<table>
<thead>
<tr>
<th>Title</th>
<th>LATTICE VERTEX OPERATOR ALGEBRA $V_{\sqrt{2},E_8}$ AND AN ALGEBRA OF MIYAMOTO OF CENTRAL CHARGE $\frac{1}{2}+\frac{21}{22}$ (Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lam, Ching Hung</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1327: 159-169</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43233</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
LATTICE VERTEX OPERATOR ALGEBRA $V_{\sqrt{2}E_8}$ AND AN ALGEBRA OF MIYAMOTO OF CENTRAL CHARGE $\frac{1}{2} + \frac{21}{22}$

CHING HUNG LAM*

ABSTRACT. Motivated by a work of Miyamoto [17], we construct a vertex operator algebra U of central charge $\frac{1}{2} + \frac{21}{22}$ which has the full automorphism group isomorphic to the symmetry group S_3. Actually, we show that the lattice vertex operator algebra $V_{\sqrt{2}E_8}$ contains a subalgebra isomorphic to a tensor product of unitary Virasoro vertex operator algebras $\mathcal{T} = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, 0) \otimes L(\frac{6}{7}, 0) \otimes L(\frac{25}{28}, 0) \otimes L(\frac{11}{12}, 0) \otimes L(\frac{14}{15}, 0) \otimes L(\frac{21}{22}, 0) \otimes L(\frac{1}{2}, 0)$ and U is a certain coset subalgebra of $V_{\sqrt{2}E_8}$. We also show that U contains exactly 3 conformal vectors of central charge $1/2$ and the inner product between any two of them is $1/2^8$.

1. INTRODUCTION

This work is motivated by a recent article of Miyamoto [17]. In [17], Miyamoto studied a class of vertex operator algebra (VOA) generated by two rational conformal vectors e and f of central charge $1/2$. Among other things, he showed that if the inner product $\langle e, f \rangle$ is equal to $\frac{1}{2^8}$, then the vertex operator algebra U generated by e and f is of central charge $16/11$ and U contains a subalgebra isomorphic to $L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0)$. Moreover, $\dim U_2 = 3$ and the full automorphism group of U is isomorphic to the symmetry group S_3. In this paper, we shall construct explicitly a VOA

$$U \cong L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 8) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 45) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, \frac{175}{16}) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0) \oplus L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, \frac{175}{16})$$

in the lattice VOA $V_{\sqrt{2}E_8}$ and show that U satisfies all the properties mentioned in [17]. In fact, we shall show that the lattice VOA $V_{\sqrt{2}E_8}$ contains a subalgebra isomorphic to a tensor product of the unitary Virasoro VOAs

$$\mathcal{T} = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, 0) \otimes L(\frac{6}{7}, 0) \otimes L(\frac{25}{28}, 0) \otimes L(\frac{11}{12}, 0) \otimes L(\frac{14}{15}, 0) \otimes L(\frac{21}{22}, 0) \otimes L(\frac{1}{2}, 0),$$

* Partially supported by NSC grant 91-2115-M-006-014 of Taiwan, R.O.C.
and obtain a complete decomposition of $V_{\sqrt{2}E_8}$ into a direct sum of irreducible \mathfrak{z}-modules. The VOA U is actually a certain commutant (or coset) subalgebra associated with the above decomposition. We also notice that an automorphism of order 3 obtained from the abelian group $\sqrt{2}E_8/\sqrt{2}A_8$ induces a natural \mathbb{Z}_3-action on U. This action together with the usual involution θ induced by -1 will form a group S_3 inside the automorphism group of U. In addition, we determine all conformal vectors of central charge $1/2$ inside U and show that the inner of any two of them is $1/2^8$ as mentioned by Miyamoto.

