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Abstract

In this paper we give a bound for the number £(cq ) of columns (¢,a,b)T in the in-
tersection array of a distance-regular graph. We also show that this bound is intimately
related to the Bannai-Ito Conjecture.

1 Introduction

Suppose that T is a finite connected graph with vertex set VI'. As usual, we define the distance
between any two vertices u and v of I' to be the length of any shortest path in I’ between
u and v, and the diameter d of I" to be the largest distance between any pair of vertices in
VT. For u € VT and i any non-negative integer not exceeding d, let I';(u) denote the set of
vertices in VT that are at distance i from u and put T'_1(v) = Tg41(v) := 0. The graph I' is
called distance-regular if there are integers b;, c;, 0 < @ < d, so that for any two vertices u and
v in VT at distance i, there are precisely ¢; neighbors of v in I';_1(u) and b; neighbors of v
in ['i+1(u). Clearly such a graph is regular with valency k := bo. The numbers ¢, bi, and a;,

where
a;:=k—b—c (i=0,...,d)
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is the number of neighbors of v in I';(u) for u,v € VT at distance i, are called the intersection
numbers of I', and

cg € 2 -+ C -t C-1 &
e a1 a2 -+ G -+ Q4d-1 a4
bo b1 by --- B - bi-1 b4

the intersection array of I.

Now, suppose that T is a distance-regular graph with valency k > 2, diameter d 2> 2 and
intersection numbers ¢, ai, bi, 0 < i < d. Given integers a > 0 and b,c > 1 witha +b+c=k,
we define

E(c,a,b) = e(c,a,b)(]:‘) = l{"’ I 1<:i< d—1and (ci!aisbi) = (caa’ b)}ls
that is, the number of columns (c,a,b)7 in the intersection array of T, and put
h=n(T):= e(l,ul,bl)-

Note that since d > 2 and ¢y =1 we have h > 1.

Finding good bounds for £ 4 3) is a powerful technique for understanding distance-regular
graphs. For example, in {1] Bannai and Ito showed that, for a distance-regular graph with
valency k > 3, if c is an integer with 0 < 2c < k then £(¢k—20¢) < 10k2*, from which they
deduced that there are finitely many distance-regular graphs with valency 3. Also, in [4] Biggs
et al. used circuit chasing to considerably improve this bound, which enabled them to classify
the distance-regular graphs with valency 3.

In this paper we prove the following theorem.

Theorem 1.1 There erists a function k : Nt x Nt x Nt — N* so that for all positive
integers b,c,C, k(b,c,C) > max{b+ ¢, 3} and for all distance-regular graphs I with valency
k > k(b,c,C), diameterd > 2 andh > 2,

Lick—bch) < C.

As might be expected from the previously mentioned results for valency 3 distance-regular
graphs, this theorem is closely related to the so-called Bannai-Ito Conjecture. Bannai and Ito
conjectured that given an integer k£ > 3 there are finitely many distance-regular graphs with
valency k. In a series of papers [1, 2, 3] they showed that their conjecture was true for valency
3 and 4 and also that, for kK > 3 an integer, there are finitely many bipartite distance-regular
graphs with valency k [2]. In addition, it was recently shown that the Bannai-Ito Conjecture

is true for valencies 5, 6 and 7 [12] and also that there are finitely many triangle-free (i.e.-

containing no 3-cycles) distance-regular graphs with valency 8, 9 or 10 [13].
Using Theorem 1.1, we now prove that the Bannai-Ito Conjecture is basically equivalent

to bounding £(¢x ) by a function of b and c.

Theorem 1.2 The following statements are equivalent:

(1) For each integer k > 3, there are finitely many distance-regular graphs with valency k.

56



(2) There ezists a function £ : N* x N* — N+ such that for all k,b,c € N* and for all
distance-reqular graphs I' with valency k > max{b+ ¢, 3}, diameterd>2 andh > 2

Lick—b—cp) < £(bsc).

