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1 Introduction.

Tangentially degenerate submanifolds in projective spaces are studied from various
aspects; differetial geometry, algebraic geometry, singularity theory and so on. In
particular, P. Griffith and J. Harris {18] and A. Akivis and V.V. Goldberg [2][3] gave
the description of tangentially degenerate submanifolds in detail.

Looking at unit normal vectors or tangent planes to space surfaces is the most
fundamental method in differential geometry initiated by C.F. Gauss [16]. He, in
particular, considered the class of tangentially degenerate surfaces by means of his
(Gauss) mappings.

Naturally we are led to consider tangentially submanifolds in Euclidean spaces, or
more naturally in projective spaces by means of Gauss mappings. One of important
classes of tangentially degenerate submanifolds, then, consists of submanifolds with
degenerate Gauss mappings. Another important class consists of hypersurfaces with
degenerate projective dual. The tangential degeneracy of a hypersurface can be de-
scribed by the déneneracy of its projective dual; the variety, in the dual projective
space, consisting of tangent hyperplanes to the hypersurface. Moreover we notice
that, also for submanifolds of codimension greater than two, the tangential degen-
eracy can be described by means of projective duality. This means that the Gauss
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mapping is degenerate, then the projective dual is necessarily degenerate [18]. Thus
among tangentially degenerate submanifolds, we study, in this paper, submanifolds
with degenerate projective duals, possibly with singularities.

The notions of projective duality and of incidence relation play the central role
in projective geometry. In this survey article, on particular, we re-formulate the
study on submanifolds with degenerate Gauss mappings using the incidence relation
in projective geometry via contact geometry. Also we introduce the notion of “frontal
mappings”and discuss the relations with “poly-symplectic geometry”. Moreover the
projective duality is generalized to “Grassmann duality”in very natural way.

2 Degenerate and bi-degenerate Legendre subman-
ifolds.

We denote by RP™! = P(R"™*2) the n-dimensional projective space and by RP*+!* =
P((R™*?%)*) the n-dimensional dual projective space. Here (R"*2)* means the dual
vector space to R"t2.

Any submanifold M™ C RP"*! lifts to a Legendre submanifold M of the manifold
P(T*RP™1) of contact elements (tangent hyperplanes) of RP"*!. Actually M is
defined to be the projective conormal bundle P(Tj,RP™*) of M. Here Ty RP™' C
T*RP"! is the conormal bundle of M in RP™*!. Note that, independently of m, the
dimension of the Legendre lifting M is equal to n. In general the image of a Legendre
submanifold by the projection = : P(T*RP™*!) — RP™! is called a wave front or
simply a front. Therefore any submanifold of RP"*! can be regarded as a front. This
is not the case just only for RP™!: any submanifold M of any manifold X lifts to a
Legendre submanifold P(T3,X) of P(T*X).

The special feature of RP™! is P(T*RP™1) has natural double Legendre fibra-
tion:
RP™! «— P(T*RP™') — RP™,
to RP™! and to the dual projective space RP™*.

Inversing the process, first we can consider Legendre submanifolds in the manifold
of cotact elements P(T*RP™+!), the projective cotangent bundle, then second study
their projections by 7 : P(T*RP™') — RP™! and by 7* : P(T*RP™*) —» RP"!*,

The above constructions can be described in term of projective duality. Set
Q:={(z,y) € R™ x (R™*)" | z-y =0},

where z - y denotes the canonical pairing of elements z € R"*2 and y € (R"*?)x.

127



On @, we have 0 = d(z - y) = dx -y + z - dy. Moreover we set
Q = {(lz}, [y]) € RP™' x RP™™ |z .y = 0},

the manifold of incident pairs or the incidence relation. Then Q is of dimension 2n+1
and @Q has the contact structure

D:={dz-y=0}={z-dy=0} CTQ.
Namely, a tangent vector (u,v) € Tz, @ belongs to the contact distribution D if
and only if u-y =0 and, if and only if z - v = 0.

