A bound for the number of columns $\ell_{(c,a,b)}$ in the intersection array of a distance-regular graph

S. Bang*

Department of Mathematics,
POSTECH, Pohang 790-784 Korea, e-mail: sjbang3@postech.ac.kr
J. H. Koolen*

Combinatorial and Computational Mathematics Center and Department of Mathematics, POSTECH, Pohang 790-784 Korea, e-mail: jhk@euclid.postech.ac.kr and

V. Moulton;

The Linnaeus Centre for Bioinformatics, Uppsala University, BMC, Box 598, 751 24 Uppsala, Sweden. e-mail: vincent.moulton@lcb.uu.se

Abstract

In this paper we give a bound for the number $\ell_{(c,a,b)}$ of columns $(c,a,b)^T$ in the intersection array of a distance-regular graph. We also show that this bound is intimately related to the Bannai-Ito Conjecture.

1 Introduction

Suppose that Γ is a finite connected graph with vertex set $V\Gamma$. As usual, we define the distance between any two vertices u and v of Γ to be the length of any shortest path in Γ between u and v, and the diameter d of Γ to be the largest distance between any pair of vertices in $V\Gamma$. For $u \in V\Gamma$ and i any non-negative integer not exceeding d, let $\Gamma_i(u)$ denote the set of vertices in $V\Gamma$ that are at distance i from u and put $\Gamma_{-1}(v) = \Gamma_{d+1}(v) := \emptyset$. The graph Γ is called distance-regular if there are integers $b_i, c_i, 0 \le i \le d$, so that for any two vertices u and v in $V\Gamma$ at distance i, there are precisely c_i neighbors of v in $\Gamma_{i-1}(u)$ and b_i neighbors of v in $\Gamma_{i+1}(u)$. Clearly such a graph is regular with valency $k := b_0$. The numbers c_i, b_i , and a_i , where

$$a_i := k - b_i - c_i \quad (i = 0, \dots, d)$$

^{*}The authors thank the Com2MaC-KOSEF for its support.

[†]The author thanks the Swedish Research Council (VR) for its support.

is the number of neighbors of v in $\Gamma_i(u)$ for $u, v \in V\Gamma$ at distance i, are called the *intersection* numbers of Γ , and

$$\begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_j & \cdots & c_{d-1} & c_d \\ a_0 & a_1 & a_2 & \cdots & a_j & \cdots & a_{d-1} & a_d \\ b_0 & b_1 & b_2 & \cdots & b_j & \cdots & b_{d-1} & b_d \end{bmatrix}$$

the intersection array of Γ .

Now, suppose that Γ is a distance-regular graph with valency $k \geq 2$, diameter $d \geq 2$ and intersection numbers $c_i, a_i, b_i, 0 \leq i \leq d$. Given integers $a \geq 0$ and $b, c \geq 1$ with a + b + c = k, we define

$$\ell_{(c,a,b)} = \ell_{(c,a,b)}(\Gamma) := |\{i \mid 1 \le i \le d-1 \text{ and } (c_i, a_i, b_i) = (c, a, b)\}|,$$

that is, the number of columns $(c, a, b)^T$ in the intersection array of Γ , and put

$$\mathtt{h}=\mathtt{h}(\Gamma):=\ell_{(1,a_1,b_1)}.$$

Note that since $d \geq 2$ and $c_1 = 1$ we have $h \geq 1$.

Finding good bounds for $\ell_{(c,a,b)}$ is a powerful technique for understanding distance-regular graphs. For example, in [1] Bannai and Ito showed that, for a distance-regular graph with valency $k \geq 3$, if c is an integer with $0 \leq 2c \leq k$ then $\ell_{(c,k-2c,c)} \leq 10k2^k$, from which they deduced that there are finitely many distance-regular graphs with valency 3. Also, in [4] Biggs et al. used circuit chasing to considerably improve this bound, which enabled them to classify the distance-regular graphs with valency 3.

In this paper we prove the following theorem.

