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Irreducible modules for Ws-algebra

—RERE - BIFFEWREF UM #3E (Hiromichi Yamada)

Graduate School of Economics, Hitotsubashi University

1 Introduction

Recently a W;-algebra of central charge 6/5 was studied as an orbifold of an order
three automorphism of the lattice vertex operator algebra V. 5,, by Dong, Lam, Tan-
abe, Yokoyama and the author [5]. The paper consists of four parts: (1) realization
of a Ws-algebra W of central charge 6/5, (2) classification of irreducible W-modules,
(3) Cy-cofiniteness and rationality of W, and (4) determination of the character of each
irreducible W-module. In this note we will give an outline of the second part of the pa-
per, namely, classification of irreducible W-modules. Details can be found in [5]. Basic
references to Ws-algebras are [1] and [7].

2 The Ws-algebra W

For definitions of the materials discussed here we refer to {2, 8]. We also use certain
properties of the vertex operator algebra V5, (cf. [12]).

Let oy, o be the simple roots of type A, and set ag = —(a; + ). We denote the
inner product by (-, - ). Then (o, ;) = 2 and {(a;, ;) = —1if i # j. Set §; = V20, and
let L = ZB3; + ZB; = v/2A, be the lattice spanned by 3; and B,. We follow Sections 2
and 3 of [2] with L = v/24;, p = 3, and ¢ = 6. In our case (o, 3) € 2Z for all o, 8 € L,
so that the alternating Z-bilinear map ¢ : L x L — Z/6Z defined by [2, (2.9)] is trivial.
Thus the central extension

1——>(ns)—-+i;>L——>1 (2.1)

determined by the commutator condition aba™'b~ 1= nc° sphts Then for each a € L,
we can choose an element e of L so that e®e? = e*+#. The twisted group algebra C{L}
is isomorphic to the ordinary group algebra C[L].

We adopt the same notation as in [9] to denote cosets of L in the dual lattice L+ =
{a € Q®z L| (e, L) C Z}, namely,

°=1, L1=————"ﬁ13+ﬂ2 +1, L2=51;ﬁ2 +1,

%+L m—@+L L=241,

Lo=L, L,= .
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L3 — L, + Li

fori=0,a,b,cand j = 0, 1,2, where {0, a,b,c} & Z; x Zy. Then, L) i € {0,a,b,c},j €
{0,1,2} are all the cosets of L in L* and Lt/L & Zy x Zy X Zs.

Our notation for the vertex operator algebra (Vi,Y (-, 2)) associated with L is stan-
dard (8]. In particular, h = C ®z L is an abelian Lie algebra, h = h ® C[t,t~1] & Cc is the
corresponding affine Lie algebra, M(1) = Cla(n); @ € h,n < 0], where a(n) = a ® t*,
is the unique irreducible h-module such that c(n)1 = 0 for all @ € § and n > 0, and
¢ = 1. As a vector space V, = M(1) ® C[L] and for each v € V., a vertex operator
Y(v,2) =3 ez a2z "t € End(V,)[[2,27"]] is defined. The vector 1 =1®1 is called the
vacuum vector. _

There are exactly 12 isomorphism classes of irreducible V;-modules, which are repre-
sented by V.5, i = 0,a,b,c and j = 0,1,2. We use the symbol e*,a € L* to denote a
basis of C{L*}.

Let

z(a) = eV?e 4 V2o y(a) = g2 _ g=V2a w(a) = %cx(—l)2 —z(a)
for a € {*ap, a;, +ay} and set

w= E_l)-(w(ozl) + w(as) + w(a)),

~ 1
w = 6(01(-1)2 + O{z(—l)z + ao(—1)2),
1 ~
w! = Zw(al), Ww=w-uw, WP =0 -w.

Then @ is the Virasoro element of V; and w!,w? w?® are mutually orthogonal confor-
mal vectors of central charge 1/2,7/10,4/5 respectively (cf.[4]). The subalgebra Vir(w?)
generated by w' is isomorphic to the Virasoro vertex operator algebra of given central
charge.