The projection 7 : @ — RP™? (resp. 7n* : Q@ — RP"!*) indentify Q, as
contact manifolds, with the fiberwise projectivization P(T*RP™*!) of T*RP™*! (resp.
P(T*RP™1%) of T*RP™1*).

A submanifold L C Q is called a Legendre submanifold if L is an integral subman-
ifold of the contact distribution D of dimension n. The integrality condition means
that TL C D|p.

Now, to any submanifold M of RP™*! of any codimension m, there corresponds
the Legendre submanifold in Q:

M = {([z}, W) € Qla] € M, | (T.}M) -y =0},
which is called the Legendre lifting of M. Here M C R"*2\ {0} is the corresponding

(m + 1)-dimensional submanifold to M C RP™!.

Also to any submanifold N of RP™!* of any codimension m*, there corresponds
the Legendre submanifold in @Q:

N = {(lal, b)) € @Bl € N,| (= - T,N) =0},
which is also called the Legendre lifting of N. Here N C R™2*\ {0} is the corre-

sponding (m* + 1)-dimensional submanifold to N C RP™!*,

A front of L in RP™? (resp. in RP™1*) is, by definition, the image of L by 7
(resp. 7*).
Thus any submanifold of RP™?! (resp. RP"*!*) can be regarded as a front in

RP™! (resp. in RP™™*) of a Legendre submanifold of Q. However a front may have
singularities, which also we are interested in.

Let L C @ be a Legendre submanifold. Set
m := sup{rank,(d(r|r) : T,L — TrRP"™') | g € L}.
Moreover set

m* := sup{ranky(d(r*|) : TyL — Trs(RP™'*) | g € L}.
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We call L degenerate if m* < n. Moreover we call L bi-degenerate if m < n and
m* < n.

Now we call a font in RP™*?! (resp. in RP™"*) tangentially degenerate or briefly
degenerate if m* < n (resp. m < n). Moreover we call a front in RP™*! (resp. in
RP™1%) tangentially bi-degenerate or briefly bi-degenerate if both m* < n and m < n.

Example 2.1 Let n,m be integers with 0 < m < n Let M = RP™ Cc RP"! be a
projective subspace of dimension m. We denote by MV C RP™!* the projective dual
to M; MV consists of hyperplanes containing M, and M" is a projective subspace of
RP™1* of dimension n — m. Set L := M x MY C Q. Then L is the Legendre lifting
of M. Then L is degenerate if and only if 0 < m < n. Moreover L is bi-degenerate if
and only if 0 < m < n.

Example 2.2 Let M™ C RP™!, 0 < m < n, be a submanifold with degenerate
Gauss mapping. Recall that the Gauss mapping v : M — Gr(m +1, R™?) is defined
by ¥([z]) := Tz M, ([z] € M). Then the required condition is that ranky < m. Thus
we are assuming 0 < m < n. Lots of examples have been found of submanifolds
with degenerate Gauss mappings [27][29]. Let L be the Legendre lifting of M. We
have M = =(L) and #*(L) =: MV C RP™* is the projective dual of M. Then L
is degenerate. Moreover L is bi-degenerate if m < n. In other words, a submanifold
with degenerate Gauss mapping is a degencrate front. Moreover if it is of codimension
> 2, then it is a bi-degenerate front.

Example 2.3 Let W C CP" be a complex submanifold of complex dimension £ < n.
Consider the Hopf fibration h : RP?"*! —, CP". Set M := h"!N c RP?*!, Then
M is a real submanifold of real dimension 2¢ + 1 with degenerate Gauss mapping.
Let L := M C Q C RP*™! x RP¥+!* be the Legendre lifting of M. Then L
is bi-degenerate. In fact 7*(L) = F—IWV, for the complex projective dual WY C
CP™ and the Hopf fibration RP?"+1* _, CP™. Now suppose W is a non-singular
complex quadric hypersurface in CP®. Then WYV is a non-singular complex quadric
hypersurface in CP™. Then both 7|, and #*|;, are of constant rank 2n — 1. In this
example m =2n — 1 =m* and m +m* — 2n = 2n ~ 2. If n = 2, then m = 3 = m*,
dimL=4and m+m*—-4=2.