Theorem 1.1 There exists a function $\mathbf{k}: \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{N}^+$ so that for all positive integers b, c, C, $\mathbf{k}(b, c, C) \ge \max\{b + c, 3\}$ and for all distance-regular graphs Γ with valency $k \ge \mathbf{k}(b, c, C)$, diameter $d \ge 2$ and $h \ge 2$,

$$\ell_{(c,k-b-c,b)} \leq C.$$

As might be expected from the previously mentioned results for valency 3 distance-regular graphs, this theorem is closely related to the so-called Bannai-Ito Conjecture. Bannai and Ito conjectured that given an integer $k \geq 3$ there are finitely many distance-regular graphs with valency k. In a series of papers [1, 2, 3] they showed that their conjecture was true for valency 3 and 4 and also that, for $k \geq 3$ an integer, there are finitely many bipartite distance-regular graphs with valency k [2]. In addition, it was recently shown that the Bannai-Ito Conjecture is true for valencies 5, 6 and 7 [12] and also that there are finitely many triangle-free (i.e. containing no 3-cycles) distance-regular graphs with valency 8, 9 or 10 [13].

Using Theorem 1.1, we now prove that the Bannai-Ito Conjecture is basically equivalent to bounding $\ell_{(c,k-b-c,b)}$ by a function of b and c.

Theorem 1.2 The following statements are equivalent:

(1) For each integer $k \geq 3$, there are finitely many distance-regular graphs with valency k.

(2) There exists a function $f: \mathbb{N}^+ \times \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ such that for all $k, b, c \in \mathbb{N}^+$ and for all distance-regular graphs Γ with valency $k \ge \max\{b+c,3\}$, diameter $d \ge 2$ and $h \ge 2$

$$\ell_{(c,k-b-c,b)} \leq \mathbf{f}(b,c).$$

Proof: (1) \Rightarrow (2): By (1) there is a function $\mathbf{g}: \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ such that, for all distance-regular graphs Γ with valency $k \geq 3$, and diameter $d \geq 2$,

$$d \leq g(k)$$
.

For $b, c \in \mathbb{N}^+$ put

$$\mathbf{f}(b,c) := \max\{\mathbf{g}(k) \mid \max\{b+c,3\} \le k < \mathbf{k}(b,c,1)\},\$$

where $k : N^+ \times N^+ \times N^+ \longrightarrow N^+$ is a function with the properties given in Theorem 1.1.

Now suppose $b, c \in \mathbb{N}^+$ and that Γ is a distance-regular graph with valency $k \geq \max\{b + c, 3\}$, diameter $d \geq 2$, and $h \geq 2$. Then

$$\ell_{(c,k-b-c,b)}(\Gamma) \le d \le \mathbf{g}(k)$$

and, by Theorem 1.1 applied with C = 1, if $k \ge k(b, c, 1)$ then

$$\ell_{(c,k-b-c,b)}(\Gamma) \leq 1.$$

Hence $\ell_{(c,k-b-c,b)}(\Gamma) \leq \mathbf{f}(b,c)$ and so (2) holds.

 $(2) \Rightarrow (1)$: Put

$$F(k) := \max\{\mathbf{f}(b,1) \mid 1 \le b \le k-1\}.$$

Suppose that Γ is a distance-regular graph with valency $k \geq 3$ and diameter $d \geq 2$. Note that $k \geq 1 + b_1$ since otherwise $k < b_1 + 1 = k - a_1$ which is a contradiction. By (2)

$$h = \ell_{(1,k-b_1-1,b_1)} \le F(k)$$

and so, since $d < \frac{1}{2}k^3h$ [10, Theorem 1.1],

$$d<\frac{1}{2}k^3F(k).$$

It is now straight-forward to check that (1) holds.

In view of results and examples contained in [6] and [8], it is plausible, for a distance-regular graph with h=1 and diameter $d\geq 4$, that $c_4\geq 2$. If this were indeed the case, then Theorem 1.1 would also hold for h=1 and so the condition $h\geq 2$ in Theorem 1.2 (2) could be removed. Bearing this in mind, we make the following conjecture.