Proof: (1) = (2) : By (1) there is a function g : N* — N* such that, for all distance-regular
graphs I with valency k > 3, and diameter d > 2,

d < g(k).
For b,c € N* put
£(b, c) := max{g(k) | max{b+c,3} < k <k(bc, 1)},

where k : N* x Nt x N* — N* is a function with the properties given in Theorem 1.1.

Now suppose b,c € N* and that T' is a distance-regular graph with valency k 2 max{b +
c,3}, diameter d > 2, and h > 2. Then

Lek—b—ct)(T) < d < (k)
and, by Theorem 1.1 applied with C = 1, if k > k(b, ¢, 1) then
Lic—b-cp)(l) < 1.

Hence £(¢,k—5—c,p) (') < £(b, c) and so (2) holds.
(2) = (1) : Put
F(k) := max{f(b,1) | 1<b<k-1}.

Suppose that I' is a distance-regular graph with valency k > 3 and diameter d > 2. Note
that k > 1 + b, since otherwise k < by + 1 = k — a; which is a contradiction. By (2)

h= g(l,k—bl—l,bl) < F(k)

and so, since d < 3k°h (10, Theorem 1.1},
d<%HFwy

It is now straight-forward to check that (1) holds. n

In view of results and examples contained in [6] and (8], it is plausible, for a distance-
regular graph with h = 1 and diameter d > 4, that ¢4 > 2. If this were indeed the case, then
Theorem 1.1 would also hold for h = 1 and so the condition h > 2 in Theorem 1.2 (2) could
be removed. Bearing this in mind, we make the following conjecture.

Conjecture 1.3 There ezists a function £ : N* x N* — N* such that for all b,c € Nt
satisfying b+ ¢ < k and for all distance-regular graph T' with valency k > max{b+ ¢, 3}

e(c,k——b-—c,b) < f(ba C).
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In [7] Hiraki proved £(1 x—2,1) < 20 for every distance-regular graph with valency k > 3, and
hence this conjecture is true in case b = ¢ = 1. Using Theorem 1.1 we now prove a theorem
that generalizes Hiraki’s result in case h # 1.

Theorem 1.4 There erists a function f : Nt — Nt such that for all ¢ € Nt and all
distance-reqular graphs T' with valency k > max{2c, 3}, diameterd > 2 andh > 2,

e e—2c,0)(T) < £(c).

Proof: Suppose that k : Nt x Nt x N* — N¥ is a function with the properties given in
Theorem 1.1. Given ¢ € N*, put k. :=k(c,c,1) — 1 and define

f(c) := 10k, 2%e.
Note that if k > max{2c, 3}, then k(c, ¢, 1) > max{2c, 3}, and hence f(c) > 1.

Now suppose that T' is a distance-regular graph with valency k > max{2c,3} and h > 2.
In view of Bannai and Ito’s bound, £(c x_2¢¢) < 10k 2%, mentioned above and since 10k 2* is
an increasing function on [max{2¢, 3}, 00), for all k¥ with max{2¢,3} < k <k(c,c, 1),

- ok-20,0 < 1028 < £(0).
The theorem now follows since by Theorem 1.1, for k > k(c, ¢, 1),
£ick—200) S 1 < £(c).
a

This rest of this paper is organized as follows. In Section 2 we present some definitions and
results concerning distance-regular graphs. We also present a partial solution to a problem
posed on [5, p.189] that is of independent interest and follows from Theorem 1.1. In Section 3
we derive some bounds for terms in the standard sequence associated to an eigenvalue of a
distance-regular graph. Finally, in Section 4 we use these bounds to prove Theorem 1.1.

