On the number of crossed homomorphisms
— reduction to p-subgroups
(斜準同型の個数に関する予想の p-群への帰着)

近畿大学・理工学部　満谷 恒信 (Tsunenobu Asai)
Department of Mathematics, Kinki University

愛媛大学・理学部　庭崎 隆 (Takashi Niwasaki)
Department of Mathematics, Ehime University

This is a joint work of Yugen Takegahara, Naoki Chigira and authors.

1 Situation

Let C and H be groups, and suppose that C acts on H by a homomorphism $\varphi: C \to \text{Aut}(H)$. We indicate by $\varphi(c)(h)$ for $c \in C$ and $h \in H$. Let $H \rtimes C$ denote the semidirect product of H and C with canonical epimorphism $\pi: H \rtimes C \to C$.

Given a map $\lambda: C \to H$, we define a new map

$$\tilde{\lambda}: C \to H \rtimes C \quad \text{by} \quad \tilde{\lambda}(c) = \lambda(c)c.$$

Then the composition $\pi \circ \tilde{\lambda}$ coincides with the identity map id_C on C, and conversely, a map $f: C \to H \rtimes C$ satisfying $\pi \circ f = \text{id}_C$ has the form $\tilde{\lambda}$ for some $\lambda: C \to H$. This property always underlies our arguments below. For example, we can show that

$$\lambda = \eta \iff \tilde{\lambda} = \tilde{\eta} \iff \tilde{\lambda}(C) = \tilde{\eta}(C)$$

for any maps $\lambda, \eta: C \to H$, namely, we can identify a map λ with a suitable subset of $H \rtimes C$. Further, as subgroups of $H \rtimes C$, the normalizer $N_H(\tilde{\lambda}(D))$ coincides with the centralizer $C_H(\tilde{\lambda}(D))$ for any subset D of C.

A map $\lambda: C \to H$ is called a crossed homomorphism (or derivation, cocycle) if $\tilde{\lambda}: C \to H \rtimes C$ is a group homomorphism, or equivalently,

$$\lambda(cd) = \lambda(c) \cdot \varphi(c)(d) \quad \text{for all} \, c, d \in C.$$

The zero-map which sends every element of C to the identity element of H is a crossed homomorphism. We denote by $Z^1(C, H)$ the set of crossed homomorphisms from C to H. The most important example of $Z^1(C, H)$ is $\text{Hom}(C, H)$, the set of homomorphisms, for the trivial action of C on H. Another well-known example is the first cocycle group of a C-module H with respect to the bar resolution of C. In general, $Z^1(C, H)$ does not have a group structure unless H is abelian.

For each $\lambda \in Z^1(C, H)$, we can easily verify that $\tilde{\lambda}: C \to H \rtimes C$ is a splitting monomorphism of π (i.e., $\tilde{\lambda}$ is a homomorphism satisfying $\pi \circ \tilde{\lambda} = \text{id}_C$), and $\tilde{\lambda}(C)$ is a complements of H in $H \rtimes C$ (i.e., $\tilde{\lambda}(C)$ is a subgroup of $H \rtimes C$ such that $H \cap \tilde{\lambda}(C) = 1$ and $H\tilde{\lambda}(C) = H \rtimes C$). A converse statement also holds, namely, $Z^1(C, H)$ is in one-to-one correspondence with the set of complements of H in $H \rtimes C$. All of our arguments in this report can be stated in terms of complements in semidirect groups.
2 Conjecture

Only in this section, we assume that both C and H are finite groups. Then $Z^1(C,H)$ is finite set; we denote by $|Z^1(C,H)|$ its cardinality. A well-known theorem of Frobenius states that

$$|\{h \in H \mid h^n = 1\}| \equiv 0 \pmod{\gcd(n,|H|)}$$

for any integer n, which can be expressed with our notation as

$$|\text{Hom}(C,H)| \equiv 0 \pmod{\gcd(|C|,|H|)}$$

for any cyclic group C.

A number of proofs can be found, for example, in Brauer [5], Burnside [6], Curtis–Reiner [7], M. Hall [8], Isaacs–Robinson [10], and Zassenhaus [12]. P. Hall [9] extended the theorem to crossed homomorphisms as

$$|Z^1(C,H)| \equiv 0 \pmod{\gcd(|C|,|H|)}$$

for any cyclic group C.

Later, Yoshida [11] showed another generalization:

$$|\text{Hom}(C,H)| \equiv 0 \pmod{\gcd(|C|,|H|)}$$

for any abelian group C.

Furthermore, Yoshida and the first author of this report conjectured the following in [4].

Conjecture. Let C' be the commutator subgroup of a finite group C. Then

$$|Z^1(C,H)| \equiv 0 \pmod{\gcd(|C/C'|,|H|)}.$$

This conjecture is still unsolved. The main theorem of this report is

Theorem 1. To prove the conjecture, we may assume that C is an abelian p-group and H is a p-group for a common prime p.

The methods and tools for the proof of Theorem 1 are the subject matter of the remaining sections. Applying our method to the argument of [4], we can also prove the following weaker result.