Conjecture 1.3 There exists a function $f: \mathbb{N}^+ \times \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ such that for all $b, c \in \mathbb{N}^+$ satisfying $b+c \leq k$ and for all distance-regular graph Γ with valency $k \geq \max\{b+c,3\}$

$$\ell_{(c,k-b-c,b)} \leq \mathbf{f}(b,c).$$

In [7] Hiraki proved $\ell_{(1,k-2,1)} \leq 20$ for every distance-regular graph with valency $k \geq 3$, and hence this conjecture is true in case b = c = 1. Using Theorem 1.1 we now prove a theorem that generalizes Hiraki's result in case $h \neq 1$.

Theorem 1.4 There exists a function $f: \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ such that for all $c \in \mathbb{N}^+$ and all distance-regular graphs Γ with valency $k \ge \max\{2c, 3\}$, diameter $d \ge 2$ and $h \ge 2$,

$$\ell_{(c,k-2c,c)}(\Gamma) \leq \mathbf{f}(c)$$
.

Proof: Suppose that $\mathbf{k}: \mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ is a function with the properties given in Theorem 1.1. Given $c \in \mathbb{N}^+$, put $\mathbf{k}_c := \mathbf{k}(c,c,1) - 1$ and define

$$\mathbf{f}(c) := 10 \, \mathbf{k}_c \, 2^{\mathbf{k}_c}.$$

Note that if $k \ge \max\{2c, 3\}$, then $\mathbf{k}(c, c, 1) \ge \max\{2c, 3\}$, and hence $\mathbf{f}(c) > 1$.

Now suppose that Γ is a distance-regular graph with valency $k \geq \max\{2c, 3\}$ and $h \geq 2$. In view of Bannai and Ito's bound, $\ell_{(c,k-2c,c)} \leq 10 \, k \, 2^k$, mentioned above and since $10 \, k \, 2^k$ is an increasing function on $[\max\{2c, 3\}, \infty)$, for all k with $\max\{2c, 3\} \leq k \leq k(c, c, 1)$,

$$\ell_{(c,k-2c,c)} \le 10 \, k \, 2^k \le \mathbf{f}(c).$$

The theorem now follows since by Theorem 1.1, for $k \ge k(c, c, 1)$,

$$\ell_{(c,k-2c,c)} \le 1 < \mathbf{f}(c).$$

This rest of this paper is organized as follows. In Section 2 we present some definitions and results concerning distance-regular graphs. We also present a partial solution to a problem posed on [5, p.189] that is of independent interest and follows from Theorem 1.1. In Section 3 we derive some bounds for terms in the standard sequence associated to an eigenvalue of a distance-regular graph. Finally, in Section 4 we use these bounds to prove Theorem 1.1.

2 Distance-Regular Graphs

We begin this section by presenting some basic facts concerning distance-regular graphs (for more details see [5]). Suppose that Γ is a distance-regular graph with valency $k \geq 2$, diameter $d \geq 2$ and intersection numbers c_i , a_i , b_i , $0 \leq i \leq d$. Clearly, $b_d = c_0 = a_0 = 0$ and $c_1 = 1$. In [5, Section 4.1], it is shown that $\Gamma_i(u)$ contains k_i elements, where

$$k_0 := 1, \ k_1 := k, \ k_{i+1} := k_i b_i / c_{i+1}, \ i = 0, \dots, d-1,$$
 (1)

and in [5, Proposition 4.1.6] that

$$k = b_0 > b_1 \ge b_2 \ge \dots \ge b_{d-1} > b_d = 0$$
 and $1 = c_1 \le c_2 \le \dots \le c_d \le k$. (2)

Recall that the eigenvalues of Γ are the eigenvalues of the adjacency matrix of Γ . In particular, if θ is an eigenvalue of Γ then $\theta \in [-k, k]$. We now state a result concerning the second largest eigenvalue of a distance regular graph.

