Title

THE BRIANCON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL (Several topics in singularity theory)

Author(s)

Koike, Satoshi

Citation

数理解析研究所講究録 (2003), 1328: 165-173

Issue Date

2003-06

URL

http://hdl.handle.net/2433/43246

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

SATOSHI KOIKE

小池敏司（兵庫教育大学）

At the symposium "Several Topics on Singularity Theory," Tadeusz Mostowski gave excellent lectures on Lipschitz equisingularity ([18]). Related to this topic, the author described some facts in the short communications. In this note we explain it in detail.

Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be analytic function germs. We say that they are blow-analytically equivalent if there are real modifications $\mu : (M, \mu^{-1}(0)) \rightarrow (\mathbb{R}^n, 0)$, $\mu' : (M', \mu'^{-1}(0)) \rightarrow (\mathbb{R}^n, 0)$ and an analytic isomorphism $\Phi : (M, \mu^{-1}(0)) \rightarrow (M', \mu'^{-1}(0))$ which induces a homeomorphism $\phi : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ such that $f = g \circ \phi$. A blow-analytic homeomorphism is such a homeomorphism induced by an analytic isomorphism via real modifications. Blow-analytic equivalence is a notion introduced by Tzee-Char Kuo ([14, 15]) as a natural equivalence relation for real analytic function germs. Concerning the blow-analyticity, he posed the following question:

Question 0.1. Is a blow-analytic homeomorphism a biLipschitz homeomorphism?

A blow-analytic homeomorphism is an arc-analytic homeomorphism in the sense of K. Kurdyka [16]. Namely, any analytic arc is mapped to an analytic arc by a blow-analytic homeomorphism. The relation between blow-analyticity and arc-analyticity was discussed by E. Bierstone and P. Milman [1]. Originally, Kuo presented the following weak conjecture ([14]):

Conjecture 0.2. A blow-analytic homeomorphism preserves the contact order of analytic arcs.

For more properties of blow-analyticity, see [5].

We next consider the Briançon-Speder family ([2]) $f_t : (\mathbb{R}^3, 0) \rightarrow (\mathbb{R}, 0)$, $t \in J = (-1 - \varepsilon, \infty)$, defined by

$$f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}$$

1991 Mathematics Subject Classification. 14B05, 32S15, 57R45.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640070) of Ministry of Education, Science and Culture of Japan.
where ϵ is a sufficiently small positive number. Then, $\{f_t\}_{t \in J}$ is a family of functions with isolated singularities. It was shown by T. Fukui [4] that $\{f_t\}_{t \in J}$ admits a blow-analytic trivialisation along I for any closed subinterval I of J. At about the same time as Fukui, Koike observed in [10] that $(\mathbb{R}^3, f_0^{-1}(0))$ and $(\mathbb{R}^3, f_{-1}^{-1}(0))$ cannot be equivalent via a homeomorphism which preserves the tangency of analytic arcs contained in the zero-sets. We call such a homeomorphism a *strong homeomorphism*. Combining the results of Fukui and Koike, we get the fact that

(0.1) a blow-analytic equivalence is not always a “blow-analytic and strong \mathcal{C}^0” equivalence.

This implies the following:

(0.2) A blow-analytic equivalence is not always a “blow-analytic and biLipschitz” equivalence.

These facts show that there are a negative example to Question 0.1 and a counterexample to Conjecture 0.2. In fact, after Fukui and Koike, L. Paunescu constructed a blow-analytic homeomorphism which is not a biLipschitz one ([24]).

For a family of analytic function germs with isolated singularities, T.C. Kuo ([15]) established a locally finite classification theorem on blow-analytic equivalence, but recently J.-P. Henry and A. Parusiński ([8, 9]) showed the appearance of Lipschitz moduli. Therefore, Question 0.1 is not so interesting any more. On the other hand, a local finiteness theorem was established on biLipschitz equivalence for a family of zero-sets of analytic functions (T. Mostowski [17], A. Parusiński [21, 22, 23]).

