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Moduli of punctured Riemann surfaces

and the Takhtajan-Zograf metric
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ABsTRACT. We show a convergence theorem of Eisenstein series for degenerating
Riemann surfaces, which is an improved version of the former one of the author . We
will apply it to investigate La-cohomology of the Takhtajan-Zograf metric.

§1. PRELIMINARIES

1.1 Eisenstein series.

Let S be a punctured hyperbolic surface of type (g,n) (n > 0). It can be
represented as a quotient H/T' of the upper half plane H = {z € C|Ilmz > 0}
by the action of a torsion free finitely generated Fuchsian group I' € PSLy(R).
The group is generated by 2g hyperbolic transformations A,, By, ..., Ay, By and
parabolic transformations P, ... P, satisfying the relation

A1BiAT'BT! .. AgBgA'B;'Py ... Py =1

The fixed points of the parabolic elements P, ... P, will be denoted by 2, 22,
..., 2n € RU{oo} respectively and called inequivalent cusps. The projection of the
cusps 23, 22,...,2, are the punctures p;,ps,... ,p, of S. For each ¢t = 1,...,n,
denote by I'; the stabilizer of z; in T" that is the cyclic subgroup of I" generated by
P;. Pick o; € PSLy(R) such that o500 = z; and (0, 'P,0;) = (2 = 2z +1). Then,
for a > 1, the a—cusp region C;(a) associated to p; is represented as a quotient
(07 Poi)\{z € H|Imz > a} ~ I'\{z € H|Imz > a},

Ci(a) ~ [a,00) x §, equipped with the metric ds® = (dy® + dz?)/y>.

Let A : C®(S) = C*(S) be the negative hyperbolic Laplacian of S. Regarded
as an operator in L?(S) with domain C§°(S), A is essentially self-adjoint. Denote by
A the unique self-adjoint extension (that is, Friedrichs extension). Then the contin-
uous spectrum of A can be described in terms of Eisenstein series ([He]Chap.Seven,
[K]Chap.V, [V]§3.2).

The Eisenstein series attached to z; is defined by

Ei(z,8) = Z Im(0; 'vz2)*, Re s> 1.
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The series is absolutely convergent in the half-plane Re s > 1 and in the upper
half-plane, it satisfies

(1.1) AE;(z,8) = s(s — 1)Eji(z, s).

A. Selberg originally showed that the series admits meromorphic continuation
to the whole complex s-plane, holomorphic on {Re s = %}and satisfies a system of
functional equations ([S1]§7). Several mathematicians also verified it by the various
methods ([dV], [He] Th.11.6, [K]pp.23 — 46, [Mu]). E;(z2,s) has Fourier expansions
at punctures p;, ((He]Prop.8.6 , [K]§2.2, [L-P]§8, [V]§3.1)

(12)  Eilojz,8) = 8y’ + dis(s)y'~* + 3 em(e)y K,y (2mimly)e’™v=1m,
m#0

K,_j the MacDonald-Bessel function ([Wa],p.78), that has the following asymp-
totics ([Wa], p.202)

(1.3) y%KS_%(y) ~ \/—gie"y, as y oo, for any complex s.

In the proof of Theorem 1, we need a more precise information about the ratio
of Both terms in (1.3). We use 3.70(6)(p.78), 7.2(p.197) in [Wa] and can easily see

B

1
2 K,_
Yy 8 %(y) <_y_8’ as (Ra) y/‘w,

where B, can be chosen to be a positive number depending only on s.