In the last example, we have observed the Legendre submanifold has the constant
rank projections 7|y, and 7*|, so that (L) and 7*(L) are both non-singular degenerate
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3 Symmetric Ferus inequalities for degenerate Leg-
endre submanifolds.

In this section, we give a formulation of Ferus inequality [14][15] in projective and
symmetric form.

First we recall the Ferus inequality for submanifolds in a sphere or in a projective
space with degenerate Gauss mappings [14][15]. See also [7}[27].

Let M™ C RP™! be a submanifold with degenerate Gauss mapping. See Example
2.2. Set r = rank-, the rank of Gauss mapping v of M.

First recall the Adams number A(k) for k¥ € N from algebraic topology. The
number A(k) is by definition the maximal number of independent vector fields over
the sphere S*~1. For example, since Euler number of S? is not equal to zero, there
does not exist nowhere vanishing vector field over S2, so we have A(3) = 0. Since S!
and S? are parallelizable, namely, T'S* and T'S® are trivial, we have A(2) = 1 and
A(4) = 3. One of great results in algebraic topology (or homotopy theory), is the
following surprisingly simple formula due to Adams:

A((2b+ 1)2¢+4) = 2° +- 84 — 1, (b,c,d € NU {0},0 < c < 3).

In particular A(k) depends only on the exponent to 2 in the primary decomposition
of k.

Then define the Ferus number for m € N by
F(m) := min{k € N | A(k) + k > m}.

Then Ferus showed, in the framework of Riemannian geometry, the following crucial
result:

Theorem 3.1 Let M™ be a closed and immersed submanifold of RP™! with r =
rank(y) < m. Then r < F(m) implies r = 0. In particular, if M is a closed and
connected submanifold of RP™?! and M is not a projective subspace, then F(m) < r.

We write down F(m), for smaller m:
F1)=1,F2)=2,F(3)=2,F(4)=4,F(5) =4,F(6) =4,F(7T)=4,F(8) =8,
F(9) = 8, F(10) = 8, F(11) = 8, F(12) = 8, F(13) = 8, F(14) = 8, F(15) = 8,
F(m) =16, (16 <m < 24), F(m) = 24,(25 < m < 31), F(m) = 32, (32 < m < 41),
F(m) = 40, (42 < m < 47), F(m) = 48, (48 < m < 56), F(m) = 56, (57 < m < 63),
F(m) =64,(64 <m < 75), F(m) =72,(76 < m < 79), F(m) = 80, (80 < m < 88),
F(m) = 88, (89 < m < 95), F(m) = 96, (96 < m < 105) and so on. Moreover we have
F(m) = m if m is a power of 2.

——
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In this paper we call the inequality F(m) < r Ferus inequality. Many examples
satisfying in fact Ferus equality F'(m) = r have been found related to isoparametric
submanifold, homogeneous submanifolds, austere subamnifolds and so on ([27]{29]).

However we may feel something missing, by the fact that, in Ferus inequality or
Ferus equality, there appear just m and r, but, there does not appear the number n,
or the dimension of the ambient space RP™!.

Now we are going to formulate Ferus type inequality in term of Legendre sugman-
ifolds and in more symmetric form.

Theorem 3.2 Let L be a closed (compact without boundary) immersed Legendre sub-
manifold of the incidence relation @ C RP™! x RP™1*. Suppose 7|y and ©*|. are
constant rank m and m* respectively, and L is not the Legendre lifting of a projective
subspace. Then we have

Fim)<m+m*—n, Fm)<m'+m-—n.

Note that n < m+m*. Moreover we see, if m+m* = n in the situation of Theorem
3.2, then L is the Legendre lifting of a projective subspace (Example 2.1).

Proof of Theorem 3.2: Set M = w(L). Then M is a closed and immersed submanifold
in RP™!. It is easy to see that
rank(y) < m+m* —n.