2 Distance-Regular Graphs

We begin this section by presenting some basic facts concerning distance-regular graphs (for
more details see [5]). Suppose that I is a distance-regular graph with valency k > 2, diameter

d > 2 and intersection numbers ¢;,ai,b;, 0 < i < d. Clearly, by =co =ap=0and ¢; = 1. In

[5, Section 4.1], it is shown that I';(u) contains k; elements, where

ko :=1, ki:=k, kiy1:=kbi/cit1, i1=0,...,d—1, (1)
and in [5, Proposition 4.1.6] that
k=b>bh2>2b2-2b-1 >bg=0andl=c < <<y <k 2)

Recall that the eigenvalues of I' are the eigenvalues of the adjacency matrix of I'. In
particular, if @ is an eigenvalue of I" then 6 € [—k, k]. We now state a result concerning the
second largest eigenvalue of a distance regular graph.
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Lemma 2.1 [12, Theorem 6.2] Suppose b,c € N* and k > max{b+ c, 3} is a positive integer.
Let T be a distance-regular graph with valency k and put £ := £ k—p—c,b)- The second largest
eigenvalue 6, of T' satisfies

6, > k—b—c+2\/b—ccos(£?:1).

The standard sequence (u; = u;(8) |0 < i < d) associated to an eigenvalue 6 of I is defined
recursively by the equations

up =1, uy = 0/k, biuit1 — (0 — ai)us + civi-1 =0 fori=1,2,...,d—1.

As is well-known, see e.g. [5, Theorem 4.1.4], if v := |VT}, then the multiplicity m(8) of @ is
given by

m) = 377 3)

where

d
M(8) = _ kiui(8)*.

=0
Now given a positive integer c, define
¢ = min{i|1<i<dand ¢ =c}, and
e = |{i|1<i<dandc¢=c}.

To prove the next lemma we will use the following relationships between these numbers that
were given in [10] (Lemma 2.1 and Proposition 3.2, respectively). If ¢ > 1 is an integer, then

Ne S 2€c - 3’ . (4)
and if c is a positive integer and 7. # 0, then »
2
&< "Z"]l +1. (5)

Put
e:=max{i|1<i<d-1andc <b}

Lemma 2.2 Suppose that T is a distance-regular graph with valency k 2 3 and diameter
d > 2, and that b, c are positive integers with k> b+c. If lcp_p-cp) 21, then

g< [ 2m+D) ifce =1,
S max{b,c}?m ifce=2.

Proof: Since ce4+1 > bes1, by [5, Proposition 4.1.6 (ii)]

d<2(e+1). (6)
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Thus, if ¢, = 1, then since e < 7; it follows that d < 2m; + 1 holds.
Now suppose ¢, > 2. Since {i | ¢ = ce} = {€esbe + 1, -1 €ee + e — 1}
€ S fce + nCe - 1'

By applying (4) and then (5) to the righthand side of this inequality, we have

e< 3y —1. )
4

But ce < max{b,c}, since 1 < lck-b-cp). Thus, in view of (6) and (7) we have d <
2 max{b, c}*n. This completes the proof. [ |

3 Bounding Terms of the Standard Sequence

In this section we derive some bounds for terms in the standard sequence associated to an
eigenvalue of a distance-regular graph that we use in the proof of Theorem 1.1. We begin with
some definitions.

Suppose that I' is a distance-regular graph with valency k¥ > 3 and diameter d > 2, and
that 6 is an eigenvalue of ' with a1 + 2v/b; < 8 < k. Let 1 < p < d be the largest integer for
which ¢, < bp and ap + 24/bpcp < @ both hold. Define

T:=T(0)={i]0<i<pand (c,aib) # (ci+1, @ir1, bir1) }-

Put s := |T]| — 1 and let to,%1,...,ts be the ordering of T with 0 = <t; <--- <t3 =p.