We study certain subalgebras, and also submodules for them in V;,,¢ = 0, a, b, ¢c and
in VLj,j = 0, 1,2. Set

v ={ve Vi, | (W)v=10},
Wi ={veV,|(W)v= %v}, for i =0,aq,b,c,

= {v € Vii | (w')v = (w?)v = 0},
={veVu|lhw=0, (W)= §'v}, for j=0,1,2.

Then M} and MY are simple vertex operator algebras. Furthermore, {M}, W}, i =
0,a,b,c} and {M, WtJ , J =0,1,2} are the sets of all inequivalent irreducible modules for
M} and MY, respectlvely 9, 11, 12] We have

7 3

L( 0)®L( O)GBL( )®L10 2)

4 4
M2 L(5,0)8 L(,3).
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We also note that
Vi = (M,z X MtJ) @ (W,: b3y Wtj)

as an M) ® M?-module.
We consider the following three isometries of (L, (-, +)):

T: 61— B2 = fo — B,
0':;81—')/829 62—}ﬂ17
92,3,;——)—,3,;, 1=1,2.

Set M = M}, which is invariant under 7 and 0. Moreover, # acts as the identity on
M. We are interested in the subalgebra M™ of the fixed points of 7 in M. The weight 2
subspace of M7 is spanned by w, which is the Virasoro element of M with central charge
6/5. There are nontrivial relations among w(a;)ow(e;), %,7 € {0,1,2}. For example,

w(ar )ow(az) — w(as)ow(oy)
= ’(U(C!z)o’w(ao) - w(ao)ow(ag)
= w(ao)ow(ar) — w(on)ow(ao).

Set J = w(a;)ow(an) — w(o)ow(ay). Then 7J = J, 0J = —J and 8J = J. The
weight 3 subspace of M" is of dimension 2 and it is spanned by wow and J. We have
wiJ = 3J and w,J = 0 for n > 2. Thus J is a highest weight vector for Vir(w). Let
L(n) = wny1 and J(n) = J,4e. By a direct calculation, we have

(L), L) = (m— m)L(m -+ m)+ T (2.2)

[L(m), J(n)] = (2m — n)J(m +n), (2.3)

[J(m), J(n)] = (m —n) (22(m +n+2)(m+n+3)+35(m+2)(n+ 2))L(m +n)
— 120(m — n)( S Lk)Lm+n—-k)+ Y Lim+n—k)L(K))
T m(m? = 1)(m? — 4)dmsno-

10
(2.4)

Let L, = L(n) and W,, = 1/—1/210J(n). Then the commutation relations in the
above theorem coincide with the commutation relations (2.1) and (2.2) of [1]. Thus

Theorem 2.1 W is a W3 algebra of central charge 6/5.
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3 Irreducible modules for W

First, we consider irreducible modules for M". Let (U,Yy) be one of the 8 irreducible
M-modules. Following [3], we consider a new M-module (Uo7, Yy, ) such that Uor = U
as vector spaces and Yy (v,2) = Yy(rv,2) for v € M. Then U ~ U o 7 induces a
permutation on the set of irreducible M-modules. We can easily verify that

Lemma 3.1 (1) MPor =M and Wl o1 =W}.
(2) Mfor=M;, Mfor =M}, and M o1 = MZ.
(B) Weor=W¢, Weor =Wp, and Wl o = W2

For any r-invariant space U, set U(e) = {u € U|tu = &u}, € = 0,1,2, where
¢ = exp(2rv/—1/3). Thus U(0) = U™ and M(e) = {v € MP|rv = £v}. Likewise,
set W(e) = {v € W?|rv = £v}. From Lemma 3.1 and [6, Theorem 6.14], we see
that M(e) and W(e) are inequivalent irreducible M"-modules for e = 0,1,2. Moreover,

i, 1 = a,b,c are equivalent irreducible M™-modules and that W}, i = a,b, ¢ are also
equivalent irreducible M™-modules by [6, Theorem 6.14]. Hence we obtain 8 inequivalent
irreducible M"-modules. Those irreducible modules with their top levels and the action
of L(0) and J(0) are collected in Table 1.

