<table>
<thead>
<tr>
<th>Title</th>
<th>THE BRIANCON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL (Several topics in singularity theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koike, Satoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1328: 165-173</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43246</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT
BILIPSCHITS TRIVIAL

Satoshi Koike

小池敏司 (兵庫教育大学)

At the symposium "Several Topics on Singularity Theory," Tadeusz Mostowski gave excellent lectures on Lipschitz equisingularity ([18]). Related to this topic, the author described some facts in the short communications. In this note we explain it in detail.

Let \(f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0) \) be analytic function germs. We say that they are blow-analytically equivalent if there are real modifications \(\mu : (M, \mu^{-1}(0)) \rightarrow (\mathbb{R}^n, 0) \), \(\mu' : (M', \mu'^{-1}(0)) \rightarrow (\mathbb{R}^n, 0) \) and an analytic isomorphism \(\Phi : (M, \mu^{-1}(0)) \rightarrow (M', \mu'^{-1}(0)) \) which induces a homeomorphism \(\phi : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0) \) such that \(f = g \circ \phi \). A blow-analytic homeomorphism is such a homeomorphism induced by an analytic isomorphism via real modifications. Blow-analytic equivalence is a notion introduced by Tzee-Char Kuo ([14, 15]) as a natural equivalence relation for real analytic function germs. Concerning the blow-analyticity, he posed the following question:

Question 0.1. Is a blow-analytic homeomorphism a biLipschitz homeomorphism?

A blow-analytic homeomorphism is an arc-analytic homeomorphism in the sense of K. Kurdyka [16]. Namely, any analytic arc is mapped to an analytic arc by a blow-analytic homeomorphism. The relation between blow-analyticity and arc-analyticity was discussed by E. Bierstone and P. Milman [1]. Originally, Kuo presented the following weak conjecture ([14]):

Conjecture 0.2. A blow-analytic homeomorphism preserves the contact order of analytic arcs.

For more properties of blow-analyticity, see [5].

We next consider the Briançon-Speder family ([2]) \(f_t : (\mathbb{R}^3, 0) \rightarrow (\mathbb{R}, 0), \ t \in J = (-1 - \epsilon, \infty) \), defined by

\[
f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}
\]

1991 Mathematics Subject Classification. 14B05, 32S15, 57R45.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640070) of Ministry of Education, Science and Culture of Japan.
where ϵ is a sufficiently small positive number. Then, $\{f_t\}_{t \in J}$ is a family of functions with isolated singularities. It was shown by T. Fukui [4] that $\{f_t\}_{t \in J}$ admits a blow-analytic trivialisation along I for any closed subinterval I of J. At about the same time as Fukui, Koike observed in [10] that $(\mathbb{R}^3, f_0^{-1}(0))$ and $(\mathbb{R}^3, f_{-1}^{-1}(0))$ cannot be equivalent via a homeomorphism which preserves the tangency of analytic arcs contained in the zero-sets. We call such a homeomorphism a strong homeomorphism. Combining the results of Fukui and Koike, we get the fact that

(0.1) a blow-analytic equivalence is not always a “blow-analytic and strong C^0” equivalence.

This implies the following:

(0.2) A blow-analytic equivalence is not always a “blow-analytic and biLipschitz” equivalence.

These facts show that there are a negative example to Question 0.1 and a counterexample to Conjecture 0.2. In fact, after Fukui and Koike, L. Paunescu constructed a blow-analytic homeomorphism which is not a biLipschitz one ([24]). For a family of analytic function germs with isolated singularities, T.C. Kuo ([15]) established a locally finite classification theorem on blow-analytic equivalence, but recently J.-P. Henry and A. Parusiński ([8, 9]) showed the appearance of Lipschitz moduli. Therefore, Question 0.1 is not so interesting any more. On the other hand, a local finiteness theorem was established on biLipschitz equivalence for a family of zero-sets of analytic functions (T. Mostowski [17], A. Parusiński [21, 22, 23]).

