1, we define

$RG:=(g\in\oplus \mathbb{Z}\sigma_{g})G\otimes_{\mathrm{Z}}R$ ,

and we call this the adjacency algebra of $(X, G)$ over $R$ . Often we consider
the adjacency matrix $\sigma_{g}$ is amatrix over the coefficient ring $R$ . Note that
$\{\sigma_{g}|g\in G\}$ is linearly independent over any commutative ring by the
condition (1).

For $g\in G$ , we set $n_{g}:=a_{gg^{*}1}$ and call it the valency of $g$ . For asubset
$S$ of $G$ , we also denote $n_{S}:= \sum_{g\in S^{l}}n_{g}$ . Especially, $n_{G}$ is equal to the. cardi-
nality of $X$ , and we call it the orvier of $(X, G)$ . The number $|G|-1$ is called
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the class of $(X, G)$ . Easily, we can check that the map $\sigma_{g}\mapsto\prime n_{g}$ is an alge-
bra homomorphism from the adjacency algebra $RG$ to $R(R$ is an arbitrary
commutative ring with 1). We call this the trivial representation of $G$ over
$R$ . Note that, in this article, arepresentation means alinear representation
of an algebra, namely, an algebra homomorphism from an $R$-algebra to the
full matrix ring over $R$ of sorne degree.

The map $\Gamma_{G}$ : $RGarrow M_{n_{G}}(R)$ defined by $\Gamma_{G}(\sigma_{g})=\sigma_{g}$ is also arepre-
sentation of $G$ . We call this the $staf\iota dard$ representation of $G$ over $R$. The
corresponding right $RG- \mathrm{m}\mathrm{o}\mathrm{d}\iota \mathrm{d}\mathrm{e}$ is called the (right) standani rnodule, and
we denote it by $RX$ , since we can consider $X$ as an $R$-basis of it.

It is well known that the adjacency algebra over the complex number field
is always semisimple. In this case, all modules are completely reducible and
they are determined by their characters. Here the character means the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

function of arepresentation. We denote the set of all irreducible characters
of $\mathbb{C}G$ by Irr(G). We consider the irreducible decomposition of the standard
character $\gamma_{G}$ over $\mathbb{C}$ :

$\gamma_{\mathit{9}}=\sum_{\chi\in 1\iota\cdot \mathrm{r}(G)}m_{\chi}\chi$
.

We call $m_{\chi}$ the multiplicity of $\lambda’\in 1\mathrm{I}\mathrm{T}(G)$ .

Let $p$ be aprinte, and let $(K, R, F)$ be apmodular system. Namely,
$R$ is acomplete discrete valuation ring with the maxirnal ideal $(7\Gamma),$ $K$ is
the quotient field of $R$ and its characteristic is 0, and $F$ is the residue field
$R/(\pi)$ and its characteristic is $p$ . Details about $T\star \mathrm{I}\mathrm{r}\mathrm{l}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ systems, see [7].
The simplest example of pmodular systexns is $(\mathbb{Q}_{p}, \mathbb{Z}_{p}, \mathbb{Z}/p\mathbb{Z})$ . Let $(X, G)$

be an association scheme. To simplify our argument, we suppose that the
adjacency algebras $KG$ and $FG$ are splitting algebras. In this case, we say
$(K, R, F)$ is asplitting $p$-modular systern of $G$ .