Now, if (u; = u;(#) |0 < i < d) is the standard sequence associated to § and, for 1 <i < s,
the largest and smallest roots of the equation

be,ut+1 + (ag;, — O)ue, + crug;—1 =0

are p; := p;(0) and o; := 0i(8), respectively, then by the theory of three-term recurrences there
are numbers ~; and §; with

uj = wpl N+ il T (fiy << ti+ 1) (8)
Note that since a; + 2vbici <0 < k,wehave 0< 0: < pi<1,1<i<s.

We now list some inequalities that will be used in the proof of Theorem 1.1.

Proposition 3.1 Suppose 1 < i < s and wu;, ;i and p; are as defined just above. Then the
following inequalities hold

(1') Pi+1 < pi, i # 8,

(ii) Ut 141 > Pillt,_y,
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(ii3) ~v; > ug_,,

. i ty—tj—
(i0) wa, > [Ty 7

Proof: (i): For positive integers b, ¢ satisfying b+ ¢ <k, c<bandk—-b—c+ 2vbe < 6 we
define
foe(@) :=bz? +(k—b—c—6)z +ec.

Let pyc be the largest root of foc(z) =0. Since b 2 ¢,
9>k—b—c+2Vbc>k— (b+1)—c+2V/(b+1)c

and hence both py . and pp1,. are positive. Moreover, 0 < pp,c < 1 since k—b—c+2vbe < 8 < k.
Hence

Forve(Poe) = Phe — Poc = Poc(poe —1) <0
and therefore ppc < Po41,c. It is straight-forward to show in a similar fashion that ppc < pbc-1
holds. It now follows in view of (2) that (i) must hold.

(ii) and (iii): We will prove that these hold using induction on i. Suppose 7 = 1. Then
ug, = up = 1 and ugp1 = u1 = %. Since a1 + 2v/b1 < @ < k and py is the largest root of

b1z% + (a; — 8)z +1 =0,

h
o bl(%)zﬂal—e)%“ = (1“%) (1'+(a1+1)%) > 0.

Hence-:- > p1. Thusy; > 1since yip1+0101 = uy = % > pi,n+61 =uo =1land p1 > 01 >0.
Therefore (ii) and (iii) hold for i = 1.

Now suppose 2 < i < s and suppose us,_,+1 > Pilt;_, and % > e, both hold. Then
8; < 0 since v; + 6; = u¢,_,. Thus, using equations

ti—ti—1+1

_ ti—ti—1 ti—ts— i—ti—1+1
ut, = %ip; + dio; 7 and ug+1 = Vip; ;

+ 61'0': )
we obtain
piug; < Ut;4+1- ©)
Hence piy1us, < pitty; < Ut;+1 by (i) and (9) and so (ii) holds.
Now, in view of

ut; = Vi1 + Oir1 a0d Uti1 = Vit1Pi+1 + 8ig 10041,

it follows that

gl = U +1 — Oi+1Ut;
' Pit1 — Oitl

holds, and hence by (i) and (9)

Pi —Oitl
Yidl > Ut > Uty

Pi+1 — Oitl
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holds. Thus (iii) holds.

(iv) We prove this by using induction on i. Suppose i = 1. Then by (8), (ii) and (iii) we have

uy —pY = (n -1} + b0t
= (m—1)pt + 0{‘-1(‘!!1 - 1p1)
> piln - (Eh " —o1 ) > 0.

Therefore (iv) holds for i = 1.
Now, suppose 2 < i < 8 and assume

i
ug > [[ o775 (10)
j=1

s sss tir1—t; tisq1—ty .
Then using (iii), u; = Yi+1 + 0i+1 80d U, = Yir1Pig1  + 8ip10,57 , we obtain

tivi—ti _ ¢ biv1—t; Lig1—ti
Uty — UtiPip1 = Oixl ("z‘+1 ~Pip1 >0.

But by (10) it then follows that
L =
tip1—t i—ti—1 tiyi— it
Utyy > UtPiyy > HPj’ T T = HP:'J !
j=1 i=1

holds. This completes the proof of (iv) [

4 Proof of Theorem 1.1

Before proving the theorem, we first present some definitions. Suppose that b,c and C are
arbitrary positive integers. Put

¢=¢b,c = -—b—c—2\/b_c and

Y, b 27
O =@ = —b c+2\/b_5cos(0+2).

