JØRGENSEN'S INEQUALITY FOR COMPLEX HYPERBOLIC 2- SPACE

Shigeyasu KAMIYA * 岡山理科大学(工学部) 神谷茂保

1 Introduction

Jørgensen's inequality gives a necessary condition for non-elementary two generator group of isometries of hyperbolic space to be discrete. We give analogues of Jørgensen's inequality for non-elementary groups of isometries of complex hyperbolic 2-space generated by two elements, one of which is either loxodromic or boundary elliptic.

This is a joint work with Jiang Yueping (Hunan University) and John. R. Parker (University of Durham).

2 The classical Jørgensen's inequality

We discuss the original inequality of Jørgensen and reformulate in a way that we can generalize. Jørgensen takes two elements A and B in $SL(2, \mathbb{C})$ and says that if

$$|tr^2(A) - 4| + |tr(ABA^{-1}B^{-1}) - 2| < 1,$$

then the group < A, B > generated by A and B is either elementary or not discrete. In this paper we will only be concerned with the cases where A is loxodromic or elliptic. We may reformulate Jørgensen's inequality in terms of cross ratios of fixed points. Jørgensen's inequality is equivalent to

Theorem 1. Let A and B be elements of $SL(2,\mathbb{C})$ so that A is either loxodromic or elliptic with fixed points μ and ν in $\hat{\mathbb{C}}$. Let $M = |tr^2(A) - 4|^{\frac{1}{2}}$. If either

$$M^2(|[B(\mu),\nu,\mu,B(\nu)]|+1)<1 \quad or \quad M^2(|[B(\mu),\mu,\nu,B(\nu)]|+1)<1,$$

then the group $\langle A, B \rangle$ is either elementary or not discrete.

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, JSPS (No. 13640198)

3 Preliminaries

Let $C^{2,1}$ be a complex vector space of dimension 3 with the Hermitian form of signature (2,1). We choose the Hermitian form on $C^{2,1}$ to be given by the matrix J

$$J = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Thus $\langle z, w \rangle = w^*Jz = z_1\overline{w_3} + z_2\overline{w_2} + z_3\overline{w_1}$.

We define the Siegel domain model of complex 2-space, $\mathbf{H}_{\mathbf{C}}^2$ as follows: We identify points of $\mathbf{H}_{\mathbf{C}}^2$ with their horospherical coordinates, $z=(\zeta,v,u)\in\mathbf{C}\times\mathbf{R}\times\mathbf{R}_+=\mathbf{H}_{\mathbf{C}}^2$. Similarly, points in $\partial\mathbf{H}_{\mathbf{C}}^2=\mathbf{C}\times\mathbf{R}\cup\{\infty\}$ are either $z=(\zeta,v,0)\in\mathbf{C}\times\mathbf{R}\times\{0\}$ or a point at infnity, which is denoted by ∞ . Define the map $\phi:\overline{\mathbf{H}_{\mathbf{C}}^2}\to\mathbf{PC}^{2,1}$ by

$$\begin{array}{lll} \phi & : & (\zeta,v,u) \longmapsto & [(-|\zeta|^2-u+iv)/2,\zeta,1]^t, \\ \phi & : & \infty \longmapsto & [1,0,0]^t. \end{array}$$

The map ϕ is a homeomorphism from $\mathbf{H}_{\mathbf{C}}^2$ to the set of points z in $\mathbf{PC}^{2,1}$ with $\langle z, z \rangle < 0$. Also ϕ is a homeomorphism from $\partial \mathbf{H}_{\mathbf{C}}^2$ to the set of points z in $\mathbf{PC}^{2,1}$ with $\langle z, z \rangle = 0$. Let L be a complex line intersecting $\mathbf{H}_{\mathbf{C}}^2$. Then $\phi(L)$ is a 2-dimensional subspace of $\mathbf{C}^{2,1}$. The orthogonal complement of this space is a one (complex) dimensional subspace of $\mathbf{C}^{2,1}$ spanned by a vector p with $\langle p, p \rangle > 0$. Without loss of generality, we take $\langle p, p \rangle = 1$ and call p the polar vector corresponding to the complex line L.