Example 0.3. Let $f_t : (\mathbb{R}^2, 0) \rightarrow (\mathbb{R}, 0)$, $t \in I = [-2, 2]$, be a family of weighted homogeneous polynomials defined by

$$f_t(x, y) = x^3 + 3xy^4 + ty^6.$$

Then $\{f_t\}_{t \in I}$ admits a blow-analytic trivialisation along I ([4], T. Fukui and L. Paunescu [6]), and $\{(\mathbb{R}^2, f_t^{-1}(0))\}$ is biLipschitz trivial over I. But Lipschitz moduli as function germs appear in the family $\{f_t\}_{t \in I}$ ([8, 9]).

In the next section we introduce the notion of a sea-tangle neighbourhood of a Lipschitz arc. Using some properties of the neighbourhood, we shall show in §2 that the Briançon-Speder family is not biLipschitz trivial as a family of zero-sets, and in §3 that the Oka family [20] is not so, either. But both families of functions are blow-analytically trivial. Therefore (0.2) is improved as follows:

(0.3) Blow-analytic equivalence for functions does not always imply biLipschitz equivalence for the zero-sets.
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITZ TRIVIAL

The author would like to thank Tzee-Char Kuo and Tadeusz Mostowski for useful communications.

1. Preliminaries

By a C^ω arc at $0 \in \mathbb{R}^n$, we mean the germ of an analytic map $\lambda : [0, \epsilon) \to \mathbb{R}^n$ with $\lambda(0) = 0$, $\lambda(s) \neq 0$, $s > 0$. The set of all such arcs is denoted by $A(\mathbb{R}^n, 0)$.

Let S^{n-1} denote the $(n-1)$-dimensional unit sphere. For $a = (a_1, \ldots, a_n) \in S^{n-1}$, let $L(a) : [0, \delta) \to \mathbb{R}^n$, $\delta > 0$, be a mapping defined by

$$L(a)(t) = (a_1 t, \ldots, a_n t).$$

Then $L(a) \in A(\mathbb{R}^n, 0)$.

For any $\lambda \in A(\mathbb{R}^n, 0)$, there exists unique $a \in S^{n-1}$ such that λ is tangent to $L(a)$ at $0 \in \mathbb{R}^n$. Then we write $L(a) = T(\lambda)$.

For an analytic function germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, let $C_0(f)$ denote the set of connected components of $f^{-1}(0) - \{0\}$ as germs at $0 \in \mathbb{R}^n$. We put

$$C_0(f) = \{C_1, \ldots, C_m\}, \ m \in \{0\} \cup \mathbb{N}.$$

For each i, let $D_i(f)$ be the set of $a \in S^{n-1}$ satisfying the following condition:

There exists an arc $\lambda \in A(\mathbb{R}^n, 0)$ such that $\lambda \subset \overline{C_i}$ and λ is tangent to $L(a)$ at $0 \in \mathbb{R}^n$.

For $1 \leq i, j \leq m$, $i \neq j$, we define the cardinal number of common directions of C_i and C_j as follows:

$$D_{ij}(f) = \#(D_i(f) \cap D_j(f)).$$

Let $\theta : [0, \epsilon) \to \mathbb{R}^n$ be a Lipschitz map not identically zero such that $\theta(0) = 0$.

For $d, C > 0$, define a sea-tangle neighbourhood of θ of degree d with width C in a small neighbourhood of $0 \in \mathbb{R}^n$:

$$ST_d(\theta; C) = \{x \in \mathbb{R}^n : \text{dist}(x, \theta) \leq C|x|^d\}.$$

This notion originated in the hornneighbourhood $H_d(f; C)$ introduced by T.C. Kuo [11, 13].