Lemma 2.1 [12, Theorem 6.2] Suppose $b, c \in \mathbb{N}^+$ and $k \ge \max\{b+c, 3\}$ is a positive integer. Let Γ be a distance-regular graph with valency k and put $\ell := \ell_{(c,k-b-c,b)}$. The second largest eigenvalue θ_1 of Γ satisfies

$$\theta_1 \ge k - b - c + 2\sqrt{bc}\cos\left(\frac{2\pi}{\ell+1}\right).$$

The standard sequence $(u_i = u_i(\theta) \mid 0 \le i \le d)$ associated to an eigenvalue θ of Γ is defined recursively by the equations

$$u_0 = 1$$
, $u_1 = \theta/k$, $b_i u_{i+1} - (\theta - a_i)u_i + c_i u_{i-1} = 0$ for $i = 1, 2, \dots, d-1$.

As is well-known, see e.g. [5, Theorem 4.1.4], if $v := |V\Gamma|$, then the multiplicity $m(\theta)$ of θ is given by

$$m(\theta) = \frac{v}{M(\theta)},\tag{3}$$

where

$$M(\theta) = \sum_{i=0}^{d} k_i u_i(\theta)^2.$$

Now given a positive integer c, define

$$\xi_c := \min\{i \mid 1 \le i \le d \text{ and } c_i = c\}, \text{ and } \eta_c := |\{i \mid 1 \le i \le d \text{ and } c_i = c\}|.$$

To prove the next lemma we will use the following relationships between these numbers that were given in [10] (Lemma 2.1 and Proposition 3.2, respectively). If c > 1 is an integer, then

$$\eta_c \le 2\xi_c - 3,\tag{4}$$

and if c is a positive integer and $\eta_c \neq 0$, then

$$\xi_c \le \frac{c^2}{4}\eta_1 + 1. {5}$$

Put

$$e := \max\{i \mid 1 \le i \le d-1 \text{ and } c_i \le b_i\}.$$

Lemma 2.2 Suppose that Γ is a distance-regular graph with valency $k \geq 3$ and diameter $d \geq 2$, and that b, c are positive integers with $k \geq b + c$. If $\ell_{(c,k-b-c,b)} \geq 1$, then

$$d < \left\{ \begin{array}{ll} 2(\eta_1 + 1) & \text{if } c_e = 1, \\ \frac{3}{2} \max\{b, c\}^2 \eta_1 & \text{if } c_e \ge 2. \end{array} \right.$$

Proof: Since $c_{e+1} > b_{e+1}$, by [5, Proposition 4.1.6 (ii)]

$$d<2(e+1). (6)$$

Thus, if $c_e = 1$, then since $e \leq \eta_1$ it follows that $d \leq 2\eta_1 + 1$ holds.

Now suppose $c_e \ge 2$. Since $\{i \mid c_i = c_e\} = \{\xi_{c_e}, \xi_{c_e} + 1, \dots, \xi_{c_e} + \eta_{c_e} - 1\}$,

$$e \leq \xi_{c_o} + \eta_{c_o} - 1.$$

By applying (4) and then (5) to the righthand side of this inequality, we have

$$e \le \frac{3}{4}c_e^2\eta_1 - 1. (7)$$

But $c_e \leq \max\{b,c\}$, since $1 \leq \ell_{(c,k-b-c,b)}$. Thus, in view of (6) and (7) we have $d < \frac{3}{2}\max\{b,c\}^2\eta_1$. This completes the proof.

3 Bounding Terms of the Standard Sequence

In this section we derive some bounds for terms in the standard sequence associated to an eigenvalue of a distance-regular graph that we use in the proof of Theorem 1.1. We begin with some definitions.

Suppose that Γ is a distance-regular graph with valency $k \geq 3$ and diameter $d \geq 2$, and that θ is an eigenvalue of Γ with $a_1 + 2\sqrt{b_1} < \theta < k$. Let $1 \leq p < d$ be the largest integer for which $c_p \leq b_p$ and $a_p + 2\sqrt{b_p}c_p < \theta$ both hold. Define

$$T := T(\theta) = \{i \mid 0 \le i \le p \text{ and } (c_i, a_i, b_i) \ne (c_{i+1}, a_{i+1}, b_{i+1})\}.$$

Put s := |T| - 1 and let t_0, t_1, \ldots, t_s be the ordering of T with $0 = t_0 < t_1 < \cdots < t_s = p$.

