THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

SATOSHI KOIKE

小池敏司 (兵庫教育大学)

At the symposium "Several Topics on Singularity Theory," Tadeusz Mostowski gave excellent lectures on Lipschitz equisingularity ([18]). Related to this topic, the author described some facts in the short communications. In this note we explain it in detail.

Let $f, g: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be analytic function germs. We say that they are blow-analytically equivalent if there are real modifications $\mu: (M, \mu^{-1}(0)) \to (\mathbb{R}^n, 0)$, $\mu': (M', \mu'^{-1}(0)) \to (\mathbb{R}^n, 0)$ and an analytic isomorphism $\Phi: (M, \mu^{-1}(0)) \to (M', \mu'^{-1}(0))$ which induces a homeomorphism $\phi: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that $f = g \circ \phi$. A blow-analytic homeomorphism is such a homeomorphism induced by an analytic isomorphism via real modifications. Blow-analytic equivalence is a notion introduced by Tzee-Char Kuo ([14, 15]) as a natural equivalence relation for real analytic function germs. Concerning the blow-analyticity, he posed the following question:

Question 0.1. Is a blow-analytic homeomorphism a biLipschitz homeomorphism?

A blow-analytic homeomorphism is an arc-analytic homeomorphism in the sense of K. Kurdyka [16]. Namely, any analytic arc is mapped to an analytic arc by a blow-analytic homeomorphism. The relation between blow-analyticity and arc-analyticity was discussed by E. Bierstone and P. Milman [1]. Originally, Kuo presented the following weak conjecture ([14]):

Conjecture 0.2. A blow-analytic homeomorphism preserves the contact order of analytic arcs.

For more properties of blow-analyticity, see [5].

We next consider the Briançon-Speder family ([2]) $f_t: (\mathbb{R}^3, 0) \to (\mathbb{R}, 0), t \in J = (-1 - \epsilon, \infty)$, defined by

$$f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}$$

¹⁹⁹¹ Mathematics Subject Classification. 14B05, 32S15, 57R45.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640070) of Ministry of Education, Science and Culture of Japan.

where ϵ is a sufficiently small positive number. Then, $\{f_t\}_{t\in J}$ is a family of functions with isolated singularities. It was shown by T. Fukui [4] that $\{f_t\}_{t\in J}$ admits a blow-analytic trivialisation along I for any closed subinterval I of J. At about the same time as Fukui, Koike observed in [10] that $(\mathbb{R}^3, f_0^{-1}(0))$ and $(\mathbb{R}^3, f_{-1}^{-1}(0))$ cannot be equivalent via a homeomorphism which preserves the tangency of analytic arcs contained in the zero-sets. We call such a homeomorphism a strong homeomorphism. Combining the results of Fukui and Koike, we get the fact that

(0.1) a blow-analytic equivalence is not always a "blow-analytic and strong C^{0} " equivalence.

This implies the following:

(0.2) A blow-analytic equivalence is not always a "blow-analytic and biLipschitz" equivalence.

These facts show that there are a negative example to Question 0.1 and a counterexample to Conjecture 0.2. In fact, after Fukui and Koike, L. Paunescu constructed a blow-analytic homeomorphism which is not a biLipschitz one ([24]).

For a family of analytic function germs with isolated singularities, T.C. Kuo ([15]) established a locally finite classification theorem on blow-analytic equivalence, but recently J.-P. Henry and A. Parusiński ([8, 9]) showed the appearance of Lipschitz moduli. Therefore, Question 0.1 is not so interesting any more. On the other hand, a local finiteness theorem was established on biLipschitz equivalence for a family of zero-sets of analytic functions (T. Mostowski [17], A. Parusiński [21, 22, 23]).

Example 0.3. Let $f_t: (\mathbb{R}^2, 0) \to (\mathbb{R}, 0), t \in I = [-2, 2]$, be a family of weighted homogeneous polynomials defined by

$$f_t(x,y) = x^3 + 3xy^4 + ty^6.$$

Then $\{f_t\}_{t\in I}$ admits a blow-analytic trivialisation along I ([4], T. Fukui and L. Paunescu [6]), and $\{(\mathbb{R}^2, f_t^{-1}(0))\}$ is biLipschitz trivial over I. But Lipschitz moduli as function germs appear in the family $\{f_t\}_{t\in I}$ ([8, 9]).