2. Lattice vertex operator algebra $V_{\sqrt{2}E_8}$

2.1. The lattice $\sqrt{2}E_8$. Let $\alpha^0, \ldots, \alpha^8$ be vectors in \mathbb{R}^9 such that $\langle \alpha_i, \alpha_j \rangle = 2\delta_{ij}$ for any $i, j = 0, \ldots, 8$ and $L = \mathbb{Z}\alpha^0 \oplus \mathbb{Z}\alpha^1 \oplus \cdots \oplus \mathbb{Z}\alpha^8$. Then L is isomorphic to the orthogonal sum of 9 copies of the root lattice A_1. Let $\beta_i = -\alpha_{i-1} + \alpha_i$, $i = 1, \ldots, 8$. Then $N = \text{span}_\mathbb{Z}\{\beta_1, \ldots, \beta_8\}$ is isomorphic to the lattice $\sqrt{2}A_8$. Let

$$\gamma = \frac{1}{3} (2\alpha^0 + 2\alpha^1 + 2\alpha^2 - \alpha^3 - \alpha^4 - \alpha^5 - \alpha^6 - \alpha^7 - \alpha^8).$$

Then γ belongs to the dual lattice $N^* = \{x \in \mathbb{Q} \otimes \mathbb{Z} N | \langle x, y \rangle \in \mathbb{Z} \text{ for all } y \in N\}$ of N and the lattice K generated by γ and N is of rank 8. Moreover, we have

Lemma 2.1. $K \cong \sqrt{2}E_8$

Proof. First, we shall note that $\langle \gamma, \gamma \rangle = 4$ and $K = \langle \gamma, N \rangle = N \cup \langle \gamma + N \rangle \cup \langle -\gamma + N \rangle$. Moreover, $K/N \cong \mathbb{Z}_3$ as an abelian group.

Let $\theta_i = \frac{1}{\sqrt{2}} \beta_i = \frac{1}{\sqrt{2}} (-\alpha_{i-1} + \alpha_i)$ for $i = 1, \ldots, 7$ and $\theta_8 = \frac{1}{\sqrt{2}} \gamma$. Then

$$\langle \theta_i, \theta_i \rangle = 2 \quad \text{for } i = 1, \ldots, 8,$$

$$\langle \theta_{i-1}, \theta_i \rangle = -1 \quad \text{for } i = 2, \ldots, 7,$$

$$\langle \theta_3, \theta_8 \rangle = -1,$$

$$\langle \theta_i, \theta_j \rangle = 0 \quad \text{for all other } 1 \leq i, j \leq 8.$$

In other words, $\{\theta_1, \ldots, \theta_8\}$ is a set of simple roots of the root lattice E_8 and hence

$$K \supset \text{span}_\mathbb{Z}\{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \gamma\} \cong \sqrt{2}E_8.$$

Since $|K/N| = 3 = |\sqrt{2}E_8/\sqrt{2}A_8|$, $K = \text{span}_\mathbb{Z}\{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \gamma\} \cong \sqrt{2}E_8$.

Hence we also know that the vertex operator algebra

$$V_{\sqrt{2}E_8} \cong V_K = V_N \oplus V_{\gamma+N} \oplus V_{-\gamma+N}.$$
2.2. Conformal vectors in $V_{\sqrt{2}E_8}$. In this section, we shall study some conformal vectors in $V_{\sqrt{2}E_8}$. We shall show that the Virasoro element of the VOA $V_{\sqrt{2}E_8}$ can be decomposed into a sum of 10 mutually orthogonal conformal vectors $\tilde{\omega}^1, \ldots, \tilde{\omega}^{10}$ and the central charge of $c(\tilde{\omega}^i)$ of $\tilde{\omega}^i$ are given by

$$c(\tilde{\omega}^i) = \begin{cases} 1 - \frac{6}{(i+2)(i+3)} & \text{for } 1 \leq i \leq 8, \\ \frac{1}{2} & \text{and } c(\tilde{\omega}^{10}) = \frac{21}{22}. \end{cases}$$

First, let us recall a construction of certain conformal vectors in $V_{\sqrt{2}A_l}$ from Dong et al.[4]. Let Φ be the root system of A_l and Φ^+ and Φ^- the set of all positive roots and negative roots, respectively. Then

$$\Phi = \Phi^+ \cup \Phi^- = \Phi^+ \cup (-\Phi^+).$$

Consider a chain of root systems

$$\Phi = \Phi_l \supset \Phi_{l-1} \supset \cdots \supset \Phi_1$$

such that Φ_i is a root system of type A_i. For any $i = 1, 2, \ldots, l$, define

$$s^i = \frac{1}{2(i+3)} \sum_{\alpha \in \Phi^+_i} \alpha (-1)^2 \cdot 1 - 2(e^{\sqrt{2}\alpha} + e^{-\sqrt{2}\alpha})$$