Now, if $(u_i = u_i(\theta) | 0 \le i \le d)$ is the standard sequence associated to θ and, for $1 \le i \le s$, the largest and smallest roots of the equation

$$b_{t_i}u_{t_i+1} + (a_{t_i} - \theta)u_{t_i} + c_{t_i}u_{t_i-1} = 0$$

are $\rho_i := \rho_i(\theta)$ and $\sigma_i := \sigma_i(\theta)$, respectively, then by the theory of three-term recurrences there are numbers γ_i and δ_i with

$$u_{j} = \gamma_{i} \rho_{i}^{j-t_{i-1}} + \delta_{i} \sigma_{i}^{j-t_{i-1}} \quad (t_{i-1} \le j \le t_{i} + 1).$$
 (8)

Note that since $a_i + 2\sqrt{b_i c_i} < \theta < k$, we have $0 < \sigma_i < \rho_i < 1, 1 \le i \le s$.

We now list some inequalities that will be used in the proof of Theorem 1.1.

Proposition 3.1 Suppose $1 \le i \le s$ and u_i , γ_i and ρ_i are as defined just above. Then the following inequalities hold

(i)
$$\rho_{i+1} < \rho_i$$
, $i \neq s$,

(ii)
$$u_{t_{i-1}+1} > \rho_i u_{t_{i-1}}$$
,

(iii) $\gamma_i > u_{t_{i-1}}$,

(iv)
$$u_{t_i} > \prod_{j=1}^i \rho_j^{t_j - t_{j-1}}$$
.

Proof: (i): For positive integers b, c satisfying $b + c \le k$, $c \le b$ and $k - b - c + 2\sqrt{bc} < \theta$ we define

$$f_{b,c}(x) := bx^2 + (k - b - c - \theta)x + c.$$

Let $\rho_{b,c}$ be the largest root of $f_{b,c}(x) = 0$. Since $b \ge c$,

$$\theta > k - b - c + 2\sqrt{bc} > k - (b+1) - c + 2\sqrt{(b+1)c},$$

and hence both $\rho_{b,c}$ and $\rho_{b+1,c}$ are positive. Moreover, $0 < \rho_{b,c} < 1$ since $k-b-c+2\sqrt{bc} < \theta < k$. Hence

$$f_{b+1,c}(\rho_{b,c}) = \rho_{b,c}^2 - \rho_{b,c} = \rho_{b,c}(\rho_{b,c} - 1) < 0$$

and therefore $\rho_{b,c} < \rho_{b+1,c}$. It is straight-forward to show in a similar fashion that $\rho_{b,c} < \rho_{b,c-1}$ holds. It now follows in view of (2) that (i) must hold.

(ii) and (iii): We will prove that these hold using induction on i. Suppose i=1. Then $u_{t_0}=u_0=1$ and $u_{t_0+1}=u_1=\frac{\theta}{k}$. Since $a_1+2\sqrt{b_1}<\theta< k$ and ρ_1 is the largest root of

$$b_1 x^2 + (a_1 - \theta)x + 1 = 0,$$

we have

$$b_1\left(\frac{\theta}{k}\right)^2 + (a_1 - \theta)\frac{\theta}{k} + 1 = \left(1 - \frac{\theta}{k}\right)\left(1 + (a_1 + 1)\frac{\theta}{k}\right) > 0.$$

Hence $\frac{\theta}{k} > \rho_1$. Thus $\gamma_1 > 1$ since $\gamma_1 \rho_1 + \delta_1 \sigma_1 = u_1 = \frac{\theta}{k} > \rho_1$, $\gamma_1 + \delta_1 = u_0 = 1$ and $\rho_1 > \sigma_1 > 0$. Therefore (ii) and (iii) hold for i = 1.