Thus we have F(m) < m+m*—n if M is not a projective subspace. By the symmetry,
we also have F(m*) < m* + m —n. Thus we have Theorem 3.2. a

Now we are led to the following fundamental question:

Question: For any positive integers n,m, m* satisfying

Fm)=m+m*—n, F(m')=m"+m-n,
the symmetric Ferus equalities, find examples of closed Legendre submanifolds L™ C
Q1 C RP™! x RP™* such that |y, is of constant rank m and ©*|y, is of constant
rank m*.

If the symmetric Ferus equalities are satisfied, then we have

F(m)=F(m") and n=m+m*— F(m)(=m" +m — F(m*)).
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Since m > F(m) and m* > F(m*), the inequalities m < n,m* < n are necessarily
fulfilled. Thus the question can be re-written as follows:

Question’: For any positive integers m, m* satisfying F(m) = F(m*), find ezamples
of closed Legendre submanifolds L™ C Q*"*1 c RP™! x RP"!™* n=n=m+4+m* —
F(m)(= m*+m— F(m*)), such that 7|y, is of constant rank m and ©*|;, is of constant
rank m*.

We give here some of known examples:

Example 3.3 By Example 2.3, we have examples for (m,m*) = (3,3), (5,5),(9,9),

(5,
(17,17), (25, 25), (33, 33), (49, 49), (57, 57), (65, 65), (81,81), (89, 89), (97, 97), and so on.

Moreover, we have examples for the sequence : (2 + 1,26+ 1), £=1,2,3,....

Example 3.4 (Cartan hypersurfaces.)

(1) (m,m*) = (3,2). Let M® € RP* be the Cartan hypersurface. Then n =m =
3,m* = 2. Note that F(3) = 2 = F(2). Thus we see the symmetric Ferus equalities
hold.

(2) (m,m*) = (6,4). Let M® € RP" be the Cartan hypersurface. Then n =m =
6,m* = 4. Note that F(6) = 4 = F(4). Thus we see the symmetric Ferus equalities
hold.

(3) (m,m*) = (12,8). Let M'? € RP"® be the Cartan hypersurface. Then n =
= 12,m* = 8. Note that F'(12) = 8 = F(8). Thus we see the symmetric Ferus
equalities hold.

(4) (m,m*) = (24,16). Let M** € RP% be the Cartan hypersurface. Then -

n =m = 24,m* = 16. Note that F(24) = 16 = F(16). Thus we see the symmetric
Ferus equalities hold.

Moreover by Kimura’s constructions([27]}, we have examples, for instance, for
(m,m*) = (6,5), (11, 10), (21, 20).

4 Bi-degenerate fronts in four dimensional spaces.

Now we turn to singularities. We study Legendre submanifolds in the incidence rela-
tion Q@ C RP™! x RP™"!* with rank(r|,) = m and rank(7*|;) = m*, not assuming
n|r, and 7*|, are of constant rank. Then 7(L) and #*(L) may have singularities.

In the case (m,m*) = (n, 1), the diffeomorphism classification of the singularities
of degenerate fronts are studied in detail in [20]{22][23]. Note that, if n > 2, F(n) >
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1=mn+1-n, so 7|z is never of constant rank. For example, in the case n = 2, the
typical singularities of degenerate fronts of dimension 2 in RP® are a cuspidal edge,
a folded umbrella and a swallowtail. These are singularities of tangent developables of
space curves of types (1,2,3), (1,2,4) and (2, 3, 4), respectively.

For the classification by a weaker equivalence relation, namely by the homeomor-
phism classification is given in [25].

In this section, we give the classification of singularities of bi-degenerate Legendre
submanifold in case n = 3,m = 2,m* = 2. Note that, in this case, F(2) =2 > 1=
2+ 2 — 3, so that 7|, and #n*|, are never of constant rank.

Consider the flag manifold

F={V:{0}cVicVhacVacV,CcR?}.

