goboboooboo 13290 2003 0 820

BOCHNER FLAT STRUCTURES ON COMPLEX KALHER
MANIFOLDS

#B® X¥E (YOSHINOBU KAMISHIMA)

ABSTRACT. We study the deformation of complete Bochner flat Kihler
structures on complex (closed) aspherical Kédhler manifolds. More pre-
cisely, we shall examine how many distinct complete Bochner flat Kéhler
metrics keeping:the complex structure fixed on the complex hyperbolic
Kéhler space and the complex euclidean space

INTRODUCTION

When we consider the conformally flat structure on the (compact) real
hyperbolic space HR/T', we know that there is & nontrivial deformation, for
example, by Thurston bending (n > 2). This implies that there exists a
non-equivalent family developing pair

(o, dev) : (T', H)—(PO(n + 1,1),57)

starting at the standard developing map devy which maps HR onto the
upper-hemisphere S7 of S™. (Equivalently there is a nonconjugate family
of holonomy representations p : '=PO(n + 1,1) other than the inclusion
po:T' c PO(n,1) CPO(n+1,1).) Similarly when we take a closed aspheri-
cal manifold S/T" with virtually solvable fundamental group I like infrasolv-
manifolds, it is known that if S/T" admits a conformllay flat structure, S/T is
necessarily conformal to the euclidean space form R™/T" and the developing
pair

(p,dev) : (I',R")—(PO(n +1,1),5")

is unique up to by an element of PO(n + 1,1) to the standard developing
map devg which maps S onto the sphere with one point removed S™ — {oc}.
This is so called the topological rigidity of the developing pair. On the
other hand, it is well known that the fundamental invariant on the confor-
mal structure of the metrics on a smooth manifold is the Weyl curvature
tensor whose vanishing implies the conformal flatness of the Riemannian
manifold (n > 4). In 1949, Bochner introduced a curvature tensor on a
Kéhler manifold which is thought of as an analogue of the Weyl curvature
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tensor ([1]). When the curvature tensor (Bochner curvature tensor) van-
ishes, a Kahler structure (respectively, (complete) Kéhler metric) is called
Bochner flat structure (respectively, (complete) Bochner flatc metric) and
a Kéhler manifold with this structure is said to be a Bochner flat Kéhler
manifold. In this note we shall consider the corresponding problem to (com-
plete) Bochner flat structure on a Kéhler manifold. As a Kéhler manifold we
take a complex hyperbolic manifold HZ/I" and a closed aspherical complex
Kéhler manifold S/T" with virtually solvable group I (for example, a com-
plex euclidesan space form C"/T"). It is noted that a Kéhler manifold with
constant holomorphic sectional curvature is a Bochner flat Kéhler manifold
as well as a fact that a Riemannian manifold of constant sectional curvature
is a conformally flat manifold.

Theorem 1. A complete Bochner flat structure on the complez hyperbolic
space HE is unique up to a constant multiple of a hyperbolic Kihler metric.
The deformation space R(R,Z2U(n,1)) consists of a single representation

{r};
p(6) = (eio’ T ’e’iﬂ)_
where ZU(n, 1) is the center S of U(n,1).

Theorem I1.

(1) If a closed aspherical complex Kéhler manifold S/T° with virtually solv-
able group I' admits a Bochner flat structure, then it is holomorphically
isometric (up to a constant multiple of the metric) to the complez eu-
clidean space form C"/T" with standard euclidean metric. :

(2) The deformation space R(R,R x T™) of all distinct complete Bochner
flat structures on the complex euclidean space C* modulo the homothety
is a convez space

{(a1,"+ ,an) ER? 0< a3 < ap <+ < ay}. For pe R(R,R x T™),
p(t) = (t’ e‘&a1t, R ei%t)'

This result (2) has been obtained first by R. Bryant [2]. Contrary to that
the sphere S™ is the model space in conformal geometry, it is emphasized
that the model (complete) Kéhler space into which the developing map ma.ps
is not unique in Bochner flat geometry.

2. PRELIMINARIES

Let (M, J, g) be a simply connected Kéhler manifold of real dimension 2n
with exact Kahler form Q. (For example, M is contractible.) There is a
1-form 6 such that df = Q. Consider the product R x M for which p: R x
M—M is the projection. We construct the contact form w and the complex
structure J on the contact subbundle Nullw = {V € TR x M) | w(V) = 0}.