Now suppose $2 \le i < s$ and suppose $u_{t_{i-1}+1} > \rho_i u_{t_{i-1}}$ and $\gamma_i > u_{t_{i-1}}$ both hold. Then $\delta_i < 0$ since $\gamma_i + \delta_i = u_{t_{i-1}}$. Thus, using equations

$$u_{t_i} = \gamma_i \rho_i^{t_i - t_{i-1}} + \delta_i \sigma_i^{t_i - t_{i-1}} \text{ and } u_{t_i + 1} = \gamma_i \rho_i^{t_i - t_{i-1} + 1} + \delta_i \sigma_i^{t_i - t_{i-1} + 1},$$

we obtain

$$\rho_i u_{t_i} < u_{t_i+1}. \tag{9}$$

Hence $\rho_{i+1}u_{t_i} < \rho_i u_{t_i} < u_{t_i+1}$ by (i) and (9) and so (ii) holds.

Now, in view of

$$u_{t_i} = \gamma_{i+1} + \delta_{i+1} \text{ and } u_{t_i+1} = \gamma_{i+1}\rho_{i+1} + \delta_{i+1}\sigma_{i+1},$$

it follows that

$$\gamma_{i+1} = \frac{u_{t_i+1} - \sigma_{i+1} u_{t_i}}{\rho_{i+1} - \sigma_{i+1}}$$

holds, and hence by (i) and (9)

$$\gamma_{i+1} > \frac{\rho_i - \sigma_{i+1}}{\rho_{i+1} - \sigma_{i+1}} u_{t_i} > u_{t_i}$$

holds. Thus (iii) holds.

(iv) We prove this by using induction on i. Suppose i = 1. Then by (8), (ii) and (iii) we have

$$u_{t_1} - \rho_1^{t_1} = (\gamma_1 - 1)\rho_1^{t_1} + \delta_1 \sigma_1^{t_1}$$

$$= (\gamma_1 - 1)\rho_1^{t_1} + \sigma_1^{t_1 - 1}(u_1 - \gamma_1 \rho_1)$$

$$> \rho_1(\gamma_1 - 1)(\rho_1^{t_1 - 1} - \sigma_1^{t_1 - 1}) > 0.$$

Therefore (iv) holds for i = 1.

Now, suppose $2 \le i < s$ and assume

$$u_{t_i} > \prod_{j=1}^{i} \rho_j^{t_j - t_{j-1}}. \tag{10}$$

Then using (iii), $u_{t_i} = \gamma_{i+1} + \delta_{i+1}$ and $u_{t_{i+1}} = \gamma_{i+1} \rho_{i+1}^{t_{i+1}-t_i} + \delta_{i+1} \sigma_{i+1}^{t_{i+1}-t_i}$, we obtain

$$u_{t_{i+1}} - u_{t_i} \rho_{i+1}^{t_{i+1}-t_i} = \delta_{i+1} \left(\sigma_{i+1}^{t_{i+1}-t_i} - \rho_{i+1}^{t_{i+1}-t_i} \right) > 0.$$

But by (10) it then follows that

$$u_{t_{i+1}} > u_{t_i} \rho_{i+1}^{t_{i+1}-t_i} > \prod_{i=1}^{i} \rho_j^{t_j-t_{j-1}} \rho_{i+1}^{t_{i+1}-t_i} = \prod_{i=1}^{i+1} \rho_j^{t_j-t_{j-1}}$$

holds. This completes the proof of (iv)

4 Proof of Theorem 1.1

Before proving the theorem, we first present some definitions. Suppose that b, c and C are arbitrary positive integers. Put

$$\phi = \phi_{b,c} := -b - c - 2\sqrt{bc}$$
 and $\phi' = \phi'_{b,c,C} := -b - c + 2\sqrt{bc}\cos\left(\frac{2\pi}{C+2}\right)$.

Note

$$\phi < -b - c - \sqrt{bc} \le \phi'$$
.

For each c' with $1 \le c' \le c$, let $\beta_{c'}$ be the smallest positive integer satisfying both $\beta_{c'} \ge c'$ and $\phi \ge -\beta_{c'} - c' + 2\sqrt{\beta_{c'}c'}$.