The Bergman metric on $\mathbf{H}_{\mathbf{C}}^2$ is defined by the following formula for the distance ρ between points z and w of $\mathbf{H}_{\mathbf{C}}^2$:

$$\cosh(\frac{\rho(z,w)}{2}) = \frac{<\phi(z), \phi(w)><\phi(w), \phi(z)>}{<\phi(z), \phi(z)><\phi(w), \phi(w)>}.$$

The holomorphic isometry group of $\mathbf{H}_{\mathbf{C}}^2$ with respect to the Bergman metric is the projective unitary group PU(2,1) and acts on $\mathbf{PC}^{2,1}$ by matrix multiplication. A matrix $g \in \mathbf{GL}(3,\mathbf{C})$ is in PU(2,1) if and only if it preserves the Hermitian form given by J. For four distinct points z_1, z_2, w_1, w_2 of $\overline{\mathbf{H}_{\mathbf{C}}^2}$ the cross-ratio is defined as

$$|[z_1, z_2, w_1, w_2]| = \left| \frac{<\phi(w_1), \phi(z_1)><\phi(w_2), \phi(z_2)>}{<\phi(w_2), \phi(z_1)><\phi(w_1), \phi(z_2)>} \right|.$$

In order to represent the holomorphic isometries of $\mathbf{H}_{\mathbf{C}}^2$, we work with the special unitary group SU(2,1) throughout this paper.

4 Subgroups with loxodromic generators

We give our results about the subgroups with loxodromic elements. Let A be a loxodromic element with fixed points μ and ν in $\partial \mathbf{H}^2_{\mathbf{C}}$. Suppose that A has a complex dilation factor $\lambda(A)$. We define a conjugation invariant factor M by

$$M = |\lambda(A) - 1| + |\lambda(A)^{-1} - 1|.$$

Theorem 2. Let A be a loxodromic element of SU(2,1) fixing μ and ν , and let B be any element of SU(2,1). If either

$$M(|[B(\mu), \nu, \mu, B(\nu)]|^{1/2} + 1) < 1$$
 or $M(|[B(\mu), \mu, \nu, B(\nu)]|^{1/2} + 1) < 1$,

then the group $\langle A, B \rangle$ is either elementary or not discrete.

Theorem 3. Let A be a loxodromic element of SU(2,1) fixing μ and ν , and let B be any element of SU(2,1). If $M \leq \sqrt{2}-1$ and

$$|[B(\mu), \nu, \mu, B(\nu)]| + |[B(\mu), \mu, \nu, B(\nu)]| < \frac{1 - M + \sqrt{1 - 2M - M^2}}{M^2},$$

then the group $\langle A, B \rangle$ is either elementary or not discrete.

We can show that neither theorem is a consequence of the other one.

5 Subgroups with boundary elliptic elements

Let A be a boundary elliptic element of SU(2,1). Then A fixes a complex line in $\mathbf{H}_{\mathbf{C}}^2$. We denote this complex line by L_A and its polar vector by p_A . The fixed complex line of BAB^{-1} is $B(L_A)$, which has the polar vector $B(p_A)$. Normalizing p_A and $B(p_A)$ so that $\langle p_A, p_A \rangle = \langle B(p_A), B(p_A) \rangle = 1$, we have three cases:

- (1) If $|\langle p_A, B(p_A) \rangle| < 1$, then L_A and $B(L_A)$ intersect at a point in $\mathbf{H}^2_{\mathbf{C}}$. Moreover, $|\langle p_A, B(p_A) \rangle| = \cos \psi$, where ψ is the angle of intersection between L_A and $B(L_A)$. In particular, if $|\langle p_A, B(p_A) \rangle| = 0$, then L_A and $B(L_A)$ intersect orthogonally.
- (2) If $|\langle p_A, B(p_A) \rangle| = 1$, then either $B(L_A) = L_A$ or L_A and $B(L_A)$ are asymptotic at at a point in $\partial \mathbf{H}^2_{\mathbf{C}}$.
- (3) If $|\langle p_A, B(p_A) \rangle| > 1$, then L_A and $B(L_A)$ are ultraparallel, that is, they are disjoint and have a common orthogonal complex geodesic. Moreover, $|\langle p_A, B(p_A) \rangle| = \cosh \frac{\rho}{2}$, where ρ is the distance between L_A and $B(L_A)$.