Any idempotent in $FG$ is aimage of all idempotent of $RG$ by the natural
epimorphism from $RG$ to $FG\cong RG/\pi RG$ . The primitivity of idempotents is
preserved by this correspondence [7, Theorem I.14.2]. Moreover, there exists
anatural correspondence between the set of primitive central idempotents of
$RG$ and it of $FG$ [$3$ , Proposition 1.12]. Namely, if

$1=e_{0}+e_{1}+\cdots+e_{f}$

is the central idempotent decomposition of 1in $RG$ , then so is

$1=\overline{e_{0}}+\overline{e_{1}}-\vdash\cdots+\overline{e_{r}}$
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in FG, where $\overline{e_{i}}$ is the image of $e_{i}$ by the natural epimorphism. We call a
primitive central idempotent $e_{\mathrm{i}}$ the block idempotent of (;. In this case,

$RG=RGe_{0}\oplus\cdots\oplus RGe,$.

is the indecomposable decomposition of $RG$ as tw0-sided ideals. We call
$RGe_{j}$ the block (or block ideal) of $G$ . For aright KG- or $RG$-module $M$ , we
say $M$ belongs to ablock $RGe_{i}$ if $Me_{i}=M$ . For aright $FG$-modvle $M$,
we say $M$ belongs to ablock $e_{i}$ if $M\overline{e_{i}}=M$ . Any indecomposable module
belongs to the unique block. Let $M$ be aright $RG$-module, and assume
$1=e_{0}+e_{1}+\cdots+e,$. is the central idernpotent deco1nposition of 1in $RG$.
Then we can decompose A#:

$M=Me_{0}\oplus\cdots\oplus Me_{\gamma}$ .

We call this decomposition the block decomposition of $M$ . We define block
decompositions for $KG$-modules and $FG$-modules similarly.

3Block decompositions

We begin this section with awell known fact in modular representation theory
of finite groups. Let $F$ be afield of characteristic $p>0$ , and let $G$ be afinite
group of order $p^{a}m$ , where $p$ \dagger $m$ . If $M$ is afinitely generated projective right
$FG$-module, then $p^{a}|\dim_{F}$ M. Especially, $p^{u}|\mathrm{d}\mathrm{i}\mathrm{I}\mathrm{n}_{F}eFG$ for any idempotent
$e$ of $FG$ . We want to generalize this fact to adjacency algebras. But easily
we can find counter examples.

Example 3.1. Let $(X, G)$ be an association scheme of order $p^{\alpha}$ , and assume
that it is not thin. Take 1as all idempotent, then $\dim_{F}FG<p^{a}\mathrm{m}\mathrm{d}$

$ff^{\iota}\{\dim_{F}FG$ .

Now we consider the standard module. Then we have the following result.

Theorem 3.2. Let $(X, G)$ be an association scheme of order $p^{u}m_{f}$ where
$p\{m$ . Let $F$ be a field of characteristic $p$ , and let $e$ be an idempotent in
$FG$ . Then $p^{a}|\dim_{F}FXe$ . If $e$ is primitive, then $\dim_{F}FXe$ equals to the
multiplicity of the simple $FG$-module $eFG/J(eFG)$ in $FX$ as an irreducible
constitetent.
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Proof. The proof is almost the same as [5, Theorem 3.4].
Let $e$ be an idempotent in $FG$ . Then there exists an idempotent $f$ of

$RG$ such that $\overline{f}=e$ . We have $\dim_{F}eFG=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{R}fRG=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}$ $\Gamma_{G}(f)$ ,
where $\Gamma_{G}$ is the standard representation. Since $f$ is an idempotent, we have
rank $\Gamma_{G}(f)=\gamma c(f)=\sum_{\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)}m_{\chi}\chi(f)$ . If $f= \sum_{g\in G}\alpha_{g}\sigma_{g}$ , then $\gamma_{G}(f)=$

$\alpha_{1}n_{G}=\alpha_{1}p^{a}m$ , so we have $\alpha_{1}=\gamma_{G}(f)/p^{u}’ rn$ . Since $f\in RG,$ $\alpha_{1}\in R$ , so
$\gamma_{G}(f)$ must be divided by $p^{a}$ . $\square$

Corollary 3.3. If $(X, G)$ is an association scheme of orvler $p^{u}m,$ $p\{.m$ , then
the number of isomorphisrn classes of irreducible $FG$ -rnodules is at most $m$ .
Moreover, this bound is best possible.