Now, for l, m any positive integers and for any real number $\lambda \ge -l - m - 2\sqrt{lm}$, let $\eta_{m}(\lambda)$ denote the largest root of the equation

$$lx^2 - (l+m+\lambda)x + m = 0.$$

Note that since $2\sqrt{\beta_{c'}c'} \le \phi + \beta_{c'} + c' < \phi' + \beta_{c'} + c'$, it follows that

$$0 < \sqrt{\frac{c'}{\beta_{c'}}} < \tau_{\beta_{c'},c'}(\phi') < 1. \tag{11}$$

Define

$$ho =
ho_{b,c,C} := \min\{ au_{eta_{c'},c'}(\phi') \mid 1 \leq c' \leq c\} ext{ and }$$
 $lpha := \max\Big\{rac{eta_{c'}}{c'} \mid 1 \leq c' \leq c\Big\}.$

By (11) and $\beta_1 \geq 9$, we have

$$\rho < 1 \quad \text{and} \quad 9 \le \alpha.
\tag{12}$$

Proof of Theorem 1.1: We define a function k and prove that it has the required properties. For b, c and C arbitrary positive integers, put

$$\mathbf{k}(b,c,C) := \max \Big\{ \, \frac{\alpha^{20}}{\rho^{12}} \, , \, 2 \Big(\frac{\alpha^{2 \max\{b,c\}^2}}{\rho^{c^2}} \Big)^{9}, \, b+c, \, 3 \, \Big\}.$$

Now suppose that Γ is a distance-regular graph with $h(\Gamma) \geq 2$, valency $k \geq \max\{b+c, 3\}$, diameter $d \geq 2$ and

$$\ell_{(c,k-b-c,b)} > C.$$

We prove

$$k < \left\{ \begin{array}{ll} \frac{\alpha^{20}}{\rho^{12}} & \text{if } c = 1, \\ 2\Big(\frac{\alpha^{2\max\{b,c\}^2}}{\rho^{c^2}}\Big)^9 & \text{if } c \geq 2, \end{array} \right.$$

from which the theorem immediately follows.

Let w be the largest non-negative integer so that $t:=t_w$ is the largest element of $T(\theta_1)$ with

$$k - b_t - c_t + 2\sqrt{b_t c_t} < k - b - c + 2\sqrt{bc}.$$
 (13)

Note that this last equation implies $c_t \leq c$.

Now, since $\ell_{(c,k-b-c,b)} \ge C+1 \ge 2$, by Lemma 2.1 the second largest eigenvalue θ_1 of Γ satisfies

$$\theta_1 \geq k + \phi'$$
.

Hence, in view of the definitions of ρ_i and ρ_i

$$\rho_w(\theta_1) \ge \rho_w(k + \phi') = \tau_{hec}(\phi') \ge \rho.$$

Therefore, since $\rho_i(\theta_1) \ge \rho$ for $1 \le i \le w$, it follows by Proposition 3.1 (i) and (iv) that

$$u_t > \rho^t. \tag{14}$$

Thus, by (3) and (14) we have

$$m(\theta_1) < \frac{v}{k_t u_t^2} < \frac{v}{k_t \rho^{2t}}.\tag{15}$$

Moreover, since $b_1 \geq \frac{1}{2}k$ and $h \geq 2$, the Terwilliger Tree bound [11, Proposition 3.3] implies

$$2\left(\frac{k}{2}\right)^{\frac{1}{2}h} \le 2(b_1)^{\frac{1}{2}h} \le m(\theta_1). \tag{16}$$

In addition, by (1) and (2) we have

$$k_i \le k_t \le \alpha^i k_t$$
 $0 \le i \le t - 1,$
 $k_{t+i} \le \alpha^i k_t \le \alpha^{t+i} k_t$ $0 \le i \le d - t,$

and so, as $d \ge 2$ and $\alpha \ge 2$,

$$v \le k_t \sum_{j=0}^d \alpha^j = k_t \left[\frac{\alpha^{d+1} - 1}{\alpha - 1} \right] < k_t \alpha^{\frac{3}{2}d}. \tag{17}$$

Thus, by (12), (15), (16), (17) and $h \ge 2$,

$$k < 2\left(\frac{\alpha^{\frac{3}{2}d}}{2\rho^{2t}}\right)^{\frac{2}{h}}. (18)$$