Let t be the coordinate of R. Put
w = dt + p*é,
JV)=prtoJop (V) (VV € Nullw)sa).
It is easy to see that w is a contact form of R x M on which R = {7}, s € R}
acts as contact transformations:

T,(t,z) = (t + 8, ).
Let Nullw ® C = T1% @ T%! be the canonical splitting of eigenvalues of J.
As dw is J-invariant; dw(JX,JY) = Q(p.JX,p.JY) = Q(Jp.X,Jp.Y) =
Q@.X,p.Y) = dw(X,Y), it implies that [T10,T10] c T19, ie.J is in-

tegrable. By definition, J is a complex structure on Nullw. In addition,
dw(J+, ) = g(p.,ps) is a positive definite bilinear form on Nullw.

(2.1)

Definition 1. The pair (Null w, J) is a strictly pseudoconvez CR-structure
onRx M.

Proposition 2. (i) The action R commutes with the complezr structure
J, i.e. the group R acts as C R-transformations of (w, J).

(i) The vector field 4 tnduced by the R-action is the characteristic vector

dt
field (Reeb field) for w, i.e.w(-gi) =1, dw(-gt,V) =0 VVeTRx
(ili) dw = p*Q.

Making use of the structure equations modelled on the real hypersurface
in C"*1, Chern and Moser have found a CR-invariant tensor which is the
fourth-order curvature tensor S = (S,,3,) on & CR-manifold N2**!, When
we persist in the Weyl’s conformal geometry to the C R-manifolds, the CR-
invariant tensor is a conformal invariant in the following sense: if two contact
forms w,w’ represnt the same CR structure (keeping the complex structure
J fixed on the CR-bundle), then w’ = u - w for some positive function u for
which the Chern-Moser curvature tensor coincides S(w,J) = S(w’, J). The
sphere S?"*! is a CR-manifold viewed as a hyperquadric in C*+!, whose
curvature tensor S vanishes identically. The standard contact form wq is
obtained from the connection form of the Hopf bundle : S1—S§2"+1—CP".
‘The complex analogue of conformal geometry states that if the Chern-Moser
curvature tensor S of a CR-manifold N vanishes, then N is locally CR-
equivalent to §2"*1 (n > 1). In this case, N is said to be a spherical
C R-manifold.

Note that the formula of S is given by

1
Sapﬁc‘r = fafps — m(Raﬁgpﬁ’ + Rpﬁga& + gaERpa’ + ngRaﬁ)

R
+ 2(n+1)(n+2) (gaﬁgpa + gpﬁgaa)-

(2.2)
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Here R,3,, is the Tanaka - Webster curvature tensor. On the other hand,
the Bochner curvature tensor B on a Ké#hler manifold (M,g,J) has the

same formula as S. In fact, we have the following coincidence observed by
Webster.

Proposition 3. Let R—R x M -2, M be the contactization of a Kéhler
manifold (M,Q, J). When (w,J) is the pseudo-hermitian pair on R x M
such that dw = p*Q and p,J = Jp., the Chern-Moser curvature tensor S of

the CR-manifold R x M coincides with the Bochner curvature tensor B of
M:

S(w,J) = p*B(Q, J).

Suppose that (M, g, J) is a Bochner flat Kéhler manifold, i.e. B(2,J) =
0. Then the associated CR-manifold (M, {Nullw,J}) is spherical, i.e. M
is uniformizable over §2"t! with respect to the CR-transformation group
Autcg(S***t1) = PU(n + 1,1). Here PU(n + 1,1) is the unitary Lorentz
group. It is also the isometry group of complex hyperbolic space IHIE"'I. De-
note by (wo, Jo) the pseudo-Hermitian structure on the sphere $2*+1 which
represents the standard C' R-structure. Then by the monodromy argument,

the universal covering R x M (because M is simply connected) can be de-
veloped into the sphere;

(2.3) (p,dev) : (R,R x M)—(PU(n + 1,1), 8§21,

where p is the holonomy homomorphism of R into PU(n+1,1). By definition,
the developing map dev is a C R-immersion satisfying that

(2.4) dev*wy = u - w for some positive function u on R x M.
' dev, o J = Jy odev, on Null w.