In the next section we introduce the notion of a sea-tangle neighbourhood of a Lipschitz arc. Using some properties of the neighbourhood, we shall show in §2 that the Briançon-Speder family is not biLipschitz trivial as a family of zero-sets, and in §3 that the Oka family [20] is not so, either. But both families of functions are blow-analytically trivial. Therefore (0.2) is improved as follows:

(0.3) Blow-analytic equivalence for functions does not always imply biLipschitz equivalence for the zero-sets.

THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

The author would like to thank Tzee-Char Kuo and Tadeusz Mostowski for useful communications.

1. PRELIMINARIES

By a C^{ω} arc at $0 \in \mathbb{R}^n$, we mean the germ of an analytic map $\lambda : [0, \epsilon) \to \mathbb{R}^n$ with $\lambda(0) = 0$, $\lambda(s) \neq 0$, s > 0. The set of all such arcs is denoted by $A(\mathbb{R}^n, 0)$.

Let S^{n-1} denote the (n-1)-dimensional unit sphere. For $a=(a_1,\dots,a_n)\in S^{n-1}$, let $L(a):[0,\delta)\to\mathbb{R}^n,\,\delta>0$, be a mapping defined by

$$L(a)(t)=(a_1t,\cdots,a_nt).$$

Then $L(a) \in A(\mathbb{R}^n, 0)$. For any $\lambda \in A(\mathbb{R}^n, 0)$, there exists unique $a \in S^{n-1}$ such that λ is tangent to L(a) at $0 \in \mathbb{R}^n$. Then we write $L(a) = T(\lambda)$.

For an analytic function germ $f:(\mathbb{R}^n,0)\to(\mathbb{R},0)$, let $C_0(f)$ denote the set of connected components of $f^{-1}(0)-\{0\}$ as germs at $0\in\mathbb{R}^n$. We put

$$C_0(f) = \{C_1, \cdots, C_m\}, m \in \{0\} \cup \mathbb{N}.$$

For each i, let $D_i(f)$ be the set of $a \in S^{n-1}$ satisfying the following condition:

There exists an arc $\lambda \in A(\mathbb{R}^n, 0)$ such that $\lambda \subset \overline{C_i}$ and λ is tangent to L(a) at $0 \in \mathbb{R}^n$.

For $1 \le i, j \le m, i \ne j$, we define the cardinal number of common directions of C_i and C_j as follows:

$$D_{ij}(f) = \sharp (D_i(f) \cap D_j(f)).$$

Let $\theta: [0, \epsilon) \to \mathbb{R}^n$ be a Lipschitz map not identically zero such that $\theta(0) = 0$. For d, C > 0, define a sea-tangle neighbourhood of θ of degree d with width C in a small neighbourhood of $0 \in \mathbb{R}^n$:

$$ST_d(\theta; C) = \{x \in \mathbb{R}^n : dist(x, \theta) \le C|x|^d\}.$$

This notion originated in the hornneighbourhood $H_d(f; C)$ introduced by T.C. Kuo [11, 13].

Let $\phi: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a biLipschitz homeomorphism germ, namely, there are positive numbers $K_1, K_2 > 0$ with $K_1 \leq K_2$ such that

$$(1.1) K_1|x_1-x_2| \leq |\phi(x_1)-\phi(x_2)| \leq K_2|x_1-x_2|$$

in a small neighbourhood of $0 \in \mathbb{R}^n$. Conversely, we have

(1.2)
$$\frac{1}{K_2}|y_1-y_2| \leq |\phi^{-1}(y_1)-\phi^{-1}(y_2)| \leq \frac{1}{K_1}|y_1-y_2|$$

in a small neighbourhood of $0 \in \mathbb{R}^n$. Then we have the following:

Lemma 1.1. For K > 0, $ST_d(\phi(\theta); \frac{KK_1}{K_2^d}) \subset \phi(ST_d(\theta; K)) \subset ST_d(\phi(\theta); \frac{KK_2}{K_1^d})$ in a small neighbourhood of $0 \in \mathbb{R}^n$.