Theorem 2. Let $\Phi(C/C')$ denote the Frattini subgroup of C/C'. Then

$$|Z^1(C,H)| \equiv 0 \pmod{\gcd(|C/C'|,|H|)}.$$

On the other hand, the conjecture has been verified in the following cases ([4], [2], [3], [1]):

1. both C and H are abelian p-groups;
2. $C = \langle c \rangle \times E$, the direct product of a cyclic p-group $\langle c \rangle$ and an elementary abelian p-group E;
3. $C = \langle c \rangle \times \langle c_p \rangle$, where $p > 2$ and $\langle c \rangle$ is a cyclic p-group, while $\langle c_p \rangle$ is a cyclic group of order p^2;
4. $C = \langle c_1 \rangle \times \langle c_2 \rangle$, an arbitrary abelian group of rank 2, while H is one of the dihedral, the semidihedral and the generalized quaternion 2-groups.

3 Group Actions

As stated in §1, the set $Z^1(C,H)$ may not have a group structure. To prove the conjecture, we need several group actions on $Z^1(C,H)$. Here we introduce the following concepts without finiteness assumption of C and H.

Action of H. For given $h \in H$ and $\lambda \in Z^1(C, H)$, the composition map

$$\text{Inn } \lambda \circ \lambda : C \longrightarrow H \times C \xrightarrow{\text{Inn } h} H \times C$$

is a splitting monomorphism of the canonical epimorphism $\pi: H \times C \to C$, where $\text{Inn } h$ is the inner automorphism by h. Thus the H-part, denoted by $^h \lambda$, of $\text{Inn } h \circ \lambda$ becomes a crossed homomorphism. More precisely, we can define $^h \lambda \in Z^1(C, H)$ by

$$(^h \lambda)(c) = (h \cdot \lambda(c) \cdot h^{-1})c^{-1} = h \cdot \lambda(c) \cdot \tilde{\lambda}(c)$$

for each $c \in C$.

In terms of complements, the well-definedness of $^h \lambda$ corresponds to the fact that the conjugate of a complement $\tilde{\lambda}(C) \leq H \times C$ by h is still a complement. Therefore, H acts on $Z^1(C, H)$ in this way. Note that we can show that the stabilizer of λ in H coincides with $C_H(\tilde{\lambda}(C)) = N_H(\tilde{\lambda}(C))$ as noticed in §1.

Change of Actions. Fix an element $\lambda \in Z^1(C, H)$. Then the complement $\tilde{\lambda}(C)$ acts on H by conjugation in $H \times C$. This induces another action of C on H, i.e., $C \xrightarrow{\tilde{\lambda}} H \times C \xrightarrow{\text{Inn } h} \text{Aut}(H)$. We denote by $Z^1_\lambda(C, H)$ the set of crossed homomorphisms for this action. It is easy to show that there exists a bijection

$$\lambda_\tau: Z^1_\lambda(C, H) \to Z^1(C, H)$$

given by $$(\lambda_\tau \cdot \eta)(c) = \eta(c) \lambda(c)$$

for $\eta \in Z^1_\lambda(C, H), c \in C$.

In terms of complements, this means the trivial fact that the both sets, $Z^1(C, H)$ and $Z^1_\lambda(C, H)$, correspond to the complements of H in $H \times C = H \times \tilde{\lambda}(C)$. Note that this bijection induces a semi-regular action (i.e., every non-identity element has no fixed point) of the first cocycle group $Z^1(C, Z(H))$ on the set $Z^1(C, H)$, where the C-module $Z(H)$ denotes the center of H.

4 As Functors

We shall consider 'left-exactness' of $Z^1(-, -)$, although the values are objects in the category of sets where exactness is not defined.

First variable. Suppose that D is a normal subgroup of C, namely, there exists a short exact sequence $1 \to D \to C \to C/D \to 1$ of groups. We wish to consider a problem whether there exists an exact sequence such as

$$1 \to Z^1(C/D, H_T) \to Z^1(C, H) \xrightarrow{\text{res}} Z^1(D, H),$$

where res is the restriction map and H_T is some subgroup of H on which D acts trivially. Whereas we can not find such a common subgroup H_T, we can prove the following.

Theorem 3. Suppose that $\mu \in Z^1(D, H)$ is an element of $\text{res}(Z^1(C, H))$, namely, there exists an element $\lambda \in Z^1(C, H)$ such that $\text{res}(\lambda) = \mu$. Then the bijection $\lambda_\tau: Z^1_\lambda(C, H) \to Z^1(C, H)$ introduced in the previous section induces a bijection

$$\lambda_\tau: Z^1_\lambda(C/D, C_H(\tilde{\mu}(D))) \to \text{res}^{-1}(\mu).$$