Let $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a biLipschitz homeomorphism germ, namely, there are positive numbers $K_1, K_2 > 0$ with $K_1 \leq K_2$ such that

$$(1.1) \quad K_1|x_1 - x_2| \leq |\phi(x_1) - \phi(x_2)| \leq K_2|x_1 - x_2|$$

in a small neighbourhood of $0 \in \mathbb{R}^n$. Conversely, we have

$$(1.2) \quad \frac{1}{K_2}|y_1 - y_2| \leq |\phi^{-1}(y_1) - \phi^{-1}(y_2)| \leq \frac{1}{K_1}|y_1 - y_2|$$

in a small neighbourhood of $0 \in \mathbb{R}^n$. Then we have the following:

Lemma 1.1. For $K > 0$, $ST_d(\phi(\theta); \frac{K K_2}{K_1}) \subset \phi(ST_d(\theta; K)) \subset ST_d(\phi(\theta); \frac{K K_2}{K_1})$ in a small neighbourhood of $0 \in \mathbb{R}^n$.
Proof. We first show the right inclusion. Pick \(x \in ST_d(\theta; K)\). Then there is \(x_0 \in \theta\) such that \(|x - x_0| \leq K|x|^d\). On the other hand, \(K_1|x| \leq |\phi(x)| \leq K_2|x|\). Therefore
\[
dist(\phi(x), \phi(\theta)) \leq |\phi(x) - \phi(x_0)| \leq K_2|x - x_0| \leq K K_2|x|^d \leq \frac{K K_2}{K_1^d} |\phi(x)|^d.
\]
Thus \(\phi(x) \in ST_d(\phi(\theta); \frac{K K_2}{K_1^d})\).

We can show the left inclusion similarly. By the above argument, we have
\[
\phi^{-1}(ST_d(\phi(\theta); C)) \subset ST_d(\theta; \frac{C}{(\frac{1}{K_1})^d}).
\]
Set \(\frac{C}{(\frac{1}{K_1})^d} = K\), then \(C = \frac{K K_1}{K_2^d}\).

It is easy to see the following fact.

Lemma 1.2. Let \(0 < C < 1\) and \(a \in S^{n-1}\). Let \(\theta : [0, \epsilon) \to \mathbb{R}^n\) be a Lipschitz map not identically zero such that \(\theta(0) = 0\). Suppose that \(\theta \subset ST_1(L(a); C)\) as germs at \(0 \in \mathbb{R}^n\). Then \(L(a) \subset ST_1(\theta; C)\) as germs at \(0 \in \mathbb{R}^n\).

2. The Briançon-Speder family is not biLipschitz trivial

Let \(D = \{x \in \mathbb{R} : |x| < 1 + \epsilon\}\) where \(\epsilon\) is a sufficiently small positive number. Concerning the Briançon-Speder family [2], we have

Theorem 2.1. Let \(f_t : (\mathbb{R}^3, 0) \to (\mathbb{R}, 0), t \in D,\) be a family of weighted homogeneous polynomial functions with isolated singularities defined by
\[
f_t(x, y, z) = z^5 + t z y^6 + y^7 x + x^{15}.
\]
Then \((\mathbb{R}^3, f_0^{-1}(0))\) is not biLipschitz equivalent to \((\mathbb{R}^3, f_{-1}^{-1}(0))\).

Proof. Put \(f = f_0\) and \(g = f_{-1}\). Then \(f^{-1}(0)\) is the graph of a function differentiable at \(0 \in \mathbb{R}^2:\)
\[
(x, y) \to z = -(y^7 x + x^{15})^\frac{1}{2}.
\]
Remark that there is a positive number \(C > 0\) such that
\[
(2.1) \quad |z| \leq C|(x, y)|^\frac{1}{2}
\]
near \(0 \in \mathbb{R}^2\). Let \(\Pi : \mathbb{R}^3 \to \mathbb{R}^2\) be the projection defined by \(\Pi(x, y, z) = (x, y)\). Then \(\Pi\) gives a homeomorphism from \(f^{-1}(0)\) to \(\mathbb{R}^2\).