Table 1: irreducible M"-modules in M} and W}

irred. module | top level L(0) | J(0)

M(0) C1 0 |0

M(1) Cul 2 | -12v=3

M(2) Cu? 2 12/-3

W (0) C(y(a1) + y(a2) + y()) % 0

() Cloa(-1) - €as(-1) |1 |2v73
w(2) Clou(=1) — ay(-1)) 5 —2v/-3

Mg C(ePr/? — e=Pi/2) I 1o

W,g C(e?/? 4 e~P1/2) L o

We now study irreducible 7-twisted (resp. 72-twisted) M-modules. The argument
here is similar to that in [10, Section 6]. Basic references to twisted modules for lattice
vertex operator algebras are [2, 13]. We follow [2] with L = v/24,, p = 3, ¢ = 6, and
v=r1. Let h = C ®z L and extend the Z-bilinear form (-,-) on L to h linearly. Set

b= 36+ €8 +ER), o= (6 + €6 +Eh).

For n € Z, set hn) = {a € h|7a = €”a}. Since T is fixed-point-free on L, it follows
that ho) = 0. Furthermore, b1y = Ch; and §) = Ch,. For o € b, we denote by a () the
component of a in h,y. Thus (3;)qy = £€72h; and (Bi)g) = €2~Vhy for i =0,1,2.

Define the 7-twisted affine Lie algebra to be

7] = (@b(n) ®t"/3) & Cc

neZ
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with the bracket
["L‘ ® 1", y® tn] = m<$a y>5m+n,00

for z € H(zm), ¥ € Han), My € (1/3)Z, and [, ﬁ[g]] = 0. The isometry 7 acts on 6[7‘] by
Tz ®@t™) = &mr @ t™ and 7(c) = c. Set

bt = @f)(n) ®t"/3, Bl = @b(n) ®1"3, and B[r]°=Cc

n>0 n<0

and consider the h[r]-module
S[r] = U([r]) ®ygsri+abir) C

induced from the §[7]* @ h[r]%-module C, where h[r]* acts trivially on C and c acts as 1
on C. We define the weight in S[7] by

1
wt(r®1t") = -n and wt1=§,

where n € (1/3)Z and = € b (cf. [2, (4.6), (4.10))).

For o € b and n € (1/3)Z, denote by a(n) the operator on S[7] induced by c(sn) ® "
Then, as a vector space S[r] can be identified with a polynomial algebra with variables
hi(1/3 +n) and hy(2/3+n), n € Z. The weight of the operator h;(j/3 + n)is —j/3 —mn.

The alternating Z-bilinear map ¢} : L x L — Z/6Z defined by (2, (2.10)] is such that

2

¢, B) =Y (3+2r)(m"a, B) + 6Z.

r=0

2 : . :
In our case 3 .-_, 7" = 0, since 7 is fixed-point-free on L. Moreover,

+6 if 76 #B;
0 if T,@,‘, = ﬂj.

Hence cj(a,8) = 0 for all a, 8 € L. This means that the central extension

2
> ("6, B5) =

r=0

1 — (kg) — L, — L — 1 (3.1)

determined by the commutator condition aba™'b~! = KD (@0) splits. )

We consider the relation between two central extensions L of (2.1) and L, of (3.1).
Since both of L and L, are split extensions, we use the same symbol e* to denote both of
an element in I, and an element in L, which correspond naturally to o € L. Actually, in
Section 2 we choose e* € L so that the multiplication inAIA, is e x e = e>*P. Also we can
choose e® € L, such that the multiplication e* X, €8 in L, is related to the multiplication
in L by (cf. [2, (2.4)])

e x 8 = 2P e x, €, (3.2)
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where the Z-linear map €y : L x L — Z/6Z is defined by [2, (2.13)]. In our case
co(@, 8) = — (70, ) + 6. 33)

_ As in Section 2, we usually write e®e® = e**# to denote the product of e* and e? in
L. The automorphism 7 of L lifts to an automorphism # of L such that 7(e*) = e™ and
7(ke) = ke. Since gy is T-invariant, we can also think 7 to be an automorphism of I:T in
a similar way. By abuse of notation we denote # by simply 7 also.