(1.4) -1

1.2 Modified infinite-energy harmonic maps.

In this part, we will introduce the modified infinite-energy harmonic functions
that are defined by S. Wolpert ([W2]), while the infinite-energy harmonic maps
are originally constructed by M. Wolf ([Wf]), for parametrizing degeneration of
hyperbolic surfaces. Denote by (S;(I > 0), pi(w)|dw|?) a degenerating family of
hyperbolic surfaces of type (g,n). We assume that several disjoint simple closed
geodesics ly,[3, ... ,lx on S; will be pinched (We denote their hyperbolic lengths by
the same notations). Let A; be the negative Laplacian of S;. To compare functions
on the limit surface (So, p(2)|dz[?) and (Si, pi(w)|dw|?), M. Wolf has constructed
infinite-energy harmonic maps w! : Sy — S\ {l1,1l2,-.., Ik} ([J],[W1],[W2]). A
node on Sy is a pair of cusps and distinct nodes involve distinct cusps. we call the
cusps of Sp that arise from the cusps (resp. arise from the pinching geodesics) of S;
the old cusps (resp. the new cusps). But w' is not adequate for us to compare the
Eisenstein series for S; and for Sy on cusp regions around old cusps, because w' is
not the identity map on the cusp regions and the Eisenstein series has a singularity
at the associated cusp for Re s > 1. Thus we will use Wolpert’s infinite-energy
harmonic mdp, denoted by f!, that is modified from w’ so that the meridians and
longitudes of a cusp will be mapped to the meridians and longitudes of the collar
or cusp in the image ([W2]).

Now we can arrange that given b > 1, for b-cusp regions C?(b) on Sg and b-cusp
regions C!(b) on S; (i = 1,2,... ,n),

(1.5) Floowy =id : C2(b) = Ci(b).
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1.3 The Weil-Petersson and the Takhtajan-Zograf metrics.

Denote by T,, Teichmiiller space of hyperbolic surfaces of type (g,n). Now
we consider the tangent and cotangent spaces at S of T, ,. The cotangent space is
Q(S), the integrable holomorphic quadratic differentials on S. Let B(S) be the L*°-
closure of I'-invariant, bounded, (-1, 1)-forms, i.e. the Beltrami differentials for S.
For pu € B(S), ¢ € Q(S), the integral (i, p) = [¢ uy defines a paring, let Q(S)* be
the annihilator of Q(S). The tangent space at S to Ty, is B(S)/Q(S)* ~ HB(S),
the Serre dual space of Q(S), i.e. the harmonic Beltrami differentials on S. Then
for u,v € HB(S), the Weil-Petersson and the Takhtajan-Zograf metrics are defined
as follows ([T-Z]),

(1.6) (B, V)wp = / / w(2)v(2)y~dzdy
(17 W)y = [[ B Dulao sy

= /0 /o w(o;2)v(o:z)dzdy

(1 V)rg = D () -

t=1

In the theory of automorphic functions, those two inner products are called, re-
spectively the Petersson product and the Rankin product, while they are defined for
general automorphic forms in the setting (refer to [Hi] §5.4). Both Weil-Petersson
and Takhtajan-Zograf metric are Kihlerian and incomplete ([O1], [T-Z]).

§2. A REFINED VERSION OF CONVERGENCE THEOREM OF EISENSTEIN SERIES

In this section we will show a new convergence theorem of Eisenstein series, which
is improved from the former version in [02]. A little improvement is involved but,
is essential for us to investigate the behavior of Takhtajan-Zograf metric near the
boundary of moduli space more precisely than in [02].

2.1 The Harish-Chandra transformation.
Here we prepare several fundamental notations from T. Kubota’s book. ([K],
Theorem 1.3.2). For € > 0, set a PSL,(R)-invariant kernel function on H x H

1, ifd(z,2') <e
0, otherwise,

ke(z,2)) = {
where d(z, z') denotes the hyperbolic distance between z and 2’ in H. Then there
exists a constant A.(s) depending only on € and the index s such that for any
o € PSLy(R),

Ac(s)Im(o2)® = / ke(z, 2 )Im(az ) —= da’ dy ) (' =2 +79').

([K], Theorem 1.3.2). The correpondence s(s — 1) — A.(s) is sometimes called
the Harish-Chandra transformation. We set B(z,¢) = {w € H|d(w,z) < €} for
z € H,e > 0. With the help of Mathematica ([Mt]), we find
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A(s) = // y* " %dzdy = // y*~2dzdy
B(i,e) z24(y—cosh e)2<sinh? e

6=2n pr=sinhe
/ / (coshe + rsin )*~2rdrdf
o=

(Here we set £ = rcosf,y — coshe = rsin#)

33

(2.1) = 1r1"2( )(cosh €)*(tanhe)?, Fy (1 — =

—5 2 (tanh¢)?).