Example 0.3. Let $f_t : (\mathbb{R}^2, 0) \to (\mathbb{R}, 0)$, $t \in I = [-2, 2]$, be a family of weighted homogeneous polynomials defined by

$$f_t(x, y) = x^3 + 3xy^4 + ty^6.$$

Then $\{f_t\}_{t \in I}$ admits a blow-analytic trivialisation along I ([4], T. Fukui and L. Paunescu [6]), and $\{(\mathbb{R}^2, f_t^{-1}(0))\}$ is biLipschitz trivial over I. But Lipschitz moduli as function germs appear in the family $\{f_t\}_{t \in I}$ ([8, 9]).

In the next section we introduce the notion of a sea-tangle neighbourhood of a Lipschitz arc. Using some properties of the neighbourhood, we shall show in §2 that the Briançon-Speder family is not biLipschitz trivial as a family of zero-sets, and in §3 that the Oka family [20] is not so, either. But both families of functions are blow-analytically trivial. Therefore (0.2) is improved as follows:

(0.3) Blow-analytic equivalence for functions does not always imply biLipschitz equivalence for the zero-sets.
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

The author would like to thank Tzee-Char Kuo and Tadeusz Mostowski for useful communications.

1. PRELIMINARIES

By a C^ω arc at $0 \in \mathbb{R}^n$, we mean the germ of an analytic map $\lambda : [0, \epsilon) \to \mathbb{R}^n$ with $\lambda(0) = 0$, $\lambda(s) \neq 0$, $s > 0$. The set of all such arcs is denoted by $A(\mathbb{R}^n, 0)$.

Let S^{n-1} denote the $(n-1)$-dimensional unit sphere. For $a = (a_1, \cdots, a_n) \in S^{n-1}$, let $L(a) : [0, \delta) \to \mathbb{R}^n$, $\delta > 0$, be a mapping defined by

$L(a)(t) = (a_1t, \cdots, a_nt)$.

Then $L(a) \in A(\mathbb{R}^n, 0)$. For any $\lambda \in A(\mathbb{R}^n, 0)$, there exists unique $a \in S^{n-1}$ such that λ is tangent to $L(a)$ at $0 \in \mathbb{R}^n$. Then we write $L(a) = T(\lambda)$.

For an analytic function germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, let $C_0(f)$ denote the set of connected components of $f^{-1}(0) - \{0\}$ as germs at $0 \in \mathbb{R}^n$. We put

$C_0(f) = \{C_1, \cdots, C_m\}$, $m \in \{0\} \cup \mathbb{N}$.

For each i, let $D_i(f)$ be the set of $a \in S^{n-1}$ satisfying the following condition:

There exists an arc $\lambda \in A(\mathbb{R}^n, 0)$ such that $\lambda \subset \overline{C_i}$ and λ is tangent to $L(a)$ at $0 \in \mathbb{R}^n$.

For $1 \leq i, j \leq m$, $i \neq j$, we define the cardinal number of common directions of C_i and C_j as follows:

$D_{ij}(f) = \#(D_i(f) \cap D_j(f))$.

For $d, C > 0$, define a sea-tangle neighbourhood of θ of degree d with width C in a small neighbourhood of $0 \in \mathbb{R}^n$:

$ST_d(\theta; C) = \{x \in \mathbb{R}^n : dist(x, \theta) \leq C|x|^{d}\}$.

This notion originated in the hornneighbourhood $H_d(f; C)$ introduced by T.C. Kuo [11, 13].