Then we see dim F = 10. On F, we define the canonical distribution D C TF by teh
following: a curve

V(t) : {0} Cc Vi(t) € Va(t) € Va(t) C Va(t) c R®

on F is tangent to D at t = ¢ if the infinitesimal defomation of Vi(t) at ¢¢ be-
longs to Vx(to), the infinitesimal defomation of V;(t) at ¢y belongs to V3(to), and the
infinitesimal defomation of V3(t) at to belongs to V4(to). Then we see rankD = 4.

We define the projection m, : F — RP* (resp. my : F — RP*) by m(V) =W
(ma(V) = V). Also we define the projection m4 : F — Q@ C RP* x RP* by
m4(V) = (V1,V4). Then we have m = mom 4 and my = 7* 0 Ty 4.

Typical singularites appearing in bi-degenerate fronts in this situation are cones
and 1-developables.

Let c: R — RPY,
c(t) = [x(t)] = [.’Eo(t),:l:l(t),xz(t),1:3(t),(114(t))]

be a smooth curve. Consider the surface ruled by tangent (projective) lines to the
curve. We call it 1-developable of the curve. Then the tangent planes to regular points
of the 1-developable are constant along each ruling. In fact the tangent plane to the
1-developable at a point on a tangent line coincides with the osculating 2-plane at the
tangent point of the tangent line to the curve.

Let a,, az, a3, a4 be integers with 1 < a; < az < a3 < a4. The curve c is called of
type (ai, as, a3, a4) at to € R if there exist a smooth coordinate ¢t of R centered at t,
and an affine coordinate x,, z2, z3, z4 such that c(t) is represented near ¢, in the form

zi(t) =% + o(t™), za(t) = 12 + o(t2), z3(t) =t + o(t™), z4(t) = t™ + o(t™).

The curve c is of finite type at t if there exist such integers a;,as, a3, a4 so that ¢
is of type (a1, a2,a3,a4). The curve itself is called of finite type if it is of finite type
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at every point. Any curve c : R — RP* of finite type lifts to unique D-integral
curve ¢: R — F, by using osculating subspaces of dimension 1 (the tangent line), of
dimension 2, of dimension 3 and of dimension 4. Moreover ¢* := m40¢: R — RP#*
is of finite type. If the original ¢ is of type (a1, az, a3, aq) at to € R, then ¢* is of type
(aq — a3, a4 — ag, a4 — a1,04) at to € R. We call c* the dual curve to ¢ ([40]).

Then we have the following fundamental result:

Theorem 4.1 The 1-develpable of a curve ¢ in RP?* of type (a1, az,a3,a4) s a bi-
degenerate front with m = 2,m* = 2. Its projective dual is the 1-developable of the
dual curve c* of type (aq — a3, aq — 3,04 — G1,a4).

To classify singularities of subsets in RP"*! we must define, at least, a local
equivalence relation: a subset A C N of a manifold N at a point py € N and a subset
A’ C N’ of a manifold N’ at a point py € N’ are called diffeomorphic if there exists
a diffeomorphism ¢ : U — U’ of an open neighbourhood U of py in N and an open
neighbourhood U’ of py in N’ which maps ANU to A'NU".

Since an open dense part of (L) is a submanifold of dimension m, it is natural to
consider a parametrization by an m dimensional manifold. Then smooth mappings
f: M — N atapoint g € M and f' : M’ — N’ at a point t; € M’ are called
diffeomorphic if there exist a diffeomorphism ¢ : V' — V' of of an open neighbourhood
V of tp in M and an open neighbourhood V’ of t in M’ and a diffeomorphism ¢ : U —
U’ of of an open neighbourhood U of py = f(t5) in M and an open neighbourhood V'
of py = f'(t) in M’ such that po f = f'oyp on U.

Theorem 4.2 (cf. [22]) Let ¢: R — RP* be a smooth curve and ty € R. Suppose c
at to 1s of one of following types:

M, : (1,2,3,3+7r), r=1,2,...,

(H)O : (2’3’4: 5);

(ID; - (1,3,4,5),

(1), - (1,2,4,5),

(111) : (3,4,5,6).
Then the diffeomorphism class in RP* of the 1-developable of the curve ¢ at the point

c(to) is determined only by its type. In other words, if two curves have the same type,
then their 1-developables are locally diffeomorphic.