Here 2 F1(a, B;7;2) (v #0,-1,-2,...) is the hypergeometric function,

ala+1)---(a+n-1)-B(B+1) (ﬂ+n—1)
y(y+1)--(y+n-1)-1-2--

o0

2Fi(a, B57152) =1+ Z
n=1

and satisfies the differential equation,

2(1— z)%z-’; = (a+ 8+ 1)4% — afu =0 ([Wa)).

Then
A(s)~1r1"2( ®Ye? as € > 0

holds. But we need the next more precise estimate of the ratio of both terms above
in our proof of Theorem 1. It can be easily seen from the definitions that, for
Re s > 1,

c(Res)e‘

Y as e—0
1'\2(3 Rea)

(2.2) A (Res)™?

holds, where c(Res) is a positive constant depending only on Re s.
Now we quote the next lemma ([O2],Lemma 1.).

Lemma 1. We use the same notations as in § 1. Let the index Re s > 1. For any
t=12,...,nand anya>1,

(2.3) |Ei(2,8)| < E;i(2, Res) < Mi(Re s,a), for z € 8C;(a).

Here M1(Re s,a) i3 a constant depending only on Re s,a, independent of complez
structure and topological type of the surface, precisely represented as follows;
3. (za)Res-l . 1
set egla) = —).
(Re s — 1)A(a)(Re 5) (we may set eo(a) 2a)

M;i(Re s,a) =

Since E;(z, Res) is subharmonic on S, we finally see
(2.4) |Ei(2,8)| < Mi(Re s,a), on S — Ci(a).

We use the setting as in §1.,1.1. Let I' be the Fuchsian group uniformizing S of
type (g,n) (n > 0) with z; = 0o and Py(2) = z + 1. The next proposition is a new
version of Wolpert’s result ([W2] p.260)
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Proposition 1. Let the indez of Fisenstein series Re s > 1. Then
(2.5) |E1(z,5)| < C(Re s) (Imz)~(Rest1) for Imz < 1.

Here C(Re s) is a constant depending only on Re s, independent of complez struc-
ture and topological type of the surface.

Furthermore, the coefficients {cm(8)}mzo appearing in the Fourier expansion of
Ey(z,s) around z; = oo (1.2) satisfy

(2.6) Z lem (8)[2|m|~2(Res+1)-1-6 « o5 for any 6 > 0.
m#0

Remark 1. The order —(Res + 1) of y in (1) are different from —Res the one in
p.260, [W2)]. The reason is that our constant C(Res) is universal, while the constant
C in [W2] depends on complex structure of the surface S.

2.2 the convergence of Eisenetein series.

We will show a convergence theorem of Eisenstein series, which is refined from
the old version stated in [O2] Theorem 1., concerning convergence on the cusp
regions around the old cusps. We state

Theorem 1. We set the same notations as in §1. Let the index Re s > 1. Let
(fY)*E!(z,s) be the pull-back of E}(z,s) on S; by the modified harmonic map f* :
So — Si,introduced in §1,1.2.

(1) Assume that {l1,... ,lx} do not separate S;. Let g; (j = 1,...,k) be the
new cusp arising from l;. Denote by C;(b) (b > 1) be the cusp region around g;

in So, each composed of usual two b—cusp regions. Then for anyi=1,...,n, as
- —

l =(l]_,...,lk)—) 0,

(2.7) (f')*Ei(z,8) - B)(z,5) — 0

k

uniformly on So — |J C;(b). Here E?(z,s) is the Eisenstein series attached to the
i=1 .

old puncture p; for Sy.

(2) Assume that {l,,...lx} separate S;. Denote by S}, and S} , respectively the
component of Sy containing p; and the union of the components of So not containing
pi- Let g; (j =1,... ,k) be the new cusp arising from l;. Denote by C;(b) (b > 1)
be the cusp region around q; in So, each composed of usual two b—cusp regions.
Then - =
(1) Foranyi=1,...,n,as | — 0,

(2.8) (f')*El(2,8) — EX(z,8) — 0

, k
uniformly on S§ ; — |J C;(b). Here EY(2,s) is the Eisenstein series attached to p;
=1
for 56,1 .