Let $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a biLipschitz homeomorphism germ, namely, there are positive numbers K_1, $K_2 > 0$ with $K_1 \leq K_2$ such that

$K_1|x_1 - x_2| \leq |\phi(x_1) - \phi(x_2)| \leq K_2|x_1 - x_2|$

in a small neighbourhood of $0 \in \mathbb{R}^n$. Conversely, we have

$\frac{1}{K_2}|y_1 - y_2| \leq |\phi^{-1}(y_1) - \phi^{-1}(y_2)| \leq \frac{1}{K_1}|y_1 - y_2|

in a small neighbourhood of $0 \in \mathbb{R}^n$. Then we have the following:

Lemma 1.1. For $K > 0$, $ST_d(\phi(\theta); \frac{KK_1}{K_2}) \subset \phi(ST_d(\theta; K)) \subset ST_d(\phi(\theta); \frac{KK_1}{K_2})$ in a small neighbourhood of $0 \in \mathbb{R}^n$.
Proof. We first show the right inclusion. Pick \(x \in ST_{d}(\theta;K) \). Then there is \(x_{0} \in \theta \) such that \(|x - x_{0}| \leq K|x|^d \). On the other hand, \(K_{1}|x| \leq \phi(x) \leq K_{2}|x| \). Therefore

\[
\text{dist}(\phi(x), \phi(\theta)) \leq |\phi(x) - \phi(x_{0})| \leq K_{2}|x - x_{0}| \leq KK_{2}|x|^d \leq \frac{KK_{2}}{K_{1}^{d}}|\phi(x)|^{d}.
\]

Thus \(\phi(x) \in ST_{d}(\phi(\theta);\frac{KK_{2}}{K_{1}^{d}}) \).

We can show the left inclusion similarly. By the above argument, we have

\[
\phi^{-1}(ST_{d}(\phi(\theta);C)) \subset ST_{d}(\theta;\frac{C}{K_{2}^{d}}).
\]

Set \(\frac{C}{K_{2}^{d}} = K \), then \(C = \frac{KK_{2}}{K_{1}^{d}} \).

It is easy to see the following fact.

Lemma 1.2. Let \(0 < C < 1 \) and \(a \in S^{n-1} \). Let \(\theta : [0, \epsilon) \to \mathbb{R}^{n} \) be a Lipschitz map not identically zero such that \(\theta(0) = 0 \). Suppose that \(\theta \subset ST_{1}(L(a);C) \) as germs at \(0 \in \mathbb{R}^{n} \). Then \(L(a) \subset ST_{1}(\theta;C) \) as germs at \(0 \in \mathbb{R}^{n} \).

2. The Briançon-Speder Family is Not BiLipschitz Trivial

Let \(D = \{ x \in \mathbb{R} : |x| < 1 + \epsilon \} \) where \(\epsilon \) is a sufficiently small positive number. Concerning the Briançon-Speder family [2], we have

Theorem 2.1. Let \(f_{t} : (\mathbb{R}^{3},0) \to (\mathbb{R},0) \), \(t \in D \), be a family of weighted homogeneous polynomial functions with isolated singularities defined by

\[
f_{t}(x,y,z) = z^{5} + tzy^{6} + y^{7}x + x^{15}.
\]

Then \((\mathbb{R}^{3},f_{0}^{-1}(0)) \) is not biLipschitz equivalent to \((\mathbb{R}^{3},f_{-1}^{-1}(0)) \).

Proof. Put \(f = f_{0} \) and \(g = f_{-1} \). Then \(f^{-1}(0) \) is the graph of a function differentiable at \(0 \in \mathbb{R}^{2} \):

\[
(x,y) \to z = -(y^{7}x + x^{15})^{\frac{1}{2}}.
\]

Remark that there is a positive number \(C > 0 \) such that

\[
|z| \leq C|(x,y)|^{\frac{1}{2}}
\]

near \(0 \in \mathbb{R}^{2} \). Let \(\Pi : \mathbb{R}^{3} \to \mathbb{R}^{2} \) be the projection defined by \(\Pi(x,y,z) = (x,y) \). Then \(\Pi \) gives a homeomorphism from \(f^{-1}(0) \) to \(\mathbb{R}^{2} \).