The closure G of the holonomy group p(R) in PU(n+1,1) is a connected
abelian Lie subgroup acting on §2**! (acting also on the complex hyperbolic
space IHIT(‘;*'I). The standard hyperbolic group theory shows that if G is
noncompact, then it has the fixed point subset which is either one point
{oo} or exactly two points {0,000} in S+ unique up to conjugate by an
element of PU(n +1,1). If G is compact, the fixed point subset of §2*+1 is
either {@} or the subsphere $?™~1 (m = 1,--- ,n) unique up to conjugacy.
In the former case, G has the unique fixed point inside the hyperbolic space
11-11%"'1. According to whether G is noncompact or compact, G belongs to
either the similarity group Aut(N) = N x (U(n) x R*) or the maximal
torus T™*! of PU(n + 1,1) up to conjugation. Here N is the Heisenberg
nilpotent Lie group identified with §2"+! — {0}. (See §5.)

Since R acts freely on R x M and dev is a p-equivariant immersion, p(R)
has no fixed point on the image dev(R x M), it follows that (1) dev(Rx M) C
N = §+1 _ {00}, (2) dev(R x M) C §20t1 — {0,00}, (3) dev(R x M) C
S2nt+l . §2m-1 (m = 0,1,--- ,n). If we denote X one of the domain of
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5%7+1 a5 in (1) — (3), then our equivariant C R-immersion reduces :
(p,dev) : (R,R x M)—(Autcr(X), X).

(25) deviwx =u-w (u>0).

Here wx is a contact form which represnts the restricted CR-structure on
X. Let £ be the vector field induced by the 1-parameter subgroup p(R) on
X. As the developing map is equivariant dev(Ti(s,z)) = p(t)dev((s, z)),

it follows that £ = dev(a?). Since w(ai) = 1 and (2.5) with u > 0, we

obtain a resriction wx(§) > 0 on the developing image dev(R x M). Let
S = {p € X |wx (&) = 0} be the singular subset of X. If W is the connected
component (X — S)° of X — S containing dev(R x M), then (2.5) reduces
to the following:

(2.6) - (p,dev) : (R,R x M)——»(AutCR(W),W)_.

When G is compact, remark that there is a further restriction that dev(R x
M) C W — E where E the set of exceptional orbits of G.

Looking at the connected subgroups of PU(n+1,1) for (1) —(3), it follows
that

Proposition 4. One of the following cases occur (up to conjugacy) :

1. If G is noncompact and fizes {oo} in S?**1, then p(R) is a closed
subgroup of the pseudo-hermitian transformation group Psh(N) = N x
U(n).

2. If G 1is noncompact and fizes {0,00}, then p(R) is a closed subgroup
lying in U(n) x Rt, :

3. If G is compact, then the fized point set of G is the subsphere S2m—1
(m=0,1,--- ,n). Moreover,

G c T™1 = P(ZU(m,1) x TV™1)
C P(U(m,1) x U(n = m + 1)) = Aut(§?"+! — §2m-1),
Here 2U(m, 1) is the center St of U(m,1).
Corollary 5. p(R) is closed except for the case that G has the fized point
set S*m=1 (m =0,1,--- ,n —1). In particular, if p(R) is closed, i.e. St or
R, then p(R) acts properly on W.

3. EXISTENCE OF BOCHNER FLAT KAHLER METRIC

Suppose that the holonomy group p(R) is closed. By Corollary 5, we
have an orbifold W/p(R). (If p(R) ~ R, W/p(R) is a smooth manifold.)
Let Nauwtorw)(p(R)) be the normalizer of p(R) in Autcr(W).

Definition 8. The quotient group is defined as
H= NAutcR(W) (p(R))/p(R)‘
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Then the group H acts on W/p(R). Thus we get a geometry (H, W/p(R)).
(Note that H does not necessarily act transitively on W/p(R). This phe-
nomenon occurs in Bochner Kéhler geometry.) There exists an equivariant
principal bundle:

(3.1) P(R)—(Npuscpw) (p(R)), W) — (H,W/p(R)).
As we know that wx(§) > 0 on W (cf. (2.6)), define a 1-form n on W to be:

(3.2) n(Z) = wx(Z2) (¥ ZeTw).