and

$$\omega = \frac{1}{2(l+1)} \sum_{\alpha \in \Phi^+_l} \alpha (-1)^2 \cdot 1.$$

It was shown by Dong et al. [4] that the elements

$$\omega^1 = s^1, \quad \omega^i = s^i - s^{i-1}, \quad 2 \leq i \leq l, \quad \omega^{l+1} = \omega - s^l$$

are mutually orthogonal conformal vectors in $V_{\sqrt{2}A_l}$. The subalgebra $\text{Vir}(\omega^i)$ of the vertex operator algebra $V_{\sqrt{2}A_l}$ generated by ω^i is isomorphic to the Virasoro vertex operator algebra $L(c(\omega^i), 0)$ which is the irreducible highest weight module for the Virasoro algebra with central charge $c(\omega^i)$ and highest weight 0 and the central charge $c(\omega^i)$ of ω^i are given by

$$c(\omega^i) = 1 - \frac{6}{(i+2)(i+3)} \quad \text{for } 1 \leq i \leq l \quad \text{and} \quad c(\omega^{l+1}) = \frac{2l}{l+3}.$$

Since $\omega^1, \omega^2, \ldots, \omega^{l+1}$ are mutually orthogonal, the subalgebra T of $V_{\sqrt{2}A_l}$ generated by these conformal vectors is a tensor product of $\text{Vir}(\omega^i)$’s, namely,

$$T = \text{Vir}(\omega^1) \otimes \cdots \otimes \text{Vir}(\omega^{l+1})$$

$$\cong L(c(\omega^1), 0) \otimes \cdots \otimes L(c(\omega^{l+1}), 0).$$

Moreover, $V_{\sqrt{2}A_l}$ is completely reducible as a T-module.
For $l = 8$, there are 9 mutually orthogonal conformal vectors $\omega^1, \ldots, \omega^9$ in $V_{\sqrt{2}A_8}$ and the central charge of $\omega^1, \ldots, \omega^9$ are $\frac{1}{2}, \frac{7}{10}, \frac{6}{7}, \frac{25}{28}, \frac{11}{12}, \frac{14}{15}, \frac{28}{55}, \frac{16}{11}, \frac{6}{7}$, respectively. In other words, $V_{\sqrt{2}A_8}$ contains a subalgebra isomorphic to

$$T = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{3}, 0) \otimes L(\frac{6}{7}, 0) \otimes L(\frac{25}{28}, 0) \otimes L(\frac{11}{12}, 0) \otimes L(\frac{14}{15}, 0) \otimes L(\frac{52}{55}, 0) \otimes L(\frac{16}{11}, 0)$$

The following lemma can be obtained by direct calculation.

Lemma 2.2. Let γ be defined as in (2.1) and let

$$a^1 = \sum_{\alpha \in (\gamma + \sqrt{2}A_8), \langle \alpha, \alpha \rangle = 4} e^\alpha \in V_{\gamma + \sqrt{2}A_8} \quad \text{and}$$

$$a^2 = \sum_{\alpha \in (-\gamma + \sqrt{2}A_8), \langle \alpha, \alpha \rangle = 4} e^\alpha \in V_{-\gamma + \sqrt{2}A_8}.$$

Then a^1 and a^2 are both highest weight vectors of weight $(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)$ with respect to the action of T.

Lemma 2.3. Let $u = a^1 + a^2 = \sum_{\alpha \in (\gamma + \sqrt{2}A_8), \langle \alpha, \alpha \rangle = 4} (e^\alpha + e^{-\alpha})$. Then

$$\tilde{\omega}^9 = \frac{11}{32} \omega^9 + \frac{1}{32} u \quad \text{and} \quad \tilde{\omega}^{10} = \frac{21}{32} \omega^9 - \frac{1}{32} u$$

are mutually orthogonal conformal vectors of central charge $1/2$ and $21/22$, respectively. Moreover, they are orthogonal to $\omega^1, \ldots, \omega^8$.