Now, suppose c = 1. Since $c_t \le c = 1$ we have $t \le \eta_1$. Hiraki [9, Theorem 2] has shown that if $h = h(\Gamma) \ge 2$, then

$$\eta_1 \le 2(\mathtt{h} + 1). \tag{19}$$

Thus Lemma 2.2 implies $d \le 2\eta_1 + 1 \le 4h + 5$ and so

$$\frac{\alpha^{\frac32d}}{2\rho^{2t}} < \frac{\alpha^{6\mathbf{h}+8}}{2\rho^{4\mathbf{h}+4}}.$$

So, by (18) and $h \ge 2$, we obtain

$$k < \frac{2\alpha^{12}}{\rho^8} \left(\frac{\alpha^{16}}{4\rho^8}\right)^{\frac{1}{\mathbf{h}}} \le \frac{\alpha^{20}}{\rho^{12}}$$
.

Now, to complete the proof, suppose $c \ge 2$. Since $c_t \le c$, by (4), (5) and (19), we have

$$t<\xi_c+\eta_c\leq \frac{3}{2}c^2(\mathtt{h}+1).$$

Also, by Lemma 2.2 and (19),

$$d < \frac{3}{2} \max\{b, c\}^2 \eta_1 \le 3 \max\{b, c\}^2 (h+1).$$

Thus by (18), $h \ge 2$ and the last two bounds on t and d,

$$k < 2 \Big(\frac{\alpha^{\frac{9}{2} \max\{b,c\}^2(\mathbf{h}+1)}}{2\rho^{3c^2(\mathbf{h}+1)}} \Big)^{\frac{2}{\mathbf{h}}} = 2^{1-\frac{2}{\mathbf{h}}} \Big(\frac{\alpha^{\frac{3}{2} \max\{b,c\}^2}}{\rho^{c^2}} \Big)^{\frac{s(\mathbf{h}+1)}{\mathbf{h}}} < 2 \Big(\frac{\alpha^{2 \max\{b,c\}^2}}{\rho^{c^2}} \Big)^{9}.$$

This completes the proof.

References

- [1] E. Bannai and T. Ito, On distance-regular graphs with fixed valency, *Graphs Combin.* 3, no. 2 95-109, 1987
- [2] E. Bannai and T. Ito, On distance-regular graphs with fixed valency, III, J. Algebra 107, no. 1 43-52, 1987
- [3] E. Bannai and T. Ito, On distance-regular graphs with fixed valency, IV, European J. Combin. 10, no. 2 137-148, 1989
- [4] N. Biggs, A. Boshier, J. Shawe-Taylor, Cubic distance-regular graphs, J. London Math. Soc. (2) 33 385-394, 1986
- [5] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989
- [6] Y.-L. Chen, A. Hiraki and J. Koolen, On distance-regular graphs with $c_4 = 1$ and $a_1 \neq a_2$, Kyushu J. Math. 52, no. 2 265–277, 1998
- [7] A. Hiraki, A constant bound on the number of columns (1, k-2, 1) in the intersection array of a distance-regular graph, *Graphs Combin.* 12, no. 1 23-37, 1996
- [8] A. Hiraki, Distance-regular subgraphs in a distance-regular graph, III, European J. Combin. 17, no. 7 629-636, 1996
- [9] A. Hiraki, A distance-regular graph with strongly closed subgraphs, J. Algebraic Combin. 14, no. 2 127–131, 2001
- [10] A. Hiraki and J. Koolen, An improvement of the Ivanov Bound, Ann. Comb. 2, no. 2 131-135, 1998
- [11] A. Hiraki and J. Koolen, An improvement of the Godsil Bound, Ann. Comb. 6, no. 1 33-44, 2002
- [12] J. H. Koolen and V. Moulton, On a conjecture of Bannai and Ito: There are finitely many distance-regular graphs with degree 5, 6 or 7, Europ. J. Combin. 23, no. 8 987–1006, 2002
- [13] J. H. Koolen and V. Moulton, There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10, submitted