(€ )

As n(§) = 1 on W, dign = 0. Since Null n = Null wy, 7 is a contact form
on W.

Lemma 7. § is a characteristic vector field for n on W.

Proof. Since £ generates p(R), p(t).{ = § and p(t)*wx = u; - wx for some
us > 0. (In fact we can show that p(t)*wx = wx for N, S+l — §2m—1
p(t)*wx = e®wy for X = N — {0} = §?* x Rt.) Hence,

wx (p()Zz) _ wx(p(t)sZz)

63 PODeZe) == o) wx(plt)E)
- ¥X (Zz) = 12(Zz)
wx (ﬁz) i
Hence 0 = L¢gn = vedn + degn = 1¢dn. O

Proposition 8. There ezists a Bochner flat Kéhler metric (§,J) on W/p(R).

The group M acts as holomorphic homothetic (not necessarily isometric)
transformations.

Proof. As v, : Null n—»T(W/p(R)) is isomorphic at each point of W, the
complex structure J is defined on W/p(R) by making the diagram below
commutative:

Null » —— T(W/p(R))
(3.4) | 1 F,

Null n —=— T(W/p(R)).
(If we note that 7 is also J-invariant, then it follows that v,([X,Y]) =
X, Y] for XY € (Null ® C)1°. As J is integrable on Null 7, J
is a complex structure on W/p(R).) Since dn is positive definite (strictly

pseudo-convex) and J-invariant (i.e.dn(J-,J-) = dn(-,-) on Null 7), we may
define a Hermitian metric on (W/p(R),J) by setting

(3.5) §(X,Y) = dn(JX,Y),

where X,Y € Null 7 such that v,(X) = X, v.(Y) =Y. Let X,7Y) =
§(X,JY) be the fundamental two form on W/p(R). Recall that TW =
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{€} & Nulln.
VUX,Y) =X, Y) = §(X,J?)

3.6 D
(3.6) = dn(JX,JY) = dn(X,Y) (X,Y € Nullp).

As £ is characteristic for by Lemma 7, we have that dn(¢,X) = 0 =
v*Q(¢, X). Therefore,

(3.7) vQ=dn onW.

Hence df) = 0 on W/p(R) so that is a Kéhler form on W/p(R). Thus
we obtain a Kahler structure (§,, J) on W/p(R). In particular, as (9, J )
represents the spherical CR-structure (Nullw, J) on W, (g, J) is a Bochner
flat structure on W/p(R). We examine how the group  acts on W/p(R).
If h € Nautgrw) (p(]R)), then the projection v induces an element b € H

such that v(hz) = hv(z). By the definition,

(A*n)(Zz) = h*(——== (g) ‘wx (Zg)) = (E

Let h*wx = u-wx for some positive function u on W as before. As Null n=
Null wy, h preserves Null #. On the other hand, there are the following
possibilities: (1) h satisfies h- p(t) - h~1 = p(t), i.e. h.€ = £; otherwise there
exists a constant ¢ such that (2) h-p(t)-h~1 = p(c-t), h.& = c-£. According
to (1) or (2), we obtain that h*n =7, h*n = c. 7. Noting that c is constant
and h, o J = Joh, on Null wx, by (3.4),

y - (Wwx)(Ze).

§(h X, hY) = dn(Jh, X, h.Y) = dh*n(J X,Y)
(3.8) =d.§X,¥) (=0,1).
heoJ=Joh, onNull 7.
Therefore the group H = Naysopw)(p(R))/p(R) acts as Kahler isometries

(§ = 0) or homotheties (j = 1) of W/p(R) with respect to (§,¢, J).
O

Notice that the developing map dev induces an immersion Dev with the
commutative diagram:

RxM 2, w
(3.9) pl 11:
M -2 W/pR).

Theorem 9 (Geometric uniformization). Let (M, J,g) be a (real) 2n(>
4)-dimensional simply connected Bochner flat Kihler manifold with exact
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Kdhler form. Suppose that the holonomy group p(R) is closed. Then there
exists a Kihler immersion Dev: M—W/p(R), i.e.

Dev*Q} =Q (Dev*§ =g).

(3.10) .
Dev, o J = J o Dev,.