Proof. First, we shall note that for any α, β with square norm 4,

$$(e^\alpha)_1 e^\beta = \begin{cases} e^{\alpha + \beta} & \text{if } \langle \alpha, \beta \rangle = -2 \\ \alpha(-1)^2 & \text{if } \alpha = -\beta \\ 0 & \text{otherwise} \end{cases} \quad (2.3)$$

and

$$\langle e^\alpha, e^\beta \rangle = (e^\alpha)_3 e^\beta = \begin{cases} 1 & \text{if } \alpha = -\beta \\ 0 & \text{otherwise} \end{cases} \quad (2.4)$$

Then by direct computation, we have

$$u_1 u = 2(231 \omega^9 + 10 u), \quad \omega_1^9 \omega^9 = 2 \omega^9 \quad \text{and} \quad \omega_1^9 u = 2 u.$$

Now, it is easy to verify that both $\tilde{\omega}^9$ and $\tilde{\omega}^{10}$ are conformal vectors.
Since $\sqrt{2}A_8$ has exactly 72 vectors of square norm 4 and $\gamma + \sqrt{2}A_8$ and $-\gamma + \sqrt{2}A_8$ each has 84 vectors of square norm 4, we also have
\[
\langle \omega^9, \omega^9 \rangle = \frac{8}{11}, \quad \langle \omega^9, u \rangle = 0, \quad \text{and} \quad \langle u, u \rangle = 168.
\] (2.5)

Therefore,
\[
\langle \tilde{\omega}^9, \tilde{\omega}^9 \rangle = \frac{1}{4}, \quad \langle \tilde{\omega}^9, \tilde{\omega}^{10} \rangle = 0, \quad \text{and} \quad \langle \tilde{\omega}^{10}, \tilde{\omega}^{10} \rangle = \frac{21}{44}
\]
and hence $\tilde{\omega}^9$ and $\tilde{\omega}^{10}$ are mutually orthogonal conformal vectors of central charge $1/2$ and $21/22$. By the definition, it is also clear that $\tilde{\omega}^9$ and $\tilde{\omega}^{10}$ are orthogonal to $\{\omega^1, \ldots, \omega^8\}$ as ω^9 and u are orthogonal to $\{\omega^1, \ldots, \omega^8\}$.

As a corollary, we have

Corollary 2.4. The lattice VOA $V_{\sqrt{2}E_8}$ contains a subalgebra isomorphic to
\[
\mathfrak{T} = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, 0) \otimes L(\frac{6}{7}, 0) \otimes L(\frac{25}{28}, 0) \\
\otimes L(\frac{11}{12}, 0) \otimes L(\frac{14}{15}, 0) \otimes L(\frac{52}{55}, 0) \otimes L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0),
\]

where $W(0)$ is a simple VOA, known as parafermion algebra or W-algebra, of central charge $16/11$ and $W(k), k = 0, 2, 4, 6, 8,$ are irreducible $W(0)$-modules.

Since $V_{\gamma + \sqrt{2}A_8}$ and $V_{-\gamma + \sqrt{2}A_8}$ are irreducible $V_{\sqrt{2}A_8}$-modules and both of them contain highest weight vectors of weight $(0, 0, 0, 0, 0, 0, 0, 0, 2)$ with respect to T, we also have
where $P(k_l)$ and $Q(k_l)$ are irreducible $W(0)$-modules whose structure are yet to be determined.

Now, let $U = U(0) = \{V \in V_{\sqrt{2}E_8} | (\overline{w}^{i})_1 v = 0 \text{ for } i = 1, 2, \ldots, 8\}$. Then, U is a VOA of central charge $16/11$ and by combining Corollary 2.4 and (2.6–2.8), we have

Theorem 2.7. The lattice VOA $V_{\sqrt{2}E_8}$ can be decomposed as

$$V_{\sqrt{2}E_8} \cong \bigoplus_{0 \leq k_l \leq l+1, \atop k_j \equiv 0 \mod 2} L(c_{\frac{1}{2}}, h_{k_0+1,k_1+1}^{1}) \otimes \cdots L(c_{l}, h_{k_{l-7}+1,k_{l-6}+1}^{l}) \otimes U(k_{l-8})$$

(2.9)

where $U(k) = W(k) + P(k) + Q(k)$, $k = 0, 2, 4, 6, 8$, are $U(0)$–modules.