For a moment, we return to the conjecture. Assume that C and H are finite groups, and that D is a normal subgroup of C. Then $Z^1(C, H) = \cup_{\mu \in Z^1(D, H)} \text{res}^{-1}(\mu)$. Note that the restriction map is an H-map, and that the stabilizer of $\mu \in Z^1(D, H)$ in H is $C_H(\tilde{\mu}(D))$. Hence it follows from Theorem 3 that

$$\left| \bigcup_{h \in H} \text{res}^{-1}(^h \mu) \right| = |H/C_H(\tilde{\mu}(D))| \cdot |\text{res}^{-1}(\mu)| = |H/C_H(\tilde{\mu}(D))| \cdot |Z^1_\lambda(C/D, C_H(\tilde{\mu}(D)))|.$$
which is divisible by $\gcd([C/D], [H])$ if C/D is abelian and if the conjecture holds for $Z^1_{\lambda}(C/D, C_H(\bar{\mu}(D)))$.

This is the reason why we may assume that C is an abelian p-group in the conjecture.

Second variable. Suppose that K is a subgroup of H, which need not be normal nor closed under the action of C. Let $\text{Map}(C, K \backslash H)$ denote the set of maps from C to the right cosets $K \backslash H$. We wish to consider a problem whether there exists an exact sequence such as

$$1 \to Z^1(C, K) \to Z^1(C, H) \to \text{Map}(C, K \backslash H)$$

for some subgroup K of K; namely, we wish to describe the condition that two elements of $Z^1(C, H)$ have the same values in $K \backslash H$. For this problem, Brauer [5] gave an answer in the case where C is cyclic with trivial action on H, i.e., $Z^1(C, H) = \text{Hom}(C, H)$. We can generalize his answer as follows.

We say that two elements η, λ of $Z^1(C, H)$ are equivalent with regard to K, if

$$K\eta(c) = K\lambda(c) \quad \text{for all } c \in C.$$

In this case, we write $\eta \sim_K \lambda$. On the other hand, let $K_{\lambda(C)}$ denote the maximal $\lambda(C)$-invariant subgroup of K:

$$K_{\lambda(C)} = \bigcap_{c \in C}^{\lambda(c)} K.$$

Proposition 4. Let K be a subgroup of H, and $\eta, \lambda \in Z^1(C, H)$. Then $\eta \sim_K \lambda$ if and only if $\eta \sim_{K_{\lambda(C)}} \lambda$.

In other words, if $\eta \sim_K \lambda$, then $\eta(c)\lambda(c)^{-1} \in K_{\lambda(C)}$.

Theorem 5. Let K be a subgroup of H, and $\lambda \in Z^1(C, H)$. Then the bijection $\lambda_r: Z^1_{\lambda}(C, H) \to Z^1(C, H)$ induces the bijection

$$\lambda_r: Z^1_{\lambda}(C, K_{\lambda(C)}) \to \{ \eta \in Z^1(C, H) \mid \eta \sim_K \lambda \}.$$

This is an answer of the problem above, whereas a common subgroup K can not be taken. Further, Brauer [5] introduced another equivalence relation, which can be generalized as follows.

We say that two elements η, λ of $Z^1(C, H)$ are weakly equivalent with regard to K, if there exists an element $k \in K$ such that $\eta \sim_K k\lambda$, where $k\lambda$ is defined in the previous section. In this case, we write $\eta \approx_K \lambda$.

Theorem 6. Let K be a subgroup of H, $k \in K$ and $\lambda \in Z^1(C, H)$. Then $\lambda \sim_K k\lambda$ if and only if $k \in K_{\lambda(C)}$. Therefore we have a bijection

$$\{ \eta \in Z^1(C, H) \mid \eta \approx_K \lambda \} = \bigcup_{k \in [K/K_{\lambda(C)}]} \{ \eta \in Z^1(C, H) \mid \eta \sim_K k\lambda \}$$

$$\simeq \bigcup_{k \in [K/K_{\lambda(C)}]} Z^1_{\lambda}(C, K_{\lambda(C)}),$$

where $[K/K_{\lambda(C)}]$ denotes a complete set of representatives of $K/K_{\lambda(C)}$.

We return to the conjecture. Assume that C and H are finite groups, and that K is a subgroup of H. Then $Z^1(C, H)$ is the union of the weakly equivalence classes with regard to K. However, it follows from Theorem 6 that

$$|\{ \eta \in Z^1(C, H) \mid \eta \approx_K \lambda \}| = |K/K_{\lambda(C)}| \cdot |Z^1_{\lambda}(C, K_{\lambda(C)})|.$$
which is divisible by \(\gcd(|C/C'|, |K|) \) if the conjecture holds for \(Z^1_\tilde{\lambda}(C, K_{\tilde{\lambda}(C)}) \). This is the reason why we may assume that \(H \) is a \(p \)-group in the conjecture.

Finally, we remark that if \(K \) is closed under the action of \(\tilde{\lambda}(C) \), then \(\sim_K \) and \(\approx_K \) are the same relation. In [1], we used \(\sim_K \) to calculate \(|Z^1(C, H)| \), where \(H \) is an exceptional 2-group and \(K \) is a characteristic subgroup of \(H \).

References