For a boundary elliptic element $A \in SU(2,1)$ we define the order of A as

$$ord(A) = \inf\{m > 0 : A^m = I\}.$$

Theorem 4. Let A be a boundary elliptic element of SU(2,1) which rotates through an angle $\theta = 2\pi/n$ about a complex line L_A . Let B be any element of SU(2,1) so that $B(L_A) \neq L_A$. If one of the following three conditions (1), (2) and (3) is satisfied, then the group A, B > i snot discrete.

- (1) L_A and $B(L_A)$ intersect at an angle $\psi \neq \pi/2$ and $ord(A) = n \geq 6$.
- (2) L_A and $B(L_A)$ are asymptotic and $ord(A) = n \ge 7$.
- (3) L_A and $B(L_A)$ are ultraparallel and

$$|\cosh\frac{\rho}{2}\sin\frac{\theta}{2}|<\frac{1}{2},$$

where ρ is the distance between L_A and $B(L_A)$. If L_A and $B(L_A)$ intersect orthogonally and

$$|tr(B)\sin\frac{\theta}{2}|<\frac{1}{2},$$

then the group $\langle A, B \rangle$ is either elementary or not discrete.

Theorem 5. Let A be a boundary elliptic element fixing the complex line L_A spanned by μ and ν in $\partial \mathbf{H}^2_{\mathbf{C}}$. Suppose that B is any element of SU(2,1) for which L_A and $B(L_A)$ do not intersect orthogonally. If either

$$M(|[B(\mu), \nu, \mu, B(\nu)]|^{1/2} + 1) < 1$$
 or $M(|[B(\mu), \mu, \nu, B(\nu)]|^{1/2} + 1) < 1$,

then the group $\langle A, B \rangle$ is either elementary or not discrete.

Theorem 6. Let A be a boundary elliptic element fixing the complex line L_A spanned by μ and ν in $\partial \mathbf{H}_{\mathbf{C}}^2$. Suppose that B is any element of SU(2,1) for which L_A and $B(L_A)$ do not intersect orthogonally. If $M \leq \sqrt{2} - 1$ and

$$|[B(\mu), \nu, \mu, B(\nu)]| + |[B(\mu), \mu, \nu, B(\nu)]| < \frac{1 - M + \sqrt{1 - 2M - M^2}}{M^2},$$

then the group $\langle A, B \rangle$ is either elementary or not discrete.

References

- [1] A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131 (1998), 85-136.
- [2] A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York 1983.
- [3] L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
- [4] W. Goldman, Complex hyperbolic geometry, Oxford University Press, 1999.
- [5] Y. Jiang, S. Kamiya and J. Parker, Jørgensen's inequality for complex hyperbolic space, Geom. Dedicata 97 (2003), 55-80.
- [6] S. Kamiya, Notes on non-discrete subgroups of $\tilde{U}(1, n; F)$, Hiroshima Math. J. 13 (1983), 501-506.
- [7] S. Kamiya, Notes on elements of $U(1, n; \mathbb{C})$, Hiroshima Math. J. 21 (1991), 23-45.
- [8] S. Kamiya, Parabolic elements of $U(1, n; \mathbb{C})$, Rev. Romaine Math. Pures et Appl. 40 (1995), 55-64.
- [9] S. Kamiya, On discrete subgroups of $PU(1, 2; \mathbb{C})$ with Heisenberg translations, J. London Math. Soc. (2) 62 (2000), 817-842.
- [10] J. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225 (1997), 485-505.

Okayama University of Science 1-1 Ridai-cho, Okayama 700-0005 Japan e-mail:kamiya@are.ous.ac.jp