Pick a point \(P_{0} = (1,y_{1},z_{1}) \) on \(g^{-1}(0) \) with \(y_{1} > 0, z_{1} > 0 \). Define the \(C^{\omega} \) arcs \(\lambda_{j} \in A(\mathbb{R}^{3},0), 1 \leq j \leq 4 \), as follows:

\[
\lambda_{1}(s) = (s,0,-s^{3}), \quad \lambda_{2}(s) = (0,s,0), \quad \lambda_{3}(s) = (s,y_{1}s^{2},z_{1}s^{3}), \quad \lambda_{4}(s) = (0,-s,0) \quad (s \geq 0).
\]
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Then λ_1 and λ_3 are tangent at $0 \in \mathbb{R}^3$, and they are perpendicular to λ_2, λ_4 at $0 \in \mathbb{R}^3$.

Assume that there is a biLipschitz homeomorphism $\phi : (\mathbb{R}^3, 0) \rightarrow (\mathbb{R}^3, 0)$ such that $\phi(g^{-1}(0)) = f^{-1}(0)$. It follows from the relations of λ_j's that there are positive numbers $C_1, C_2 > 0$ such that

$$\lambda_3 \subset ST_{\frac{3}{2}}(\lambda_1; C_1), \quad \lambda_j \subset \mathbb{R}^3 - ST_1(\lambda_1; C_2), \quad j = 2, 4.$$

By Lemma 1.1, there are positive numbers $C_3, C_4 > 0$ such that

$$\phi(\lambda_3) \subset ST_{\frac{3}{2}}(\phi(\lambda_1); C_3), \quad \phi(\lambda_j) \subset \mathbb{R}^3 - ST_1(\phi(\lambda_1); C_4), \quad j = 2, 4.$$

in a neighbourhood of $0 \in \mathbb{R}^3$. Then, by (2.1), there are positive numbers $C_5, C_6 > 0$ such that

$$(*) \quad \Pi(\phi(\lambda_3)) \subset ST_{\frac{3}{2}}(\Pi(\phi(\lambda_1)); C_5), \quad \Pi(\phi(\lambda_j)) \subset \mathbb{R}^2 - ST_1(\Pi(\phi(\lambda_1)); C_6), \quad j = 2, 4,$$

in a neighbourhood of $0 \in \mathbb{R}^2$.

On the other hand, $\Pi(\phi(\lambda_3)) - \{0\}$ and $\Pi(\phi(\lambda_4)) - \{0\}$ are contained in different components of $\mathbb{R}^2 - \Pi(\phi(\lambda_1)) \cup \Pi(\phi(\lambda_3))$. This contradicts $(*)$. Thus $(\mathbb{R}^3, g^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f^{-1}(0))$.

SATOSHI KOIKE

3. THE OKA FAMILY IS NOT BILIPSCHITZ TRIVIAL

Let $D = (-1 - \epsilon, 1 + \epsilon)$ be an open interval as in §2. Concerning the Oka family [20], we have

Theorem 3.1. Let $f_t : (\mathbb{R}^3, 0) \rightarrow (\mathbb{R}, 0)$, $t \in D$, be a family of polynomial functions with isolated singularities defined by

$$f_t(x, y, z) = x^8 + y^{16} + z^{16} + tx^5z^2 + x^3yz^3.$$

Then $(\mathbb{R}^3, f_0^{-1}(0))$ is not biLipschitz equivalent to $(\mathbb{R}^3, f_1^{-1}(0))$.

Proof. We first recall some facts which we have observed in the proof of Theorem B in [10]. Put

$$f(x, y, z) = f_0(x, y, z) = x^8 + y^{16} + z^{16} + x^3yz^3.$$

In each coordinate plane, $f^{-1}(0) - \{0\} = \emptyset$. Here we put

$$A_1 = \{x > 0, y > 0, z < 0\}, \quad A_2 = \{x > 0, y < 0, z > 0\},$$

$$A_3 = \{x < 0, y > 0, z > 0\}, \quad A_4 = \{x < 0, y < 0, z < 0\}.$$

Set $S_i = f^{-1}(0) \cap A_i$, $1 \leq i \leq 4$. Then $f^{-1}(0) = S_1 \cup S_2 \cup S_3 \cup S_4 \cup \{0\}$ and each $\overline{S_i} = S_i \cup \{0\}$ is homeomorphic to S^2. As seen in [10], $D_2(f) = 1, i \neq j$.