Proof. It is enough to show that $FXe\neq \mathrm{O}$ for any $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{I}\mathrm{r}\dot{\mathrm{u}}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ idempotent $e$ of
$FG$ .

We fix an element $x$ in $X$ . Define amap $\varphi$ : $FGarrow FX$ by $\varphi(\sigma_{g})=x\sigma_{g}$ .
Then easily we can verify that $\varphi$ is an $FG$-monomorphism. Now $FXe\neq 0$ ,
since $FGe\neq 0$ .

The groups algebra of abelian gToup of order $p^{u}.m$ has $lm$ irreducible mod-
ules. So this bound is best possible. $\square$

We note that $FXe$ is not ait $FG$-module, in general. But, if $e$ is acentral
idempotent, then $FXe$ is an $FG$-module. So we have the following.

Theorem 3.4. Let $(X, G)$ be an association scheme of order $p^{u}m$ , where
$p\{.m$ . For the block decomposition of the standard module

$FX=FXe_{0},\oplus\cdots\oplus FXe,.$ ,

we have $p^{a}|\dim_{F}FXe$:for any $i$ .

For ablock $B$ of $G$ , we write the set of irreducible characters belonging
to it by Irr(B).

Corollary 3.5. If $(X, G)$ is an association scheme of orvter $p^{a}.m,$ $p$ \dagger $m_{J}$ then

$p^{a}| \sum_{\chi\in 1\mathrm{r}\mathrm{r}(B)}.m_{\chi}\chi(1)$
,

for any block $B$ of $G$ .

Proof. Let $B=eRG$. For $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , $\lambda’(e)=\chi(1)$ if $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(\mathrm{B})$ , and
$\chi(e)=0$ otherwise. By the proof of Theorem 3.2, we have the result. $\square$
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4Commutative case
If $(X, G)$ is acommutative association scheme, then any block $\overline{e_{i}}FG$ of $FG$

is alocal commutative algebra. So we have the following.

Proposition 4.1. Let $(X, G)$ be a commutative association scheme. $If\chi,$ $\varphi\in$

Irr(G), then $\chi$ and $\varphi$ belong to the same block if and only if
$\chi(\sigma_{g})\equiv\varphi(\sigma_{g})$ $(\mathrm{m}\mathrm{o}\mathrm{d} (\pi))$ , for all $g\in G$ .

The following is aeasy consequence of the result in the previous section.

Corollary 4.2. If ($X$ , (;) is a commutative association scheme of order $p^{a}m$ ,
$p\{m$ , then

$p^{a}| \sum_{\chi\in \mathrm{I}\mathrm{r}\iota\cdot(B)}\prime m_{\chi}$
,

for atey block $B$ of $G$ .

5Noncommutative case
For $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , we define $\omega_{\chi}$ : $Z(KG)arrow K$ by $\omega_{\chi}(z)=\chi(z)/\chi(1)$ . Then, if
$\lambda’\neq\varphi$ , then $\omega_{\chi}\neq\omega_{\varphi}$ , and we have

Irr(Z(KG)) $=\{\omega_{\chi}|,\chi\in \mathrm{I}\mathrm{r}\mathrm{r}((C,)\}$ .

Now we can say ageneralization of Proposition 4.1.

Theorem 5.1. Let (X, G) be a grvup-like association scheme. If $\chi,$ $\varphi\in$

Irr(G), then $\chi$ and $\varphi$ belong to the same block if and only if
$\omega_{\chi}(z)\equiv\omega_{\varphi}(z)$ $(\mathrm{m}\mathrm{o}\mathrm{d} (\pi))$ , for all $z\in Z(RG)$ .

If we want to use this result, then we need abasis of $Z(RG)$ . But, in
general, we do not know how to calculate abasis of $Z(RG)$ . If we assume a
property of $(X, G)$ , we can decide agood basis of $Z(RG)$ . It is stated in the
next section.