Pick a point \(P_0 = (1, y_1, z_1)\) on \(g^{-1}(0)\) with \(y_1 > 0, z_1 > 0\). Define the \(C^\omega\) arcs \(\lambda_j \in A(\mathbb{R}^3, 0), 1 \leq j \leq 4,\) as follows:
\[
\lambda_1(s) = (s, 0, -s^3), \quad \lambda_2(s) = (0, s, 0), \quad \lambda_3(s) = (s, y_1 s^2, z_1 s^3), \quad \lambda_4(s) = (0, -s, 0) \quad (s \geq 0).
\]
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Then λ_1 and λ_3 are tangent at $0 \in \mathbb{R}^3$, and they are perpendicular to λ_2, λ_4 at $0 \in \mathbb{R}^3$.

Assume that there is a biLipschitz homeomorphism $\phi : (\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0)$ such that $\phi(g^{-1}(0)) = f^{-1}(0)$. It follows from the relations of λ_j's that there are positive numbers C_1, $C_2 > 0$ such that

$$
\lambda_3 \subset ST_{1/3}(\lambda_1; C_1), \quad \lambda_j \subset \mathbb{R}^3 - ST_1(\lambda_1; C_2), \quad j = 2, 4.
$$

By Lemma 1.1, there are positive numbers C_3, $C_4 > 0$ such that

$$
\phi(\lambda_3) \subset ST_{1/3}(\phi(\lambda_1); C_3), \quad \phi(\lambda_j) \subset \mathbb{R}^3 - ST_1(\phi(\lambda_1); C_4), \quad j = 2, 4.
$$

in a neighbourhood of $0 \in \mathbb{R}^3$. Then, by (2.1), there are positive numbers C_5, $C_6 > 0$ such that

$$(*) \quad \Pi(\phi(\lambda_3)) \subset ST_{1/3}(\Pi(\phi(\lambda_1)); C_5), \quad \Pi(\phi(\lambda_j)) \subset \mathbb{R}^2 - ST_1(\Pi(\phi(\lambda_1)); C_6), \quad j = 2, 4,$$

in a neighbourhood of $0 \in \mathbb{R}^2$.

On the other hand, $\Pi(\phi(\lambda_3)) - \{0\}$ and $\Pi(\phi(\lambda_4)) - \{0\}$ are contained in different components of $\mathbb{R}^2 - \Pi(\phi(\lambda_1)) \cup \Pi(\phi(\lambda_3))$. This contradicts $(*)$. Thus $(\mathbb{R}^3, g^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f^{-1}(0))$.

(Figure of $g^{-1}(0)$)
3. The Oka Family is not biLipschitz Trivial

Let \(D = (-1 - \epsilon, 1 + \epsilon) \) be an open interval as in \(\S 2 \). Concerning the Oka family [20], we have

Theorem 3.1. Let \(f_t : (\mathbb{R}^3, 0) \to (\mathbb{R}, 0), t \in D \), be a family of polynomial functions with isolated singularities defined by

\[
 f_t(x, y, z) = x^8 + y^{16} + z^{16} + tx^5 z^2 + x^3yz^3.
\]

Then \((\mathbb{R}^3, f_0^{-1}(0)) \) is not biLipschitz equivalent to \((\mathbb{R}^3, f_1^{-1}(0)) \).

Proof. We first recall some facts which we have observed in the proof of Theorem B in [10]. Put

\[
 f(x, y, z) = f_0(x, y, z) = x^8 + y^{16} + z^{16} + x^3yz^3.
\]

In each coordinate plane, \(f^{-1}(0) - \{0\} = \emptyset \). Here we put

\[
 A_1 = \{x > 0, y > 0, z < 0\}, \quad A_2 = \{x > 0, y < 0, z > 0\}, \quad A_3 = \{x < 0, y > 0, z > 0\}, \quad A_4 = \{x < 0, y < 0, z < 0\}.
\]

Set \(S_t = f^{-1}(0) \cap A_i, 1 \leq i \leq 4 \). Then \(f^{-1}(0) = S_1 \cup S_2 \cup S_3 \cup S_4 \cup \{0\} \) and each \(\overline{S_t} = S_t \cup \{0\} \) is homeomorphic to \(S^2 \). As seen in [10], \(D_{ij}(f) = 1, i \neq j \).