Next put

$$g(x, y, z) = f_1(x, y, z) = x^8 + y^{16} + z^{16} + x^3yz^3.$$

In (x, y)-plane or (y, z)-plane, $g^{-1}(0) - \{0\} = \emptyset$. Here we put

$$B_1 = \{x > 0, y > 0, z < 0\}, \quad B_2 = \{x > 0, y < 0, z > 0\},$$

$$B_3 = \{x < 0, y > 0, z > 0\}, \quad B_4 = \{x < 0, z < 0\}.$$

Set $P_i = g^{-1}(0) \cap B_i$, $1 \leq i \leq 4$. Then $g^{-1}(0) = P_1 \cup P_2 \cup P_3 \cup P_4 \cup \{0\}$ and each $\overline{P_i} = P_i \cup \{0\}$ is homeomorphic to S^2. By the observations seen in [10], there are $\lambda_1, \lambda_2 \in A(\mathbb{R}^3, 0)$ with $\lambda_1 \subset \overline{P_3} \cap \{y = 0\}$ and $\lambda_2 \subset \overline{P_4} \cap \{y = 0\}$ such that $T(\lambda_1) = T(\lambda_2) = L((-1, 0, 0))$, and there are $\mu_1, \mu_2 \in A(\mathbb{R}^3, 0)$ with $\mu_1 \subset \overline{P_3} \cap \{y = x\}$ and $\mu_2 \subset \overline{P_4} \cap \{y = x\}$ such that $T(\mu_1) = T(\mu_2) = L((-\sqrt{2}, -\sqrt{2}, 0))$. Therefore there are C, $D > 0$ and $d > 1$ such that $\lambda_1 \subset ST_d(\lambda_2; D) \subset ST_1(\lambda_1; C)$, $\mu_1 \subset ST_d(\mu_2; D) \subset ST_1(\mu_1; C)$ and $ST_1(\lambda_1; C) \cap ST_1(\mu_1; C) = \{0\}$ in a small neighbourhood of 0 in \mathbb{R}^3.

Suppose that there is a biLipschitz homeomorphism germ $\phi : (\mathbb{R}^3, 0) \rightarrow (\mathbb{R}^3, 0)$ with Lipschitz constants $K_1, K_2 > 0$ in (1.1) such that $\phi(g^{-1}(0)) = f^{-1}(0)$. Set $\gamma_i = \phi(\lambda_i)$ and $\nu_i = \phi(\mu_i)$, $i = 1, 2$. Here we put $E = \frac{K_1}{K_2} > 0$. Then it follows from Lemma 1.1 that $ST_1(\gamma_1; E) \subset \phi(ST_1(\lambda_1; C))$ and $ST_1(\nu_1; E) \subset \phi(ST_1(\mu_1; C))$ in a small neighbourhood of 0 of \mathbb{R}^3. Remark that

$$(3.1) \quad ST_1(\gamma_1; E) \cap ST_1(\nu_1; E) = \{0\} \text{ in a neighbourhood of 0 of } \mathbb{R}^3.$$
THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

Each P_i, $1 \leq i \leq 4$, is mapped to some S_i by ϕ as set-germs at $0 \in \mathbb{R}^3$. Let $\phi(P_3) = S_{j(3)}$ and $\phi(P_4) = S_{j(4)}$. Then $D_{j(3)}(f) \cap D_{j(4)}(f) = \{a\}$ where a is a member of $\{\pm 1, 0, 0\}, (0, \pm 1, 0), (0, 0, \pm 1\}$. We consider the sea-tangle neighbourhood $V = ST_1(L(a); E)$ of $L(a)$. If there is a neighbourhood U of $0 \in \mathbb{R}^3$ such that $\gamma_1, \nu_1 \subset V$ in U, then it follows from Lemma 1.2 that $L(a) \subset ST_1(\gamma_1; E)$ and $L(a) \subset ST_1(\nu_1; E)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This contradicts (3.1). Thus

(3.2) γ_1 or ν_1 is not contained in $V \cap U$ for any neighbourhood U of $0 \in \mathbb{R}^3$.