Note
p<—b—c—Vbhc<¢'.

For each ¢ with 1 < ¢ < ¢, let 8 be the smallest positive integer satisfying both 8~ > ¢ and
¢ 2 —By— +2/BcC.

Now, for I, m any positive integers and for any real number A > —l —m—2v1Im, let 7, ())
denote the largest root of the equation

Iz — (I +m+ Az +m=0.
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Note that since 2v/B,¢ < ¢+ o +¢ < ¢’ + By + ¢, it follows that
d ,
0< o <7p,e(¢) <1 (11)

p=pocc = min{rg,s(¢)|1< <c}and

o = mu{%—llﬁc’ﬁc}.

Define

By (11) and B; > 9, we have
p<1l and 9<a (12)

Proof of Theorem 1.1: We define a function k and prove that it has the required properties.
For b, ¢ and C arbitrary positive integers, put

k(b,¢c,C) := max{ %f; , 2(22—!!1:(;2)9, b+ec, 3}.

Now suppose that I' is a distance-regular graph with h(I') > 2, valency k > max{ b+c¢, 3},
diameter d > 2 and
Lick—b-cp) > C.

. { o ife=1,
< 2max{b,c}? \9
24 >
2(——T_pc ) ifec>2,
from which the theorem immediately follows.

Let w be the largest non-negative integer so that ¢ := t,, is the largest element of T'(6;)
with

We prove

k—bs — ¢t + 2v/bect < k — b — ¢ + 2Vbe. (13)
Note that this last equation implies ¢; < c.

Now, since {ck_pcp) = C+1 2> 2, by Lemma 2.1 the second largest eigenvalue 6 of T’
satisfies
6 >k+¢.

Hence, in view of the definitions of p; and p,
pu(61) 2 pu(k +¢') = Toe(¢) 2 p.
Therefore, since p;(61) > p for 1 < i < w, it follows by Proposition 3.1 (i) and (iv) that

ug > pt . (14)
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Thus, by (3) and (14) we have

v v
< 15
m(8,) < ol <R (15)
Moreover, since b; > %k and h > 2, the Terwilliger Tree bound [11, Proposition 3.3] implies
ih
2(;) " <2(by)5 < m(8). (16)
In addition, by (1) and (2) we have
ki <ke<a'ky 0<i<t-—1,
kiyi < o'k < otk 0<i<d-t,
and so, as d > 2 and a > 2,
d d+1
; a®t -1
v<kY of =k [—ﬁ] < ko, (17)

=0
Thus, by (12), (15), (16), (17) and h > 2,

sa\ &
k<2(§;§;)-. (18)

Now, suppose ¢ = 1. Since ¢; < ¢ =1 we have ¢t < 7. Hiraki [9, Theorem 2] has shown
that if h = h(") > 2, then
m <2(h+1). (19)
Thus Lemma 2.2 implies d < 2m; +1 <4h + 5 and so
a3d o fh+8
257 < g it
So, by (18) and h > 2, we obtain

k< -20‘—12(0‘16)1li < a_m

A \48 pZ -
Now, to complete the proof, suppose ¢ > 2. Since ¢; < ¢, by (4), (5) and (19), we have
E< et e < SRR+ 1).
Also, by Lemma 2.2 and (19),
d< gma.x{b, c}m < 3ma.k{b, e} +1).
Thus by (18), h > 2 and the last two bounds on ¢ and d,

9 2(h
o2 max{b,c}?(h+1) ﬁ 1-2 a% max{b,c}? -6-@'5"—'11 o2 max{b,c}?. g
k<2 2D )E=2t (T) < 2(‘_7,.8—') '

This completes the proof. : [ ]
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