(it) For anyi=1,...,n and any b > 1, as—l)—+-6),

(2.9) (')*Ei(z,8) — 0
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_ k
uniformly on S , — |J C;(b)-
j:l
Furthermore, for b > 1 fized,

(F)*El(z,8)| = O ( maxklj(-z—d)R""2), for any small § > 0
j=1,...

’ ?

_ k
on S§ 5 — Ul C;(d).
J=

The new part of Theorem 1 is restated as the following proposition.

Proposition 2. We set the same notations as in Theorem 1. Assume that Re s >
1. We state our claim just on El(z,s) for notational simplicity. For any i =

1,2,...,n, as?—-) 0,
Ei(z,8) - E%z,5) — O
uniformly on C;(B) (B > b), where b is the number taken in (1.5).

§3. COMPARISONS OF THE W-P AND T-Z
METRIC ALONG GENERAL DEGENERATIONS

3.1 A review of H. Masur’s work.

We review a construction of a basis of quadratic differentials spanning the cotan-
gent spaces of a general degenerating family of punctured Riemann surfaces. In
[Ms], he has constructed such a basis for any degenerating family of compact sur-
faces. But from his result, we can easily obtain the same kinds of quadratic difer-
entials for a family of surfaces with cusps.

Assume that Sp has singularities at points ¢; (7 = 1,2,... , k), these have nei-
bourhoods N; = {(z;,w;) € C? | |z, |w;] < 1,2; - w; = 0}, respectively, N; =
N; UN? is a union of disks; N} = {z;| 0 < |z;] < 1}, N? = {w;| 0 < |w;| < 1}.
The components S, of Sp (@ = 1,...,r) are called parts of S;. We have to assume
that the S, are hyperbolic, i.e. 2g, — 2 + ng + 1o > 0 where g, are the genus
of S, and nq (fia) are the numbers of the old (new) cusps of S, respectively (we
regard a node attached to just one component as a pair of two new cusps). Let
g, n be the genus and the number of old cusps of Sg. Then we see the equations
g=g+...+9-+k~-(r-1),n=n1+...+n,, 2k =fi; +...+ fi,. These yield

r
39-3+n=) (3ga —3+na+ia)+k

a=1

Any part S, possesses a (3go — 3 + ng + 7ia)- dimensional universal family,
Ty na+i. i-6. Teichmiiller space of type (ga,na + 7ia). We set a basis of Beltrami

k
differentials v7on S, with compact supports in S, — |J N, — {cusp neighborhoods
ij=1

around old cusps of S, } (For example, we may take restrictions to compact support
of the duals of a basis of integrable quadratic differentials): let

a o3 o4 o]
T = (75 .. ,Taga—3+na+ﬁ,,)
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be associated local coordinates for Ty, .4+, around S,, where we set uo(7) =
39&“3+ncx+ﬁa
v, If we vary the complex structure of parts S,, and set 7 =
i=1
(r1,7%,...,77), we obtain a family {S,} and quasiconformal homeomorhisms
f pa(r) . G, —+ Sa,r= which comprise a quasiconformal homeomorphism f~

U Sa — U Sa,r, the last set denoted by S,. The map f7 is conformal on

a 1

LN2 (= 1 ,k) and thus z;, w; serve as local coordinates for f7(N}), f7(N?)
respectlvely For each t = (t1,t2,...,t), [tj| < 1, the new Riemann surface S,r is
constructed from S, by removing the disks {z;] |z;| < ItJI} and {w;] |w;| < lt,l}
and identifying z; with w; = t/2;, constructing annuli N T = {zj||t;] < |z] < 1} ~
{w;lltj| < |w;j| < 1}. If K is a compact subset of So\{ql, * ,qx}, for small (¢, 7)
we will consider K as a compact subset of S; , via f™ and the natural inclusion of
St,r in S, (See [Ms],p.625).