We have (1 — 7)L = spang{5; — 32,51 + 26:}. The quotient group L/(1 — 7)L is of
order 3 and generated by 31+ (1—7)L. Now K = {a™'7(a)|a € L,} is a central subgroup
of L, with K = (1 — 7)L and K N {ke) = 1. Here note that a™! is the inverse of a in L,
and a~'7(a) is the product a~! x, 7(a) in L.. In L, we can verify that

Pt = (efo~P1)L x r(ePP) ¢ K.
Since k3eft X, kzeft X, k3eft = €3 and kgeft X, kze Pt = 1, it follows that
L /K = {K,k3¢” K, k3e P K} X (ko) K/K = Zy x Zs.
For j =0,1,2, define a linear character y; : fJT/K — C* by
Xi(ke) =&, Xj(kse”K)=¢, and x;(kse ™ K) =€,

where {; = exp(2my/—1/6). Let T, be the one dimensional L,/K-module affording the
character x;. As an f;,—module, K acts trivially on T),. Since Zi:o TTaa=0fora € L,
those T}, j = 0, 1,2, are the irreducible L,-modules constructed in [13, Section 6].

Let

V¥ =V, 5 (r) = S[r] @ Ty,

and define the T-twisted vertex operator Y7(-,2) : V;, — End(Vg *(1)){2} as in [2]. We
extend the action of 7 to V,:’r (1) so that 7 is the identity on T,,. The weight of every
element in T}, is defined to be 0.

By [2, Theorem 7.1], (VLTXJ' (7),Y"(-,2)), 7 = 0,1,2 are inequivalent irreducible 7-
twisted Vz-modules. Now among the 12 irreducible V;-modules Via, ¢ € {0,a,b,c}
and j € {0,1,2}, the 7-stable irreducible modules are V; 0, j € {0, 1,2}. Hence by [3,

Theorem 10.2], (V; “(1),Y"(-,2)), 7 = 0,1,2, are all the inequivalent irreducible T-twisted
Vi-modules. The isometry 6 of (L, (-,-)) induces a permutation on VLT %(r),5=0,1,2.

In fact, the permutation leaves VLT X0 (r) invariant and interchanges VLT ¥ (1) and VLT X2 (7).
Since M™ ® M} is contained in the subalgebra (V)" of fixed points of 7 in V;, we can

deal with (V™ (r),Y"(-, 2)) as an M™ ® MP-module.



The decomposition of VLT ¥ (1) as a T-twisted M ® Mp-module was studied in [10]. Set

M(r) = {u € Vo (r) | (@*)ru = 0},
WR(r) = fu € Vi (7) | (oH)ru = 2ul

M) = {w € V() | (@ =3uh, 5=12
Wir) = (u € V5 ()| (@) = 1w}, G=1,2

Then, by [10, Proposition 6.8], MZ(7) and Wi(r), j = 0,1,2, are irreducible 7-twisted
M-modules. Furthermore, for j =0,1, 2,

V% (1) & Mi(r) ® M © Wi(r) @ Wy

as T-twisted M ® MP-modules.

There are at most two inequivalent irreducible 7-twisted M-modules by Lemma 4.1 and
[3, Theorem 10.2]. Then, looking at the smallest weight of M7 (7) and W7 (7), we have that
MR(7) = MA(T) = M2(r) and W2(r) = Wi(r) = W2(r) and that MP(1) % W2(7) as 7-
twisted M-modules. We denote M2 (7) by Mr(7) and W2(7) by Wr(7). We conclude that
there are exactly two inequivalent irreducible 7-twisted M-modules, which are represented
by Mr(7) and Wr(7). As r-twisted M ® Vir(w?®)-modules, we have

Voo (1) = Mr(7) ® (L(i;—,O) + L(%,B)) ® Wr(r) ® (L(g, §> + L(%,% ) , (34)
4 1

=) (3.5)

4 2
Vg3 (r) 2 V2 (r) = Mr(n) ® L3, 5) © Wr(r) ® L
For e =0,1,2, let

Mr(7)(€) = {u € Mp(7) | Tu = {u},
Wr(t)(e) = {u € Wr(r) | Tu = u}.