Proof. Since p(t) dév(a:) = dev(tz), note that £ = dev( ) As dev*wyx =
u - w for some u on R x M, we obtain that

u(z) = u(z) - w()

(3.11) g

= wx(deva()) = wx(©).
Then,

1
dev*n = dev*(—(é-)- wx)
(3.12) wx "
—d —_——w=

wx(&) evix = wx® 7Y
Then
(3.13) p*Dev*() = dev*/*() = dev*dn

= ddev*n = dw = p*Q.
Thus, Dev*Q) = Q. Also,

DeV*J *=De * *j= *de *j
(3.14) Pu = DEVuPuT = LuCEY

=y, Jdev, = Ju.dev, = jDev*p,..

Thus, Dev,J = JDev..
a

Remark 10. In gnereral, when p(R) is not closed, we choose a local one-
parameter subgroup A from p(R) for which A acts properly on a mazrimal
domain W. Then argue as above. However, the domain W is quite vague.

4. OUTLINE OF PROOF

When G is compact, it belongs to the (n — m + 1) dimensional torus
T"""‘*'1 C P(2U(m,1) x U(n — m + 1)) up to conjugacy where m =
0,1,--- ,n. (Here ZU(0,1) = U(0,1) = S1.) The element of p(R) has the
form

ei‘t-a1
p(t) =1x

e‘it' an-m+1
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for some aj,+ - ,an—m+1 € R*. When m = n, p(R) is necessarily closed so
that

p(R) = G = P(ZU(n,1) x U(1)) = 2U(n,1) = S*.
Nputor(sn+i—gan-1)(p(R)) = Zpyyop(snti_samn-1y(p(R)) = U(n, 1).

Recall that Vf{""l is the (2n + 1)-dimensional Lorentz standard space form
of constant sectional curvature —1 with transitive unitary Lorentz group
U(n,1). §2+! — §2n—1 jg jdentifed with V2'+! as a C'R-structure. The
center ZU(n,1) of U(n,1) is S*. Then V2t! is the total space of the
principal S'-bundle over the complex hyperbolic space:

(4.1) ZU(n,1)—V2+t B, pm

Denote by wg the connection form of the above principal bundle. Then
it is a contact form on V#*1, In particular, §! = 2U(n,1) induces a
characteristic vector field £ such that wg(¢) = 1. Let Qg be the Kahler form
on Hg such that P*Qg = dwy. Let gg be the Kéhler hyperbolic metric of
HE. We have that "

(Ha 52n+1 - Szn—l/‘sla g: j) = (PU(n’ 1),H6’9H1 JH)
We have proved the following.

Proposition 11. Let (M, J,g) be a simply connected Bochner flat Kihler
manifold with exact Kdhler form (dimM = 2n > 4). Suppose that G is
compact.

(i) If m = n, then p(R) = 8%, i.e.closed. If g is complete, then the
developing map dev is an isometry of M onto HE.
(ii) Suppose that p(R) is closed, i.e. (= S') form =0,1,--- ,n—1. Ifg is
. complete, then the developing map is an isometry onto HF x CP"—™.
(iii) Suppose that p(R) is not closed. Then g cannot be complete.

Proposition 12. Let (M, J,g) be a simply connected Bochner flat Kihler
manifold with ezact Kdhler form (dimM = 2n > 4). Suppose that G is
noncompact. (G = p(R).)

(1) If the developing map dev maps R x M into Heisenberg space N and
g 1is complete, then the developing map Dev is an isometry of M onto
N/p(R). Moreover, N'/p(R) is holomorphic to the complez eulidean
space C". Especially, N'/p(R) is a complete Bochner flat manifold.

(2) If the developing map dev maps R x M into N — {0} = §2" x R+, then
g cannot be complete.

Proposition 18. Let (M,J,g) be as in (1) of Proposition 12 and g is
complete. Then the representation p : R—N x U(n) reduces to a rep-
resentation p : R—R x T™ which has the form; p(t) = ((t,0), A;) where
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e?:t-a.1
At =
eit'an
Here a;’s are real numbers such that

0<a; Lay -+ < ap.