SATOSHI KOIKE

Proof. We first show the right inclusion. Pick $x \in ST_d(\theta; K)$. Then there is $x_0 \in \theta$ such that $|x - x_0| \le K|x|^d$. On the other hand, $K_1|x| \le |\phi(x)| \le K_2|x|$. Therefore

$$dist(\phi(x), \phi(\theta)) \le |\phi(x) - \phi(x_0)| \le K_2|x - x_0| \le KK_2|x|^d \le \frac{KK_2}{K_1^d}|\phi(x)|^d$$
.

Thus $\phi(x) \in ST_d(\phi(\theta); \frac{KK_2}{K_1^d})$.

We can show the left inclusion similarly. By the above argument, we have

$$\phi^{-1}(ST_d(\phi(\theta);C)) \subset ST_d(\theta;\frac{C(\frac{1}{K_1})}{(\frac{1}{K_2})^d}).$$

Set
$$\frac{C(\frac{1}{K_1})}{(\frac{1}{K_2})^d} = K$$
, then $C = \frac{KK_1}{K_2^d}$.

It is easy to see the following fact.

Lemma 1.2. Let 0 < C < 1 and $a \in S^{n-1}$. Let $\theta : [0, \epsilon) \to \mathbb{R}^n$ be a Lipschitz map not identically zero such that $\theta(0) = 0$. Suppose that $\theta \subset ST_1(L(a); C)$ as germs at $0 \in \mathbb{R}^n$. Then $L(a) \subset ST_1(\theta; C)$ as germs at $0 \in \mathbb{R}^n$.

2. THE BRIANCON-SPEDER FAMILY IS NOT BILIPSCHITZ TRIVIAL

Let $D = \{x \in \mathbb{R} : |x| < 1 + \epsilon\}$ where ϵ is a sufficiently small positive number. Concerning the Briançon-Speder family [2], we have

Theorem 2.1. Let $f_t: (\mathbb{R}^3, 0) \to (\mathbb{R}, 0)$, $t \in D$, be a family of weighted homogeneous polynomial functions with isolated singularities defined by

$$f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}.$$

Then $(\mathbb{R}^3, f_0^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f_{-1}^{-1}(0))$.

Proof. Put $f = f_0$ and $g = f_{-1}$. Then $f^{-1}(0)$ is the graph of a function differentiable at $0 \in \mathbb{R}^2$:

$$(x,y) \rightarrow z = -(y^7x + x^{15})^{\frac{1}{5}}.$$

Remark that there is a positive number C > 0 such that

$$|z| \le C|(x,y)|^{\frac{8}{5}}$$

near $0 \in \mathbb{R}^2$. Let $\Pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the projection defined by $\Pi(x, y, z) = (x, y)$. Then Π gives a homeomorphism from $f^{-1}(0)$ to \mathbb{R}^2 .

Pick a point $P_0 = (1, y_1, z_1)$ on $g^{-1}(0)$ with $y_1 > 0$, $z_1 > 0$. Define the C^{ω} arcs $\lambda_j \in A(\mathbb{R}^3, 0)$, $1 \le j \le 4$, as follows:

$$\lambda_1(s) = (s, 0, -s^3), \qquad \lambda_2(s) = (0, s, 0),$$

 $\lambda_3(s) = (s, y_1 s^2, z_1 s^3), \quad \lambda_4(s) = (0, -s, 0) \qquad (s \ge 0).$

THE BRIANCON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Then λ_1 and λ_3 are tangent at $0 \in \mathbb{R}^3$, and they are perpendicular to λ_2 , λ_4 at $0 \in \mathbb{R}^3$.

(Figure of $g^{-1}(0)$)

Assume that there is a biLipschitz homeomorphism $\phi: (\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0)$ such that $\phi(g^{-1}(0)) = f^{-1}(0)$. It follows from the relations of λ_j 's that there are positive numbers C_1 , $C_2 > 0$ such that

$$\lambda_3 \subset ST_{\frac{3}{2}}(\lambda_1; C_1), \ \lambda_j \subset \mathbb{R}^3 - ST_1(\lambda_1; C_2), \ j = 2, 4.$$

By Lemma 1.1, there are positive numbers C_3 , $C_4 > 0$ such that

$$\phi(\lambda_3) \subset ST_{\frac{3}{2}}(\phi(\lambda_1); C_3), \ \phi(\lambda_j) \subset \mathbb{R}^3 - ST_1(\phi(\lambda_1); C_4), \ j = 2, 4.$$

in a neighbourhood of $0 \in \mathbb{R}^3$. Then, by (2.1), there are positive numbers C_5 , $C_6 > 0$ such that

(*)
$$\Pi(\phi(\lambda_3)) \subset ST_{\frac{3}{2}}(\Pi(\phi(\lambda_1)); C_5), \ \Pi(\phi(\lambda_j)) \subset \mathbb{R}^2 - ST_1(\Pi(\phi(\lambda_1)); C_6), \ j = 2, 4,$$
 in a neighbourhood of $0 \in \mathbb{R}^2$.