Remark 2.8. Let σ be an automorphism of $V_{\sqrt{2}E_8}$ defined by

$$\sigma(u) = e^{\frac{2\pi}{3} \langle \gamma, \beta \rangle} \quad \text{for any } u \in M(1) \otimes e^\beta \subset V_{\sqrt{2}E_8}.$$

and let θ be an automorphism of $V_{\sqrt{2}E_8}$ induces by the isometry $\beta \rightarrow -\beta$ of $\sqrt{2}E_8$. Then the subgroup generated by σ and θ is isomorphic to S_3. Moreover, σ and θ induce some nontrivial automorphisms of order 3 and order 2 on the subVOA $U(0)$ respectively. In fact, they induce automorphisms of order 3 and order 2 on the submodules $U(k)$, $k = 0, 2, 4, 6, 8$, also. By abuse of notation, we shall still denote them by σ and θ.

Note also that the automorphism σ is in fact induced from the order 3 symmetry among the 3 cosets of $\sqrt{2}A_8$ in $\sqrt{2}E_8$.

Next let us determine the structure of $U(0)$. Since $L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0)$ is rational and contained in $U(0)$, $U(0)$ and $U(k)$, $k = 2, 4, 6, 8$, are direct sum of irreducible $L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0)$-modules. On the other hand,

$$L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 0), \quad L(\frac{1}{2}, 0) \otimes L(\frac{21}{22}, 8), \quad L(\frac{1}{2}, \frac{7}{2}) \otimes L(\frac{21}{22}, \frac{7}{2}),$$

$$L(\frac{1}{2}, \frac{45}{2}) \otimes L(\frac{21}{22}, 2), \quad L(\frac{1}{2}, \frac{3}{16}) \otimes L(\frac{21}{22}, \frac{3}{16}), \quad \text{and } L(\frac{1}{2}, \frac{175}{16}) \otimes L(\frac{21}{22}, 175)$$
are the only irreducible modules of $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right)$ which have integral weights. Hence,

\[
U(0) = A_1 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right) \oplus A_2 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 8\right) \oplus A_3 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{7}{2}\right) \oplus A_4 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{45}{2}\right) \oplus A_5 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{31}{16}\right) \oplus A_6 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{175}{16}\right),
\]

where A_1, \ldots, A_6 are the multiplicities of the irreducible summands. Similarly, we also have

\[
U(2) = B_1 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{13}{11}\right) \oplus B_2 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{35}{11}\right) \oplus B_3 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{15}{22}\right) \oplus B_4 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{91}{22}\right) \oplus B_5 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{21}{176}\right) \oplus B_6 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{175}{176}\right),
\]

\[
U(4) = C_1 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{6}{11}\right) \oplus C_2 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{5}{11}\right) \oplus C_3 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{155}{22}\right) \oplus C_4 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{261}{22}\right) \oplus C_5 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{85}{176}\right) \oplus C_6 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{261}{176}\right),
\]

\[
U(6) = D_1 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{11}{11}\right) \oplus D_2 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{11}{11}\right) \oplus D_3 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{35}{22}\right) \oplus D_4 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{57}{22}\right) \oplus D_5 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{533}{176}\right) \oplus D_6 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{5}{176}\right),
\]

and

\[
U(8) = E_1 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{196}{11}\right) \oplus E_2 L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{20}{11}\right) \oplus E_3 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{117}{22}\right) \oplus E_4 L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{7}{22}\right) \oplus E_5 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{165}{176}\right) \oplus E_6 L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{133}{176}\right),
\]

for some suitable B_i, C_i, D_i and E_i. Note that the weights of $U(2), U(4), U(6),$ and $U(8)$ are $2/11 + \mathbb{Z}, 6/11 + \mathbb{Z}, 1/11 + \mathbb{Z},$ and $9/11 + \mathbb{Z},$ respectively.

Now by comparing the characters of the left and the right hand sides of (2.9), we find that all A_i's, B_i's, C_i's, D_i's, and E_i's are equal to 1.
Hence we have

\[
U(0) \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right) \oplus L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 8\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{7}{2}\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{45}{2}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{31}{16}\right) \oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{175}{16}\right),
\]

\[
U(2) \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{13}{11}\right) \oplus L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{35}{11}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{15}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{301}{22}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{155}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{901}{16}\right).
\]

\[
U(4) \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{50}{11}\right) \oplus L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{6}{11}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{1}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{155}{22}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{117}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{5}{22}\right),
\]

\[
U(6) \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{111}{11}\right) \oplus L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{1}{11}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{35}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{57}{22}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{533}{176}\right) \oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{5}{176}\right),
\]

and

\[
U(8) \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{196}{11}\right) \oplus L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, \frac{20}{11}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{117}{22}\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{21}{22}, \frac{7}{22}\right) \\
\oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{1365}{176}\right) \oplus L\left(\frac{1}{2}, \frac{1}{16}\right) \otimes L\left(\frac{21}{22}, \frac{133}{176}\right),
\]