Remark 5.2. If we want do know the block decomposition of Irr(G), then we
can use the following method. Let $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(\mathrm{B})$ . Consider $S:=\{S\subseteq \mathrm{I}\mathrm{r}\mathrm{r}(G)|$

$\sum_{\varphi\in S}e_{\varphi}\in RG\}$ , where $e_{\varphi}$ is the central idempotent in $KG$ corresponding
to $\varphi$ . Then $\bigcap_{\mathrm{S}\in S}S\in S$ and this is Irr(B).
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6Group-like case
Let $(X, G)$ be an association scheme. For $g,$ $h\in G$ , we define $g\sim h$ if

$\frac{1}{n_{g}}\chi(\sigma_{g})=\frac{1}{ln_{h}}\chi(\sigma_{h})$ , for any $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ .

We say $(X, G)$ is group-like if the number of $\sim \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ classes is equal
to the number of irreducible characters of $G$ (this is different from group-like
algebras defined by Y. Doi [4] $)$ . For details, see [6]. Suppose that $(X, G)$ is
group-like. For $g\in G$ , we put $\tilde{g}=\bigcup_{h\sim g}h$ , and $\tilde{G}=\{\tilde{g}|g\in G\}$ . Then
$(X,\tilde{G})$ is an association scheme, and the adjacency algebra $R\tilde{G’}$ is the center
of $RG$ .

Theorem 6.1. Let (X, G) be a group-like association scheme. If $\chi,$ $\varphi\in$

Irr(G), then $\chi$ and $\varphi$ belong to the same block if and only if
$\omega_{\chi}(\sigma_{\tilde{g}})\equiv\omega_{\varphi}(\sigma_{\tilde{g}})$ $(\mathrm{m}\mathrm{o}\mathrm{d} (\pi))$ , for all $\tilde{g}\in\tilde{G}$ .

If $(X, G)$ is thin, namely $G$ is afinite $\mathrm{g}\tau \mathrm{o}\mathrm{u}\mathrm{p}$ , then it is group-like and the
relation $\sim \mathrm{i}\mathrm{s}$ the conjugacy relation of the group. In this case, $0\iota\iota \mathrm{r}$ result is
well known in representation theory of finite groups.

7Some examples
In this section, we consider some examples.

Example 7.1. We consider the association schemes defined by permutation
groups on the set of prime cardinalities. Let $(X, G)$ be such an association
scheme of order $p$ and class $d$ . In this case, $d$ must divide $p-1$ . Let $F$ be
an algebraically closed field of characteristic $p$ . Theu the adjacency algebra
$FG$ is isomorphic to $F[x]/(x^{d}+1)$ . The set of isornorphism classes of inde-
composable $FG$-modttles is $\{M_{i}|1\leq i\leq d+1\}$ , where $\dim_{F}M_{i}=i$ . Now
the standard module is

$FX_{FG} \cong M_{d+1}\oplus(\frac{p-1}{d}-1)\mathrm{A}’I_{d}$ .

In this case, $M_{d+1}\cong FG$ as FG-modules.
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For many examples, the standard module $FX_{FG}$ contains the regular
module $FG_{FG}$ as adirect summand. But this is not true, in general.

Example 7.2. Let $H(2,2)$ be the Hamming scheme, and let $F$ be afield
of characteristic 2. Then the standard module of $H(2,2)$ over $F$ is inde-
composable. Especially, it does not contain the regular module as adirect
summand.

We consider ageneral situation. There exists an $FG$-module monomor-
phism from $FG$ to $FX$ as we see in the proof of Corollary 3.3. This does
not split, in general. If $FG$ is self-injective (equivalently aquasi-Frobenius
algebra), then this monomorphism splits.

Proposition 7.3. If $FG$ is self-injective, then $FG_{FG}$ is a direct summand
of $FX_{FG}$ .
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