On the other hand, $\Pi(\phi(\lambda_2)) - \{0\}$ and $\Pi(\phi(\lambda_4)) - \{0\}$ are contained in different components of $\mathbb{R}^2 - \Pi(\phi(\lambda_1)) \cup \Pi(\phi(\lambda_3))$. This contradicts (*). Thus $(\mathbb{R}^3, g^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f^{-1}(0))$.

SATOSHI KOIKE

3. THE OKA FAMILY IS NOT BILIPSCHITZ TRIVIAL

Let $D = (-1 - \epsilon, 1 + \epsilon)$ be an open interval as in §2. Concerning the Oka family [20], we have

Theorem 3.1. Let $f_t: (\mathbb{R}^3, 0) \to (\mathbb{R}, 0)$, $t \in D$, be a family of polynomial functions with isolated singularities defined by

$$f_t(x,y,z) = x^8 + y^{16} + z^{16} + tx^5z^2 + x^3yz^3$$

Then $(\mathbb{R}^3, f_0^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f_1^{-1}(0))$.

Proof. We first recall some facts which we have observed in the proof of Theorem B in [10]. Put

$$f(x,y,z) = f_0(x,y,z) = x^8 + y^{16} + z^{16} + x^3yz^3.$$

In each coordinate plane, $f^{-1}(0) - \{0\} = \emptyset$. Here we put

$$A_1 = \{x > 0, y > 0, z < 0\}, A_2 = \{x > 0, y < 0, z > 0\},$$

 $A_3 = \{x < 0, y > 0, z > 0\}, A_4 = \{x < 0, y < 0, z < 0\}.$

Set $S_i = f^{-1}(0) \cap A_i$, $1 \le i \le 4$. Then $f^{-1}(0) = S_1 \cup S_2 \cup S_3 \cup S_4 \cup \{0\}$ and each $\overline{S_i} = S_i \cup \{0\}$ is homeomorphic to S^2 . As seen in [10], $D_{ij}(f) = 1$, $i \ne j$. Next put

$$g(x,y,z) = f_1(x,y,z) = x^8 + y^{16} + z^{16} + x^5 z^2 + x^3 y z^3.$$

In (x, y)-plane or (y, z)-plane, $g^{-1}(0) - \{0\} = \emptyset$. Here we put

$$B_1 = \{x > 0, y > 0, z < 0\}, B_2 = \{x > 0, y < 0, z > 0\},$$

 $B_3 = \{x < 0, z > 0\}, B_4 = \{x < 0, z < 0\}.$

Set $P_i = g^{-1}(0) \cap B_i$, $1 \leq i \leq 4$. Then $g^{-1}(0) = P_1 \cup P_2 \cup P_3 \cup P_4 \cup \{0\}$ and each $\overline{P_i} = P_i \cup \{0\}$ is homeomorphic to S^2 . By the observations seen in [10], there are $\lambda_1, \lambda_2 \in A(\mathbb{R}^3, 0)$ with $\lambda_1 \subset \overline{P_3} \cap \{y = 0\}$ and $\lambda_2 \subset \overline{P_4} \cap \{y = 0\}$ such that $T(\lambda_1) = T(\lambda_2) = L((-1, 0, 0))$, and there are $\mu_1, \mu_2 \in A(\mathbb{R}^3, 0)$ with $\mu_1 \subset \overline{P_3} \cap \{y = x\}$ and $\mu_2 \subset \overline{P_4} \cap \{y = x\}$ such that $T(\mu_1) = T(\mu_2) = L((-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0))$. Therefore there are C, D > 0 and d > 1 such that $\lambda_1 \subset ST_d(\lambda_2; D) \subset ST_1(\lambda_1; C)$, $\mu_1 \subset ST_d(\mu_2; D) \subset ST_1(\mu_1; C)$ and $ST_1(\lambda_1; C) \cap ST_1(\mu_1; C) = \{0\}$ in a small neighbourhood of 0 in \mathbb{R}^3 .