Those 6 modules for M™ are inequivalent irreducible modules by [14, Theorem 2]. Their
top levels are of dimension one. Those top levels and the eigenvalues for the action of
L™(0) = w; and J7(0) = J, are collected in Table 2.

By a similar argument we obtain 6 inequivalent irreducible M7-modules inside T2-
twisted M-modules. The results are collected in Table 3.

We have obtained 20 irreducible M7-modules. Now we turn to the vertex operator
algebra W generated by w and J in M™. Note that

L(n)1=0 for n>-1, L(-2)1 = w, (3.6)
J(n)1=0 for n>-2, J(=3)1 =, (3.7)

Then by using commutation relations (2.2), (2.3), and (2.4), we see that

143
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Table 2: irreducible M™-modules in My (7) and Wr(7)

irred. module | top level L7(0) | J7(0)
MT(T)(O) C1 K v é %% -3
Mr(T)(1) Chy(—3)* ®v % + % —3./-3
Mr(7)(2) C(3h(-32®@v+hy(—3)*®v) |t + 2 | 34/=3
WT(T)(O) Chz(‘-‘]‘) R % —% —3
Wr(r)(1) | Ch(=3)®v g3 | Y3
Wr(7)(2) Cha(~3)3®v =+2|32/=3

Table 3: irreducible M"-modules in Mr(r?) and Wr(1?)

irred. module | top level L) | J7*(0)

Mr(7%)(0) Clewv é —é—‘i -3

Mr(r)(1) | CHy(-3) @ 41|83

Mr(72)(2) C(3h (-2 ®@v + k) -3)'®v) | s+35 | -3EV/=3

Wr(72)(0) Ch’z("%) v ;jg Si% -3

Wi(r)(1) | CH (- 241|B

WT(TZ)(2) Ch; —3)3 Rv 125 -+ 3 —‘ISLIG\/—_-g
Lemma 3.2 W is spanned by the vectors of the form

L(=my)- - L(=mp)J(=ny) - - J(=ng)1 (3.8)

withm; >+ >2mp>2,n,>-->n,>3,p=0,1,2,..., and ¢=0,1,2,....

A vector v € W of weight h is called a singular vector for W if it satisfies
(1) L(0)v = hw,
(2) L(n)v =0 and J(n)v =0 for n > 1.

Note that v is not necessarily an eigenvector for J(0). By commutation relations (2.2)
and (2.3), it is easy to show that the condition (2) holds if v satisfies

(2) L(1)v = L(2)v = J(1)v = 0.

We consider W as a space spanned by the vectors of the form (3.8). The weight of
such a vector is m; +---+myp+n,+- - - +n,. Using a computer algebra system Risa/Asir
we have the following lemma.

Lemma 3.3 Let v be a linear combination of the vectors of the form (3.8) of weight h.
Under the conditions (3.6) and (3.7) and the commutation relations (2.2), (2.3), and
(2.4), we have L(1)v = L(2)v = J(1)v = 0 only if v = 0 in the case h < 11. In the case
h =12, there exists a unique, up to scalar multiple, linear combination v'? which satisfies
L(1)v? = L(2)v*? = J(1)v'? = 0. The explicit form of v'? is given in Appendiz. We
also have J(0)v!? = 0.



By a general theory of lattice vertex operator algebras, V; possesses an invariant
positive definite hermitian form. From this it follows that

Proposition 3.4 The singular vector v'? = 0.