Next put

\[
 g(x, y, z) = f_1(x, y, z) = x^8 + y^{16} + z^{16} + x^5z^2 + x^3yz^3.
\]

In \((x, y) \)-plane or \((y, z) \)-plane, \(g^{-1}(0) - \{0\} = \emptyset \). Here we put

\[
 B_1 = \{x > 0, y > 0, z < 0\}, \quad B_2 = \{x > 0, y < 0, z > 0\}, \quad B_3 = \{x < 0, y < 0, z > 0\}, \quad B_4 = \{x < 0, z < 0\}.
\]

Set \(P_i = g^{-1}(0) \cap B_i, 1 \leq i \leq 4 \). Then \(g^{-1}(0) = P_1 \cup P_2 \cup P_3 \cup P_4 \cup \{0\} \) and each \(\overline{P_i} = P_i \cup \{0\} \) is homeomorphic to \(S^2 \). By the observations seen in [10], there are \(\lambda_1, \lambda_2 \in A(\mathbb{R}^3, 0) \) with \(\lambda_1 \subset \overline{P_3} \cap \{y = 0\} \) and \(\lambda_2 \subset \overline{P_4} \cap \{y = 0\} \) such that \(T(\lambda_1) = T(\lambda_2) = L((-1, 0, 0)) \), and there are \(\mu_1, \mu_2 \in A(\mathbb{R}^3, 0) \) with \(\mu_1 \subset \overline{P_3} \cap \{y = x\} \) and \(\mu_2 \subset \overline{P_4} \cap \{y = x\} \) such that \(T(\mu_1) = T(\mu_2) = L((-\sqrt{2}, -\frac{1}{\sqrt{2}}, 0)) \). Therefore there are \(C, D > 0 \) and \(d > 1 \) such that \(\lambda_1 \subset ST_d(\lambda_2; D) \subset ST_1(\lambda_1; C), \mu_1 \subset ST_d(\mu_2; D) \subset ST_1(\mu_1; C) \) and \(ST_1(\lambda_1; C) \cap ST_1(\mu_1; C) = \{0\} \) in a small neighbourhood of 0 in \(\mathbb{R}^3 \).

Suppose that there is a biLipschitz homeomorphism germ \(\phi : (\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0) \) with Lipschitz constants \(K_1, K_2 > 0 \) in (1.1) such that \(\phi(g^{-1}(0)) = f^{-1}(0) \). Set \(\gamma_i = \phi(\lambda_i) \) and \(\nu_i = \phi(\mu_i), i = 1, 2 \). Here we put \(E = \frac{C_1K_1}{K_2^2} > 0 \). Then it follows from Lemma 1.1 that \(ST_1(\gamma_1; E) \subset \phi(ST_1(\lambda_1; C)) \) and \(ST_1(\nu_1; E) \subset \phi(ST_1(\mu_1; C)) \) in a small neighbourhood of 0 of \(\mathbb{R}^3 \). Remark that

\[
 ST_1(\gamma_1; E) \cap ST_1(\nu_1; E) = \{0\} \text{ in a neighbourhood of } 0 \text{ of } \mathbb{R}^3.
\]
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Each P_i, $1 \leq i \leq 4$, is mapped to some S_i by ϕ as set-germs at $0 \in \mathbb{R}^3$. Let $\phi(P_3) = S_{j(3)}$ and $\phi(P_4) = S_{j(4)}$. Then $S_{j(3)}(f) \cap S_{j(4)}(f) = \{a\}$ where a is a member of $\{(-1,0,0), (0, \pm 1,0), (0,0, \pm 1)\}$. We consider the sea-tangle neighbourhood $V = ST_1(L(a); E)$ of $L(a)$. If there is a neighbourhood U of $0 \in \mathbb{R}^3$ such that $\gamma_1, \nu_1 \subset V$ in U, then it follows from Lemma 1.2 that $L(a) \subset ST_1(\gamma_1; E)$ and $L(a) \subset ST_1(\nu_1; E)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This contradicts (3.1). Thus

$$(3.2) \quad \gamma_1 \text{ or } \nu_1 \text{ is not contained in } V \cap U \text{ for any neighbourhood } U \text{ of } 0 \in \mathbb{R}^3.$$