Theorem 2.9. \(U\) is a simple VOA and \(U(k)\) for \(k = 0, 2, 4, 6, 8\) are irreducible \(U\)-modules.
Proof. Since

\[U(0) = L\left(\frac{1}{2}, 0 \right) \otimes L\left(\frac{1}{2}, 0 \right) + L\left(\frac{1}{2}, 0 \right) \otimes L\left(\frac{1}{2}, \frac{7}{2} \right) + L\left(\frac{1}{2}, 0 \right) \otimes L\left(\frac{1}{2}, \frac{175}{16} \right) \]

as an \(L\left(\frac{1}{2}, 0 \right) \otimes L\left(\frac{1}{2}, 0 \right) \)-module, by the fusion rules, \(U \) is clearly simple.

Now, by the fusion rules and the decomposition, it is also clear that \(U(k) \) for \(k = 0, 2, 4, 6, 8 \), are irreducible as \(U \)-modules.

\[\square \]

3. Conformal vectors in \(U \)

In this section, we shall compute all the conformal vectors in \(U \). First, we shall note that \(\dim U_2 = 3 \) and \(\{ \tilde{\omega} = \omega^9, u, v \} \) forms a basis of \(U_2 \).

Theorem 3.1. There are exactly 7 conformal vectors in \(U \), namely, the Virasoro element \(\tilde{\omega} \) of \(U \), 3 conformal vectors of central charge 1/2 and 3 conformal vectors of central charge 21/22.

Proof. First we shall note that \(U_2 \) is spanned by \(\{ \tilde{\omega}, u, v \} \). Let \(x = a\tilde{\omega} + bu + cv \) be a conformal vector in \(U_2 \). Then \(x_1x = 2x \). Since \(\tilde{\omega}_1\tilde{\omega} = 2\tilde{\omega}, \tilde{\omega}_1u = 2u, \tilde{\omega}_1v = 2v, u_1u = 2(231\tilde{\omega} + 10u), u_1v = -20v, \) and \(v_1v = 2(-231\tilde{\omega} + 10u) \), by direct computation, we know that

\[a^2 + 231b^2 - 231c^2 = a, \]
\[2ab + 10b^2 + 10c^2 = b, \]
\[2ac - 20b^2 = c, \] (3.1)

Solving the above equations, we obtain 7 non-trivial solutions, namely,

\[\{a = 1, b = 0, c = 0\}, \]
\[\{a = \frac{11}{32}, b = \frac{1}{32}, c = 0\}, \]
\[\{a = \frac{11}{32}, b = -\frac{1}{64}, c = \frac{\sqrt{3}}{64}\}, \]
\[\{a = \frac{21}{32}, b = -\frac{1}{64}, c = \frac{-\sqrt{3}}{64}\}, \]
\[\{a = \frac{21}{32}, b = \frac{1}{64}, c = \frac{\sqrt{3}}{64}\}, \]
\[\{a = \frac{21}{32}, b = \frac{1}{64}, c = \frac{-\sqrt{3}}{64}\}. \]

When \(\{a = 1, b = 0, c = 0\}, x = \tilde{\omega} \) is the Virasoro element of \(U \).

When \(\{a = \frac{11}{32}, b = \frac{1}{32}, c = 0\}, \{a = \frac{11}{32}, b = \frac{1}{64}, c = \frac{\sqrt{3}}{64}\}, \) or \(\{a = \frac{1}{32}, b = \frac{1}{64}, c = \frac{-\sqrt{3}}{64}\} \), \(\langle x, x \rangle = 1/4 \) and \(x \) is a conformal vector of central charge 1/2.
When \(\{a = \frac{21}{32}, b = \frac{-1}{32}, c = 0\} \), \(\{a = \frac{21}{32}, b = \frac{1}{64}, c = \frac{\sqrt{-3}}{64}\} \), or \(\{a = \frac{21}{32}, b = \frac{1}{64}, c = \frac{-\sqrt{-3}}{64}\} \), \(\langle x, x\rangle = 21/44 \) and \(x \) is a conformal vector of central charge 21/22.