Using the explicit form of v*2, J(—1)v'2, J(—2)v'?, and J(—1)v'?, we can determine
the Zhu algebra Z(W) of W. The standard reference to Zhu’s theory is [15, Section 2].
The Zhu algebra Z(W) is a quotient vector space A(W) = W/O(W) equipped with a
commutative associative algebra structure with respect to an operation *. We denote the
image of a vector v € W in A(W) = W/O(W) by [v]. We can define an algebra homo-
morphism from C[z, y] onto A(W) by z — [w] and y — [J]. The primary decomposition
of its kernel 7 is such that Z = N2, P;, where P;, 1 <7 < 20 are

<$, y)) <5$—8, y);

(2z -1, y), (10z — 1, y),

(z -2,y —12v/=3), (-2, y+12V/-3),

(5z — 3, y — 2¢/=3), (5z — 3, y + 2/=3),

(9z— 1, 81y — 14y/=3),  (9z — 1, 8ly + 14v/=3), (3.9)

(9z ~ 7, 81y — 238/=3),  (9z — 7, 81y + 238/=3),
(9z — 13, 81y — 3744/=3), (9z — 13, 81y + 374/=3),
(45z — 2, 81y — 4+/-3), (45z — 2, 81y + 4/=3),
(451 — 17, 81y — 224/=3), {45z — 17, 81y + 22/=3),
(45 — 32, 81y — 176+/—=3), (45z — 32, 81y + 176+/-3),

These primary ideals correspond to the 20 irreducible M™-modules listed in Tables 1,
2, and 3. The correspondence is given by substituting =z and y with the eigenvalues for
L(0) and J(0) on the top levels of 20 irreducible modules. The eigenvalues are the zeros
of those primary ideals.

By Zhu’s theory we obtain the classification of irreducible WW-modules, namely,

Theorem 3.5 (1) M"=W.

(2) A(M™) = &%, Clz,y]/P; is a 20-dimensional commutative associative algebra.

(3) There are ezactly 20 inequivalent irreducible M™-modules. Their representatives
are listed in Tables 1, 2, and 3 in Section 2, namely, M(e), W(e), Mg, Wg, Mr(7%)(e),
and Wr(7%)(€) fore=10,1,2 and i = 1,2.
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Appendix

v1? = —(5877264800/3501) L(—12)1 + (3404072000/3501)L(—10)L(~2)1
— (2653990000/3501) L(—9)L(—3)1 — (266376800/3501)L(—8)L(—4)1
+ (282988000/1167) L(—8) L(—2)*1 — (23744800/1167) L(—T7)L(—5)1
— (30824000/1167) L(—7)L(—3) L(—2)1 + (1242377600/1167) L(—6)?1
— (61947200/3501) L(—6)L(—4) L(—2)1 — (1313806000/1167) L(—6)L(—3)21
— (45496000/1167)L(—6)L(—2)1 — (3046768400/3501) L(—5)?L(—2)1
+ (299424800/1167) L(—5) L(—4) L(—3)1 + (2347094000/3501) L(—5) L(—3)L(—2)?1
— (17280400/1167)L(—4)%1 — (2036373200/3501) L(—4)?L(—2)%1
+ (82996000/3501) L(~4) L(—3)2L(—2)1 + (1074512000,/3501) L(—4) L(—2)*1
+ (511628125/3501) L(—3)*1 — (418850000/3501)L(—3)2L(—2)31
— (59680000/3501)L(~2)®1 — (505200/389)L(~6)J(—3)?1
+ (3380480/1167)L(—4) L(—2)J(—3)%1 + 1150L(—3)%J(—3)%1
— (184400/1167) L(—2)°J (—3)*1 + (3788680/1167) L(—5)J (—4)J(-3)1
— (8788400/3501) L(—3)L(—2)J(—4)J(—3)1 — (12761440/3501) L(—4)J(~5).J(—3)1
— (5727500/10503) L(—4)J (—4)1 + (352400/389) L(—2)2J (—5)J(—3)1
+ (5727500/10503) L(~2)?J (—4)%1 + (1593900/389) L(—3) J (—6)J (—3)1
+ (12935800/10503) L(—3)J (—5)J(—4)1 + (4108000/3501) L(—2) J(~7)J(-3)1
— (2811800/1167) L(—2)J(—6)J (—4)1 — (3131600/10503) L(—2)J (—5)%1
— (14904160/3501)J (—9)J (—3)1 + (32677600/10503). (—8)J (—4)1
+ (9423200/10503) J (—7)J(—5)1 + (2432375/1167)J(—6)21
+ J(—3)1.
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