Here following Wolpert ([W1] Lemmal.1), we take a modification F™ of f” so
that each lift Fg :H — H of FT|g, : Sq = Sq,re will coincide with an element
of PSL2(R) on any cusp region corresponding to old cusps of S, (See also [P-S]
Lemma2.2). It should be remarked that F™ and f™ have equivalent initial tangents
0/07Z, that is, the corresponding Beltrami differentials will have the same pairing
with each integrable quadratic differential on S,, which we need in the proof of
Proposition 4 (See [W1] Remark1.2).

Thus We have gotten a local parameter space (t,7) = (t1,t3,... ,tk, 75 72%5... ;
") € D C C%~3*" a neighbourhood of the origin. By changing the indicies, we
sometimes use a notation 7 = (Tk+1.7k+2,- - - y T3g—3+n—k). We state the important
proposition, essentially due to H. Masur [Ms] (see also [B],[Sc],[T¥]). We arrange
his results so that they should fit to our setting, that is, a degenerating family of
punctured Riemann surfaces.

Proposition 3. There is a basis of regular quadratic differentials
{¢.’i(zs t, T)dzz, ¢l/ (Z, L, T)d22 }j=1,... v >k+1
, dual to {0/0¢;,0/07,}j=1,... kw>k+1, Satisfying the next properties:

i) ¢u(2,0,0) has support in the component of Sy where the Beltrami differential
corresponding to 8/87, has support.

i) the followings hold, where(-,-) means the Serre dual pairing;

(3.1) (¢s,0/0t;) = &, fori,j <k
(3.2) (¢:,0/07,) = O(!t,-{), fori<k,v>k+1
(3.3) (@u,0/0t;) = 0, foru>k+1,<k
(3.4) (#u,0/01,) =8p—i,v,  for p,v > k+1.

(t, ) (0,0
i) On z; € Nj, for i <k,

(3'5) ¢i(zj’t7 T) = _"i':' [ 52 +a—1(z_13t T) -12' Z ( ;:7; )r ) t;'n(r) : a’r(ts T) ],
.7

r=1

90



K.Obitsu

where m(r) > 0, a_; has at most a simple pole at z; = 0, a, (r > 1) is holomorphic.
Onz € Nj,v>k+1,

o0 . r _ o0

(36) du(zist,7) = 80(25,0,0)+ 5 3 (L) 470 b t,1)+ 3 2 ety )
J r=1 J r=-—1

where m(r) > 0, ¢,(z;,0,0) has at most a simple pole and b,,c, is holomorphic

and c.(0,0) = 0. Similar equations hold on NJ'-2 with respect to (w;,t, T)-coordinates.

iv) the followings hold, where < -,- > means the natural inner product of quadratic

differentials;

(3.7) < ¢i, s >~ —|t;|2(log |t;])3, fori < k,
(3.8) < ¢, ¢; >= O([t:])O([t;]), fori,j<k,i#j
(3.9) < @i, du >= O(|ti]), fori<k,u>k+1,
(3.10) (t,T}l;lg%o’o) < Pu(2,t,7), (2,8, 7) >=< ¢,(2,0,0),4,(2,0,0) >,

for u,v > k+1.

Remark 2. It seems difficult that we would apply the method of Masur’s original
proof to our case because he used compactness of general fibers of the degenerating
family in his proof.

3.2 Comparisons along general degenerations.

Before we state the main theorem, we give a preparatory tool for investigating
the boundary behaviors of the Takhtajan-Zograf metric. We get the representation
of {0/0t;,0/07,}j=1,... ksw>k+1 in terms of harmonic Betrami differentials approx-
imately.

Proposition 4. Let p(z,t,7)|dz| be the Poincaré metric with curvature —1. We de-
fine harmonic Beltrami differentials n(z,t,7) = p(z, t,7)"2¢;(z,t,7), nu(z,t,7) =

p(z,t,7) 24, (2,t,7), G=1,... ,k,v=k+1,...,39g-3+n). And fori<k,u>
k+1, we put

k 3g—3+n
(3.11) 8/0t; =Y ui(t,TImi(z,t,7) + D uin(t, T)m(2,t,7)
j=1 v=k+1
k 39g—-3+4n
(312) a/aT# = Zu#j(ti T)nj(zyta T) + z 'U'p.u(ts T)nu(zvt: T)'
j=1 v=k+1