Suppose that there is a biLipschitz homeomorphism germ $\phi: (\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0)$ with Lipschitz constants K_1 , $K_2 > 0$ in (1.1) such that $\phi(g^{-1}(0)) = f^{-1}(0)$. Set $\gamma_i = \phi(\lambda_i)$ and $\nu_i = \phi(\mu_i)$, i = 1, 2. Here we put $E = \frac{CK_1}{K_2} > 0$. Then it follows from Lemma 1.1 that $ST_1(\gamma_1; E) \subset \phi(ST_1(\lambda_1; C))$ and $ST_1(\nu_1; E) \subset \phi(ST_1(\mu_1; C))$ in a small neighbourhood of 0 of \mathbb{R}^3 . Remark that

$$(3.1) ST_1(\gamma_1; E) \cap ST_1(\nu_1; E) = \{0\} \text{ in a neighbourhood of } 0 \text{ of } \mathbb{R}^3.$$

THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Each P_i , $1 \le i \le 4$, is mapped to some S_j by ϕ as set-germs at $0 \in \mathbb{R}^3$. Let $\phi(P_3) = S_{j(3)}$ and $\phi(P_4) = S_{j(4)}$. Then $D_{j(3)}(f) \cap D_{j(4)}(f) = \{a\}$ where a is a member of $\{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}$. We consider the sea-tangle neighbourhood $V = ST_1(L(a); E)$ of L(a). If there is a neighbourhood U of $0 \in \mathbb{R}^3$ such that $\gamma_1, \nu_1 \subset V$ in U, then it follows from Lemma 1.2 that $L(a) \subset ST_1(\gamma_1; E)$ and $L(a) \subset ST_1(\nu_1; E)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This cotradicts (3.1). Thus

(3.2) γ_1 or ν_1 is not contained in $V \cap U$ for any neighbourhood U of $0 \in \mathbb{R}^3$.

Put $H = \frac{DK_2}{K_1^d}$. By Lemma 1.1, $\gamma_1 \subset ST_d(\gamma_2; H)$ and $\nu_1 \subset ST_d(\nu_2; H)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This contradicts (3.2) because $\gamma_1, \nu_1 \subset A_{j(3)} \cup \{0\}$ and $\gamma_2, \nu_2 \subset A_{j(4)} \cup \{0\}$ near $0 \in \mathbb{R}^3$. Therefore, $(\mathbb{R}^3, f^{-1}(0))$ and $(\mathbb{R}^3, g^{-1}(0))$ are not biLipschitz equivalent as germs at $0 \in \mathbb{R}^3$.

Remark 3.2. We drew the pictures of the zero-sets of the Briançon-Speder family and the Oka family in [10] using the analysis at high school mathematics level. In [27] T. Fukui is explaining in detail how to draw and understand the pictures of their zero-sets using the Newton Polyhedra determined by the defining functions.

4. PROBLEM

In the previous sections, we discussed the Lipschitz equisingularity of the Briançon-Speder family and the Oka family. In the complex case they are well-known as examples of families of functions which are μ -constant but not μ^* -constant. From our observations, it gives rise to the following problem:

Problem 4.1. Let $f_t: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, $t \in J$, be a family of analytic functions, and let $f_t^{\mathbb{C}}: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ denote the complexification of f_t . Assume that $\mu(f_t^{\mathbb{C}})$ ($< \infty$) is constant but $\mu^*(f_t^{\mathbb{C}})$ is not constant. Then is the family of zero-sets $\{(\mathbb{R}^n, f_t^{-1}(0))\}_{t \in J}$ not biLipschitz trivial?

Remark 4.2. In the case n=2, there is no family which satisfies the assumption of the above problem.