Put $H = \frac{dK}{d\check{K}}$. By Lemma 1.1, $\gamma_1 \subset ST_1(\gamma_2; H)$ and $\nu_1 \subset ST_1(\nu_2; H)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This contradicts (3.2) because $\gamma_1, \nu_1 \subset A_{j(3)} \cup \{0\}$ and $\gamma_2, \nu_2 \subset A_{j(4)} \cup \{0\}$ near $0 \in \mathbb{R}^3$. Therefore, $(\mathbb{R}^3, f^{-1}(0))$ and $(\mathbb{R}^3, g^{-1}(0))$ are not biLipschitz equivalent as germs at $0 \in \mathbb{R}^3$.

Remark 3.2. We drew the pictures of the zero-sets of the Briançon-Speder family and the Oka family in [10] using the analysis at high school mathematics level. In [27] T. Fukui is explaining in detail how to draw and understand the pictures of their zero-sets using the Newton Polyhedra determined by the defining functions.

4. PROBLEM

In the previous sections, we discussed the Lipschitz equisingularity of the Briançon-Speder family and the Oka family. In the complex case they are well-known as examples of families of functions which are μ-constant but not μ^*-constant. From our observations, it gives rise to the following problem:

Problem 4.1. Let $f_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, $t \in J$, be a family of analytic functions, and let $f_t^C : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ denote the complexification of f_t. Assume that $\mu(f_t^C) (< \infty)$ is constant but $\mu^*(f_t^C)$ is not constant. Then is the family of zero-sets $\{(\mathbb{R}^n, f_t^{-1}(0))\}_{t \in J}$ not biLipschitz trivial?

Remark 4.2. In the case $n = 2$, there is no family which satisfies the assumption of the above problem.

The problem whether the biLipschitz triviality implies the Kuo-Verdier (w)-regularity in the complex case has been worked on by J.-P. Henry, T. Mostowski and M. Merle. The case $n = 3$ was shown affirmatively ([19]). See [12, 26] for the (w)-regularity which is equivalent to the Whitney (b)-regularity in the complex case (J.-P. Henry and M. Merle [7]). This condition is also equivalent to the μ^*-constancy (B. Teissier [25], J. Briançon and J.P. Speder [3]). Therefore, “not μ^*-constancy” implies “not biLipschitz triviality” in the complex 3 variables case. But this does
SATOSHI KOIKE

not hold in the real case, namely, we cannot omit the assumption of μ-constancy from our problem.

Example 4.3. Let $f_t: (\mathbb{R}^3, 0) \to (\mathbb{R}, 0)$, $t \in \mathbb{R}$, be a family of polynomial functions defined by

$$f_t(x, y, z) = x^2 + y^2 + t^2 z^2 + z^4.$$

Then $\mu(f_t^C) < \infty$, $t \in \mathbb{C}$, and $\{f_t^C\}$ is not μ-constant. As a result, it is not μ^*-constant, either. On the other hand, $\{(\mathbb{R}^3, f_t^{-1}(0))\}_{t \in \mathbb{R}}$ is biLipschitz trivial.

REFERENCES

THE BRIANÇON-SPEEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

DEPARTMENT OF MATHEMATICS, HYOGO UNIVERSITY OF TEACHER EDUCATION, 942-1 SHIMOKUME, KATO, KYUSHU, HYOGO 673-1494, JAPAN
E-mail address: koike@sci.hyogo-u.ac.jp