In fact, a calculation shows war(€) = 1+ (a1|21]2 + aglze|? + - - - + an|z[?)
(cf.85). So war(§) > 0 (i.e. W = N) if and only if a; > 0. Letting a =
(a1,- - ,an), we denote by g, the Kahler metric § on A'/p(R). The complex
structure J in this case coincides with the standard complex structure Jc.
(See §5.) We obtain that

N autcr) (P(R))/p(R) = (C** x U(n - k)) x U(fy) X -+ x U(lm),
N/pR)=C" (£1+--++bm =k),

(g" J) = (gan JC)
As a consequence of Proposition 12, g, is a complete Bochner flat Kéhler
metric on C* and H = (C"* x U(n — k)) x U(41) x -+ X U(y,) is the
full group of isometris of g,. If all a; are positive and distinct, then H =
Iso(C",go) = U(1) x --- x U(1) =T™.

Theorem 14. Let M be a stmply connected Bochner flat Kdihler manifold
with ezact form (dimM = 2n > 4). If the Kdhler metric is complete, then
the develoing map Dev is an isometry of (M, g,J) onto (HF x CP"~™, gg x
gce, J) (m =0,1,--- an) or (N/p(R)’gm J) Here (N/p(R)v J) is the com-
plex euclidean space (C*, Jc).

Let M be a complex hyperbolic space HE (n > 2). Given a complete
Kahler metric which is Bochner flat on M, Dev is a holomorphic diffeo-
morphism of M onto the complex space HF x CP"™™, or C". Hence, the
only possible case is that Dev : M—HZ. See Remark 16. By 3 (m = n)
of Proposition 4, the complete Bochner flat Kéhler structure on the hy-
perbolic space HE determines uniquely the representation p : R-S! =
P(ZU(n,1) x U') = ZU(n,1) c PU(n + 1,1) up to normalization:

p(t) = (¥, ,e™).
Remark 15. As HZ is viewed as a bounded domain (unit ball) of C", the

standard Bochner flat euclidean metric restricts to a Bochner flat Kdhler
metric on HE, but it is not complete.

Similarly, given a complex euclidean space C™ (n > 2) which supports a
complete Bochner flat metric, Dev is a holomorphic diffeomorphism of M
onto C" = N/p(R). Hence, by Proposition 13, each developing map dev
determines the representation: p: R—R x T™ defined by

p(t) = ((¢,0), (b2, , et am)).
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Hence, all the distinct isomorphism classes of complete Bochner flat Kihler
metrics on C*, R(R,R x T™) up to homothety is in one-to-one correspon-
dence with the convex set {(a1, - ,a,) ER®* |0<a; < -+ < ap}.

Remark 16 (Transformations of complex manifold). Let hol(M) be the

group of holomorphic transformations of a complez manifold. It is well
known that hol(C") is not a Lie group (infinite dimensional). On the other
hand, when M is a bounded domain of C" or a Hermitian manifold of neg-
ative holomorphic curvature (e.g. hyperbolic manifold), it is known that
hol(M) is a Lie transformation group. Moreover, for a compact complez
manifold M, hol(M) is a complex Lie transformation group. (Refer to [4],

[5].)

5. CR-STRUCTURE ON HEISENBERG SPACE N

The rest of this section is spent to how to construct Bochner flat structures
on C" from the Heisenberg space . The Heisenberg nilpotent space A is
a Lie group which is the product R x C® with group law:

(5.1) (@,2) - (byw) = (a+b—Im < z,w >, z+ w),

where Im < z,w > is the imaginary part of the Hermitian inner product on

(04 '
K,Ww>=2Z1- w1+ 22 We++++ Zn * Wy

It is easy to see that A is 1-step nilpotent, i.e. the commutator [N, N] =R.
Put R = (R,0) which is the central subgroup of N. If Autcg(N) is the
subgroup of CR transformations preserving N, then, Autcr(N) = N x
(U(n) x R*). The action of N x (U(n) x R*) on N is obtained:

(5.2)  ((@,2),A-A)-(bw) = (a+A2b—Im < z,\- Aw >,z + X - Aw).

The contact form wyr on N is described as follows. Put w = wpr. If
(t,(21,++* ,24)) is the coordinate of N =R x C", then

n
(5.3) w=dt+ ) (zjdy; — yjdz;) = dt + Im < z,dz > .
j=1

The subgroup Psh(N) = N x U(n) leaves w invariant. For this, if y =
((a,w), A) € N x U(n) = Psh(N), then

((ayw),A) - (t,2) = (a+t—Im < w,Az >,w+ Az), and so
Y'w=dt —dim < w, Az > +Im < w + Az,d(w + Az) > .
Since dIm < w, Az >=Im < w,dAz >, it is easy to see that
T'w=dt+Im < 2,dz >=w.