For a generic curve in RP*, only points of types (I); : (1,2,3,4) and (I); :
(1,2,3,5) appear. Moreover, for the dual curve of a generic curve, only points of
types (I); : (1,2,3,4) and (I)o : (2,3,4,5) appear.

We call the 1-developable surface cuspidal edge in the case of type (1,2, 3,4), and
open swallowtail in the case of type (2, 3,4, 5).
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Example 4.3 (Cuspidal edge.) The 1-developable surface of a curve of type (1, 2, 3,4)
has the normal form under the diffeomorphisms:

3 1
(z,t) = (x, 3t + 2xzt, 2t + xt?, Zt4 + gxta').

Moreover it is diffeomorphic to

(z,t) — (z, 3, t3,0).

Example 4.4 The 1-developable surface of a curve of type (1, 2, 3,5) has the normal
form under the diffeomorphisms:

2 1
(z,t) = (z, 3t + 2xt, 28> + xt?, gtf' + ga:t“).
However it is actually deffieomorphic to
(z,8) = (z, %, £°,0),

namely, diffeomorphic to the cuspidal edge.
Actually we can prove the following:

Theorem 4.5 The 1 developable of a curve of type (1), : (1,2,3,3+7),(r=1,2,3,...)
is diffeomorphic to the cuspidal edge.

Also we observe that the dual of 1-developable of a curve of type (1,2,3,4) and
the dual of 1-developable of a curve of type (1,2, 3,5) are not diffeomorphic:

Example 4.6 (Open swallowtail.) The 1l-developable surface of a curve of type
(2,3,4,5) has the normal form under the diffeomorphisms:

9 9 1
3 L 2 5, % .3
(z,t) — (z, 3t° + 2zt, 4t + xt?, 10t +3.'L't ).

This is not diffeomorphic to the cuspidal edge.
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5 Frontal mappings.

In this section, we introduce the notion of frontal mappings and show an attempt
to generalize Legendre singularity theory, clarifying their applications to the study of
singularities appearing in the Grassmannian duality, or more generally in the Flag
duality, and to poly-symplectic geometry.

Let f : M™ — N™1 m < n+1, be a C® mapping. Assume f is immersive

outside of a nowhere dense subset X(f) of M. Then f is called a frontal mapping if, .

for any = € M, there exists a unique limit
bm f,(TeM) =T, (& € M=5(f)).
X —T

in the Grassmann bundle Gr(m, T N), such that the correspondence x ~— T}, is of class
C™>.

Examples of frontal mappings are (0) submanifolds, (1) singular curves with no
infinitely flat point, (2) their arbitrarily intermediate developables, (3) wave front sets
in the ordinary sense and (4) varieties of irregular orbits of finite reflection groups [17].
If we take a transverse intersection of wave front sets, then we get a “frontal variety”,
which does not necessarily admit a parametrization by a single non-singular manifold.

_ Let f: M — N be a frontal mapping. Then f lifts naturally to a mapping
f: M — Gr(m,TN), which is called the Nash lifting of f.

Let D C TGr(m,TN) be the tautological subbundle (or the canonical system
in the sense of [43]) of codimension n + 1 —m =: r. Notice that, if » = 1, then
Gr(m,TN) = Gr(r,T*N) = PT*N, and D is the canonical contact distribution
over PT*N. Then the Nash lifting f : M — (Gr(m,TN), D) is a (not necessarily
maximal dimensional) integral mapping of the distribution D on Gr(m,TN). The
Nash lifting fis characterized as the unique integral lifting of the frontal mapping f.

6 Relation to poly-symplectic singularity theory.

Let B be a manifold of dimension m. For a positive integer r, consider the Whitney
sum

™ B=T*B&®---®T*B — B

endowed with the system of closed 2-forms w; = df;,1 < ¢ < r, where 6; is the

Liouville 1-form on the i-th factor [6].