The problem whether the biLipschitz triviality implies the Kuo-Verdier (w)-regularity in the complex case has been worked on by J.-P. Henry, T. Mostowski and M. Merle. The case n=3 was shown affirmatively ([19]). See [12, 26] for the (w)-regularity which is equivalent to the Whitney (b)-regularity in the complex case (J.-P. Henry and M. Merle [7]). This condition is also equivalent to the μ^* -constancy (B. Teissier [25], J. Briançon and J.P. Speder [3]). Therefore, "not μ^* -constancy" implies "not biLipschitz triviality" in the complex 3 variables case. But this does

SATOSHI KOIKE

not hold in the real case, namely, we cannot omit the assumption of μ -constancy from our problem.

Example 4.3. Let $f_t: (\mathbb{R}^3, 0) \to (\mathbb{R}, 0), t \in \mathbb{R}$, be a family of polynomial functions defined by

$$f_t(x, y, z) = x^2 + y^2 + t^2 z^2 + z^4.$$

Then $\mu(f_t^{\mathbb{C}}) < \infty$, $t \in \mathbb{C}$, and $\{f_t^{\mathbb{C}}\}$ is not μ -constant. As a result, it is not μ^* -constant, either. On the other hand, $\{(\mathbb{R}^3, f_t^{-1}(0))\}_{t \in \mathbb{R}}$ is biLipschitz trivial.

REFERENCES

- [1] E. Bierstone, P. D. Milman, Arc-analytic functions, Invent. math. 101 (1990), 411-424.
- [2] J. Briançon, J.P. Speder, La trivialité topologique n'implique pas les conditions de Whitney,
 C. R. Acad. Sci. Paris 280 (1975), 365-367.
- [3] J. Briançon, J.P. Speder, Les conditions de Whitney impliquent μ^* constant, Ann. Inst. Fourier **26**.2 (1976), 153-163.
- [4] T. Fukui, The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan 44 (1992), 455-459.
- [5] T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, Pitman Research Notes in Mathematics Series 381, Longman, 1998, pp. 8-29.
- [6] T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous functiongerms, J. Math. Soc. Japan 52 (2000), 433-446.
- [7] J.-P. Henry, M. Merle, Limites de normales, conditions de Whitney et éclatement d'Hironaka, Proceedings of Symposia in Pure Mathematics 40 Part I, Singularities, A.M.S., 1983, pp. 575-584.
- [8] J.-P. Henry, A. Parusiński, Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math. (to appear).
- [9] J.-P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions, preprint.
- [10] S. Koike, On strong C⁰-equivalence of real analytic functions, J. Math. Soc. Japan 45 (1993), 313-320.
- [11] T.-C. Kuo, A complete determination of C^0 -sufficiency in $J^r(2,1)$, Invent. math. 8 (1969), 226–235.
- [12] T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool Singularities Sympos. I, Lecture Notes in Math. 192, Springer-Verlag, Berlin and New York, 1971, pp. 141-149.
- [13] T.-C. Kuo, Characterizations of v-sufficiency of jets, Topology 11 (1972), 115-131.
- [14] T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614.
- [15] T.-C. Kuo, On classification of real singularities, Invent. math. 82 (1985), 257-262.
- [16] K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445–462
- [17] T. Mostowski, Lipschitz equisingularity, Dissertationes Math. 243 (1985).
- [18] T. Mostowski, Lipschitz equisingularity problems, in this volume.
- [19] T. Mostowski, Personal communication (April, 2003).

THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

- [20] M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math. 90 (1989), 199-210.
- [21] A. Parusiński, Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications 20 (1988), 323–333.
- [22] A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier 38 (1988), 189-213.
- [23] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup. 27 (1994), 661-696.
- [24] L. Paunescu, An example of blow analytic homeomorphism, Real Analytic and Algebraic Singularities, Pitman Research Notes in Mathematics Series 381, Longman, 1998, pp. 62–63.
- [25] B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse, Astérisque, 7 et 8 (1973), 285-362.
- [26] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. math. 36 (1976), 295-312.
- [27] E. Yoshinaga, T. Fukui, 特異点とニュートン図形、「解析関数と特異点」第 I 部, 特異点の数理 3, pp. 1-163, 共立出版, 2002.

DEPARTMENT OF MATHEMATICS, HYOGO UNIVERSITY OF TEACHER EDUCATION, 942-1 SHIMOKUME, KATO, YASHIRO, HYOGO 673-1494, JAPAN

E-mail address: koike@sci.hyogo-u.ac.jp