Then we obtain the followings:

i) uii(t, 7) =~ —1/|t;|>(log |t: )3, fori<k

i) wij(t, 7) = O(1/|t:[t;|(log [t:])>(log [t51)%),  ford,j<k,i#j
i41) ui (L, 7) = O(=1/|t;|(log |t:|)?), fori<k,v>k+1

w) uui(t, 7) = O(-1/|t;|(log [t;)?), foru>k+1,j<k

k
v) ui“’(t’ T) = 5[“’ + Z O(_l/(log Iti|)3)7 Jor p,v 2> k+1
i=1
Finally we combine Theorem 1 and Proposition 1,3 to get one of our main
theorems.
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Theorem 2. We obtain order estimates of the Riemannian tensors hiz(t, 7) (9;5(¢,
7)) of the Takhtajan-Zograf (the Weil-Petersson) metric near the boundary of Te-
ichmuller space; .

i) giz(t,7) = —1/[t:[*(log |t:])® + O(=1/)t:)*(log Jt:])®),  fori<k
i) g;3(t, 7) = O(1/ltl|t;] (log |t:])°(log [¢51)%),  fori,j <k,i#j

1i 7(t,7) = ¢,5(0,0), ,w>k+1
1‘") (t,T)—I-)xEO,O)g#V( T) gp,u( ) fOT‘ﬂ v +

i) gin(t,7) = O(=1/|t:|(log lti|)3), fori<k,p>k+1.

i) hi(t,7) = O(=1/It:|*Qog [t:])*), ~ fori<k

i) hiz(t,7) = O(1/|ti||t;|(log |t:])%(log [t;])%),  fordi,j <k,i#j

: 5(t,7) = h,5(0,0), k41
i1i) (t,7§1_130,0) hu(t, 7) = h,z(0,0) for iy > k+

iv) hig(t,7) = O(~1/|t;|(og |t:])?),  fori<k,pu>k+1.

We state a conjecture that is inspired by M.Wolf’s asymptotic formula of the
hyperbolic metrics for degenerating Riemann surfaces ((Wf], Corollary 5.4).

The second-term conjecture (Obitsu and Wolpert). Use the notations as
in Theorem 2. The next asymptotic formula for the Weil-Petersson metric for T,
holds; for u,v > k+1,

gl.tl_l'(ta T)

7(4 k
= 0i5(0,7) + 2 (108 1) (s (Bia (D) + Bua(z,2)m ) _(0,7)

i=1
+ O(i(log 1t:)=2).
i=1

Here, E; 1(2,2), E; 2(z,2) are the Eisenstein series associated with the i-th node
and the components of the degenerate Riemann surface. i.e. in the second-term,
the associated Takhtajan-Zograf metrics appear.

§4. AN APPLICATION TO L,~COHOMOLOGY OF MODULI SPACE

First of all, we review the result of L.Saper.

Theorem 3 ([Sa]). Denote by M, the moduli space of compact Riemann surfaces
of genus g > 1. Then, We have the isomorphisms

H{ (Mg, wwp) ~ H*(Mg,R),

where the left-hand sides are the Lo-cohomolgy groups with respect to the Weil-
Petersson metric, and the right-hand sides are the usual cohomolgy groups of the
Deligne-Mumford compactification of the moduli space with coefficients in R.

We can mimic the proof of Theorem 3 with using Theorem 2 to deduce the next
generalization.
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Theorem 4. Denote by Mg, the moduli space of punctured Riemann surfaces of
genus g with n punctures, 3g — 3+ n > 0. Then, we have the isomorphisms

Hz‘z) (Mg,n,wwp) ja-d H{Z)(M ,n,U.)TZ) ~ H*(Mg,n,R),

, where the middle are the Ly-cohomolgy groups with respect to the Takhtajan-Zograf
metric, and the left-hand sides and the right-hand sides are respectively the obvious
counterparts of them in Thorem 8.

[S1]

[T-Z)
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Addendum.

Very recently, I and S. Wolpert have proved the second-term conjecure! Precise
proof and several applications will appear elsewhere.
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