Lemma 3.2. Let \(e^1 = \frac{11}{32}w^9 + \frac{1}{32}u \), \(e^2 = \frac{11}{32}w^9 - \frac{1}{64}u + \frac{\sqrt{-3}}{64}v \), and \(e^3 = \frac{11}{32}w^9 - \frac{1}{64}u - \frac{\sqrt{-3}}{64}v \) be the three rational conformal vectors of central charge \(\frac{1}{2} \) in \(U \). Then \(\langle e^i, e^j \rangle = \frac{1}{2^8} \) if \(i \neq j \).

Proof. By (2.4), it is easy to show that
\[
\langle \omega^9, \omega^9 \rangle = \frac{8}{11}, \quad \langle u, u \rangle = 168, \quad \langle v, v \rangle = -168,
\]
and
\[
\langle \omega^9, u \rangle = \langle \omega^9, v \rangle = \langle u, v \rangle = 0.
\]
Thus, we have
\[
\langle e^i, e^j \rangle = \begin{cases} 1/2^8 & \text{if } i \neq j, \\ 1/4 & \text{if } i = j, \end{cases}
\]
as desired.

Theorem 3.3. Let \(U_2 \) be the Griess algebra of \(U \). Then \(\text{Aut } U_2 \cong S_3 \).

Proof. Let \(g \) be an element of \(\text{Aut } U_2 \). Then it will induce a permutation on the three conformal vectors \(e^1, e^2 \) and \(e^3 \). Since \(U_2 \) is generated by \(e^1, e^2 \) and \(e^3 \), \(\text{Aut } U_2 \) must itself a permutation subgroup on \(\{e^1, e^2, e^3\} \). On the other hand, by our construction, \(\text{Aut } U_2 \) already contains elements of order 3 and order 2, namely \(\sigma \) and \(\theta \). Thus \(\text{Aut } U_2 \cong S_3 \).

Theorem 3.4. The full automorphism group of \(U \) is isomorphic to \(S_3 \).

Proof. Let \(g \in \text{Aut } U \) and let \(G \) be the subgroup of \(\text{Aut } U \) generated by \(\sigma \) and \(\theta \). Since
\[
\text{Aut } U_2 = \{h|_{U_2} \mid h \in G\},
\]
there exists an \(h \in G \) such that \(gh^{-1}|_{U_2} = id_{U_2} \). In particular, \(\rho = gh^{-1} \) will fix the conformal vectors \(\tilde{\omega}^9, \tilde{\omega}^{10} \) and thus fixes the subVOA \(L(1/2, 0) \otimes L(21/22, 0) \). Hence \(\rho \) will map highest weight vectors to highest weight vectors of the same type. Moreover in \(U \) highest weight vectors are unique (up to scalar multiple) and \(\rho \) preserves their inner product. Hence \(\rho \) must fix \(U \). Thus \(g = h \in G \) and \(\text{Aut } U = G \cong S_3 \).

Remark 3.5. Recall from Miyamoto [14] that for each conformal vector \(e \) of central charge \(1/2 \), one can define an automorphism \(\tau_e \) by
\[
\tau_e = \begin{cases} 1 & \text{on the summands isomorphic to } L(1/2, 0) \text{ or } L(1/2, 1/2), \\ -1 & \text{on the summands isomorphic to } L(1/2, 1/16). \end{cases}
\]
In the VOA U, $\tau_{e^{1}}$ actually corresponds the permutation $e^{2} \leftrightarrow e^{3}$ and $\tau_{e^{2}}$ corresponds to $e^{1} \leftrightarrow e^{3}$. On the other hand, the order 3 automorphism σ corresponds to the cyclic permutation $e^{1} \rightarrow e^{2} \rightarrow e^{3} \rightarrow e^{1}$. Hence we have

$$\sigma = \tau_{e^{2}}\tau_{e^{1}}.$$

REFERENCES

13. C. Lam and H. Yamada, Decomposition of the lattice vertex operator algebra $V_{\sqrt{2}A_{1}}$, preprint.
16. M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, preprint.
17. M. Miyamoto, VOAs generated by two conformal vectors whose τ-involutions generate S_{3}, to appear in J. Algebra.

DEPARTMENT OF MATHEMATICS, NATIONAL CHENG KUNG UNIVERSITY, TAINAN, TAIWAN 701