Recall that Jp is the CR-structure (Null wyg, Jo) on S2"t1, Restricted Jp to
§2n+1 — {0} = N, we have the CR-structure (Null w,J) on A. In general,
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if h € Autgr(WN) is an element, then there exists a positive function u on
N such that

h'wny =u-wy.

Moreover, by definition, h is holomorphic (Cauchy-Riemann) on Null w.
Hence, every element h of Autcgr(N) preserves the C R-structure (Null w, J).
On the other hand, we have the canonical principal fibration:

(5.4) R—(N,w) — (C*, Q)
2n

where dw = P*Qq such that £ = 2 _ dz; A dy; is the standard Kahler
j=1

form of C™ and gg = Q(Jp , ) is the complex euclidean metric. (In other
words, the C R-structure J on Null w is obtained from the standard complex
structure Jc on C" by the commutative diagram:

Null w —= T(C™)

(5.5) lv lJc
Null w -2 T(CP).

Let p : R—R x T™ be the represntation p(t) = ((t, 0),(ei"‘“,--- ,eit'“"‘))
such that

(5.6) - 0<qg; < - < ay.

Note that if all a; = 0, then p(R) is the center of N.
Recall that p(R) is a closed subgroup of Psh(A) isomorphic to R. As
Psh(N) acts properly on N, p(N) acts properly and freely on NV. Let

(6.7 p(R)—N 2 N/p(R)
be the principal bundle. Note that the orbit space N'/p(R) is biholomorphic
to C". For this, let f : N—C" be a map defined by

(5'8) f((t’ (21, v az‘n))) = (e—‘ltal *Z1ycce ’e—ztan ‘ z‘n)

Since fu : (Nullw),,)—T(,z)C" is isomorphic, f. induces a complex struc-
ture J' on C" such that f,J = J'f,. As P, : (Nullw(o,z),J)—v(T,C“,Jc)
is holomorphic and f(0,2) = z, f, o P, : T,C*"—T,C" satisfies that (f, o
P Yo Je, = J'; 0 (f. o P71). Hence, the complex structure J' is conju-
gate to the standa.rd complex structure. Since f induces a diffeomorphism
f : N/p(R)—C" such that the diagram is commutative:

N
v, \f
N/p@®) L+ cn
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Noting that v, : (Null w,J)—(TN/p(R),J) is holomorphic, £ is a holomor-
phic diffeomorphism of (AV/p(R), J) onto (C®, J).
Recall that p(R) acts on A by
p(t)(s,2) = (s +t,As2) ((s,2) EN).
Let £ be the vector field on A induced by p(R). Then,

=213 aad -ty o N
Ty Y, '

Using (5.3), w(€) = 1+ (a1]e1]® + aglz2|2 + - - + an|2s|?). By the hypothesis

(5.6), w(§) > 0 everywhere on . We have the contact form as in (3.2):

(5.9) n(Z) = w—(lé ‘w(Z) (¥ ZEeTN).
By Lemma 7, it follows that
(5.10) n(€) =1,dn(§,X) =0 (VX € TN).

As in (3.5), we have a Hermitain metric on (M/p(R), J) = (C*, Je):
9(X,¥) =dn(JX,Y)

where X,Y € Null 7 such that v(X) = X, v.(Y) = V. Let QX,¥) =
§(X,JY) be the fundamental two form on N/p(R) = C*. Using (5.10),
it follows that v*Q = dn, i.e.d{) = 0. Therefore, {} is a Kihler form on
C"™. Thus we obtain a Bochner flat Kahler structure (§,, Jc) on C*. For
a = (a1, - ,an), we put § = g,. Since *Q = dn and (Nulln,J) is a
spherical CR-structure (i.e. S(n,J) = 0), Proposition 3 implies that the
Bochner curvature B(g,) = 0. Hence, (C",g,) is a Bochner|flat Kéhler
manifold. We omit the Kéhler metric g, is complete whenever 0 < a; <
o0 < Gn.
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