A C* mapping ¢ : M™ — T*) B from an m-dimensional manifold M is called
isotropic if p*w; = 0,1 < ¢ < r. If we take the universal covering p : M — M of
M, then there exist functions e¢; : M — R such that de; = (p o p)*6;,1 < i <r. We
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define the graph of ¢ by
f=(mopope): M — BxR = N.

If £(f) is nowhere dense in M , then f is frontal: The Nash lifting is

f=(pope): M — T*"B xR — Gr(m,TN).

We compare equivalence relations for isotropic mappings, integral mappings and
frontal mappings.

Two isotropic mappings ¢ and ¢/ : M — T*(M B are called Lagrange equivalent
if there exist diffeomorphisms ¢ : M — M and 7 : T*"WB — T* B such that
T'w; = wi,1 < ¢ < 7, 7 covers a diffeomorphism 7 : B — B with respect to
7:T*"MB — B, and that Top = ¢’ 0 0.

Two integral mappings F' and F' : M — T*"B x R" are called s-Legendre
equivalent if there exist diffeomorphisms ¢ : M — M and 7 : T*WB x R™ —
T*") B x R" such that 7 preserve the distribution and the fibration I : T*™BxR" —»
BxRMand that To F = F'oo.

Two frontal mappings f and f' : M — B x R" are called s-equivalent if there
exist diffeomorphisms ¢ : M — M and k : B x R” — B x R" of the form
k(y,z) = (F(y),z+ p(y)) and that ko f = f o 0.

Then we have

Proposition 6.1 Let ¢ : M — T*(") B be an isotropic mapping with nowhere dense
singular set X(m o ). Then the following conditions are equivalent to each other:

(1) Isotropic mappings ¢ and ' : M — T*") B are Lagrange equivalent.
(2) Nash liftings f and f’ : M ~— T*"B x R" are s-Legendre equivalent.
(3) Frontal mappings f and f': M — B x R” are s-equivalent.

It holds also the local version of this result. The concrete classification of isotropic
mappings to a poly-symplectic manifold under the Lagrange equivalence will be given
in a forthcoming paper.

7 Projective duality and Grassmannian duality.

The projective duality plays an essential role, for instance, to formulate the famous
Pliicker-Klein's formula, to analyze generic projective hypersurface (Bruce, Platonova,
Landis [4]), tangent developables (Scherbak [40], I [20](22]) and Monge-Ampére equa-
tions ([26]).

137



Let f : M® — RP™! be a frontal mapping (e.g. a parametrization of a sub-
manifold). Then we have the Nash lifting f : M — Gr(n, TRP™!) = PT*RP"!.
Set Q@ = {(p,q) € RP™! x RP™!* | p C ¢V}, the manifold of incident pairs. Then
Q is endowed with a contact structure and contact diffeomorphisms PT*RP™! =
Q = PT*RP"™!*. Then we get the projective dual f¥ : M — RP™*!* of f by the
composition of f with the projection PT*RP™1* —, RP™!*. If f is sufficiently
generic, then fV is also frontal, and we get the presumable equality f¥V = f.

With the notion of frontal mappings, we are naturally led to the following gener-
alization of the projective duality.

Let f : M™ — RP"! be a frontal mapping of codimension 7 = n+1—m. Then,
consider the Nash lifting of f :

f: M — Gr(m, TRP™?) Gr(1,R™?) x Gr(m + 1,R™?)

Gr(1,R™?) x Gr(r, R™*?*).

R

The image is again @ = {(p,q) | p C ¢"}. Therefore we naturally define the Grassman-
nian dual f¥ : M — Gr(r,R"*%) of f : M — RP™!. The equality “fYV = f",
however, does not have any meaning, even if fV is a front mapping in the meaning of
previous definition. Therefore, for a mapping into a Grassmannian, it seems natural
to specialize the definition of frontal mappings as follows:

Let f : M™ — Gr(r,R"*?) be a C* mappings with m +7 < n+ 1. Set
s =n+2-—m—r. Then f is called Grassmann-frontal if there exists a unique integral
lifting f : M — (Q, D) of f with respect to a fibration 7 : @ — Gr(r, R**?%) and a

distribution D on @ defined as follows: Set first
Q = {(p,q) € Gr(r,R™?%) x Gr(s,R"*?*) | p C q"},
and
P ={(p,q,7) € Gr(r,R™"?) x Gr(s,R™?) x Gr(r,R™?) | pC ¢ ,p' C ¢"}.
Then we get the special divergent diagram (p, 7o p):
P -2 Q@ I Gr(r,R™?),

where p (resp. ) is the projection to the first and second factors (resp. to the first
factor). To define the tautological subbundle D C T'Q of codimension rs, for each
c=(p,q) € Q, weset D, C T.Q by D. = n;}(Tp(Gr(r,R™*™))), where Gr(r, R"*™) =
n(p~1(c)) is embedded in Gr(r,R"*?) as {p’ € Gr(r,R™*?) | p’ C ¢'}. Notice that,
if r # 1, or, r # n + 1, then the “system of tangential linear subspaces” on the
Grassmannian Gr(r, R"*?) defined by D does not represent general tangential linear
subspaces of the Grassmannian.
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If we take local coordinates (a;;)1<i<r1<j<m+s Of Gr(r, R"?) and (bre)1<k<mr1<e<s
of Gr(s,R"*?*), then Q is defined by the system of equations

bij + Girbrir; + o+ Cimbrgmi + Aime; =0, 1 <1<, 1 <5< s,
and D is defined by the system of 1-forms

bryijdaiy + - -+ + brymjdaim + daimy; =0, 1 <i<n1<j<s.

The integral lifting f is called the Grassmann-Nash lifting of f. The relation to
the original definition of frontal mappings is as follows:

Lemma 7.1 Let F: R™,0 — @, (po, go) be an integral map-germ. Then f = moF :
R™, 0 — Gr(r,R™?),py is Grassmann-frontal if and only if Z(po f) C R™,0 is
nowhere dense, for some projection

p: Gr(r, R™?), py — Hom(R",R™*),0 5 Hom(R,R™),0 — RP™+s-1,

induced from a linear inclusiorii: R — RT.

Now, from the duality, we have another distribution I C T'Q from the projection
7’ : Q@ — Gr(s,R™?*) to the second factor, setting

P' ={(¢,p,q) € Gr(s,R"**) x Gr(r,R™?) x Gr(s,R**) | ¢ C p¥, ¢ Cp'}.

Then the fundamental result is the following:
Proposition 7.2 Two distributions D and D' on the incidental manifold @ coincide.

Based on this fact and a version of the transversality theorem, we have the following
Grassmannian duality theorem:

Theorem 7.3 There exists an open dense subset O in the space of integral mappings
M™ — Q C Gr(r,R™?) x Gr(s,R"*%) with m +r + s = n + 2 of kernel rank at
most one, with the following property: For any F : M — Q belonging to O, F is the
unique integral lifting of to F =: f and of 7' o F =: f’ respectively, and the singular
loct ©(f) and Z(f') are both nowhere dense in M. In particular, in this case, we have
that f and f’ are both Grassmann-frontal, f' = f¥, f = "V and that f¥V = f.

The proofs of these results will be given in forthcoming papers. We conclude this
survey by giving just several illustrative examples.
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Example 7.4 If f : M?> — RP* is the natural parametrization of the 1-developable
of a curve in RP4, Then f¥: M? — Gr(2, R%) collapses to a curve (Grassmannian
dual curve).

Example 7.5 Let f : RP? — RP® be the Veronese embedding. Then the dual
f¥Y:RP? - Gr(3,R%) is also an embedding. In fact, f¥ composed with the Pliicker
embedding Gr(3,R%) — RP'° is decomposed into the Veronese embedding RP? —
RP? and a linear embedding RP? — RP™.

Example 7.6 Let f : M? — Gr(2,R°) be an embedding. If f(M) C Gr(2,R?) C
Gr(2,R®), then f has infinitely many integral liftings f : M — Q. The “dual”
f¥Y: M — RP* collapses to a point on the projective line dual to R? C RS.
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