Put $H = \frac{DK_2}{K_1}$. By Lemma 1.1, $\gamma_1 \subset ST_d(\gamma_2; H)$ and $\nu_1 \subset ST_d(\nu_2; H)$ in a neighbourhood of $0 \in \mathbb{R}^3$. This contradicts (3.2) because $\gamma_1, \nu_1 \subset A_{j(3)} \cup \{0\}$ and $\gamma_2, \nu_2 \subset A_{j(4)} \cup \{0\}$ near $0 \in \mathbb{R}^3$. Therefore, $(\mathbb{R}^3, f^{-1}(0))$ and $(\mathbb{R}^3, g^{-1}(0))$ are not biLipschitz equivalent as germs at $0 \in \mathbb{R}^3$.

\[\square\]

Remark 3.2. We drew the pictures of the zero-sets of the Briançon-Speder family and the Oka family in [10] using the analysis at high school mathematics level. In [27] T. Fukui is explaining in detail how to draw and understand the pictures of their zero-sets using the Newton Polyhedra determined by the defining functions.

4. PROBLEM

In the previous sections, we discussed the Lipschitz equisingularity of the Briançon-Speder family and the Oka family. In the complex case they are well-known as examples of families of functions which are μ-constant but not μ^*-constant. From our observations, it gives rise to the following problem:

Problem 4.1. Let $f_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, $t \in J$, be a family of analytic functions, and let $f_t^\mathbb{C} : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ denote the complexification of f_t. Assume that $\mu(f_t^\mathbb{C}) (\leq \infty)$ is constant but $\mu^*(f_t^\mathbb{C})$ is not constant. Then is the family of zero-sets $\{(\mathbb{R}^n, f_t^{-1}(0))\}_{t \in J}$ not biLipschitz trivial?

Remark 4.2. In the case $n = 2$, there is no family which satisfies the assumption of the above problem.

The problem whether the biLipschitz triviality implies the Kuo-Verdier (w)-regularity in the complex case has been worked on by J.-P. Henry, T. Mostowski and M. Merle. The case $n = 3$ was shown affirmatively ([19]). See [12, 26] for the (w)-regularity which is equivalent to the Whitney (b)-regularity in the complex case (J.-P. Henry and M. Merle [7]). This condition is also equivalent to the μ^*-constancy (B. Teissier [25], J. Briançon and J.P. Speder [3]). Therefore, “not μ^*-constancy” implies “not biLipschitz triviality” in the complex 3 variables case. But this does
not hold in the real case, namely, we cannot omit the assumption of \(\mu \)-constancy from our problem.

Example 4.3. Let \(f_t : (\mathbb{R}^3, 0) \to (\mathbb{R}, 0), \ t \in \mathbb{R}, \) be a family of polynomial functions defined by

\[
f_t(x, y, z) = x^2 + y^2 + t^2z^2 + z^4.
\]

Then \(\mu(f_t^C) < \infty, \ t \in \mathbb{C}, \) and \(\{f_t^C\} \) is not \(\mu \)-constant. As a result, it is not \(\mu^* \)-constant, either. On the other hand, \(\{(\mathbb{R}^3, f_t^{-1}(0))\}_{t \in \mathbb{R}} \) is biLipschitz trivial.

REFERENCES

THE BRIANÇON-SPEDER AND OKA FAMILIES ARE NOT BILIPSCHITS TRIVIAL

DEPARTMENT OF MATHEMATICS, HYOGO UNIVERSITY OF TEACHER EDUCATION, 942-1
SHIMOKE, KATO, YASHIRO, HYOGO 673-1494, JAPAN

E-mail address: koike@sci.hyogo-u.ac.jp