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Abstract

We consider two type of perturbations of the Euler equations for
inviscid incompressible fluid flows in R®?, n > 2. We present global
well-posedness result of these perturbed Euler system in the Triebel-
Lizorkin spaces for intial vorticity which is small in the critical Triebel-
Lizorkin norms. Comparison type of theorems are obtained between
the Euler system and its perturbations.

1 Introduction and Main Results

We are concerned with the perturbations of the following Euler equations for
the homogeneous incompressible fluid flows.

gtﬁ + (v-V)v=-Vp, (z,t) €R"x (0,00)

(E) div v = 0, (3, t) € R" x (07 OO)
v(z,0) = w(z), z€R"

where v = (v1,--+ ,w), vj = vj(z,t), j = 1,--- ,n, is the velocity of the
flow, p = p(z,t) is the scalar pressure, and v is the given initial velocity,
satisfying div vg = 0. The local well-posedness of solution is established by
many authors in various function spaces(14, 15, 16, 7, 21, 22, 3, 4, 5]. The
question of finite(or infinite) time blow-up of such local regular solution of (E)
is an outstanding open problem in the mathematical fluid mechanics. One



of the most significant achievements in this direction is the celebrated Beale-
Kato-Majda(BKM) criterion for the blow-up of solutions{2], which states

T,
lim sup ||v(¢)||gm = oo if and only if / lw(s)||zods = oo,
t/T. 0

where w =curl v is the vorticity of the flows. Bahouri and Dehman also
obtained similar blow-up criterion in the Hélder space[l]. Recently the BKM
criterion has been refined by Kozono and Taniuch[17], replacing the L*®
norm of vorticity by the BMO norm, and by the author of this paper(3],
replacing the L* norm of vorticity by Fé’o’w norm and the Sobolev norm
llu(2)||zzm by the Triebel-Lizorkin norm ||u(t)|| s, respectively. We note here

that L* < BMO — Fgo,w, and H™(R") = Fj5. We also mention that
there is a geometric type of blow-up criterion, using deep structure of the
nonlinear term of the Euler equation[10].

In this paper we study the well-posednes/blow-up problems for perturbations
of the Euler equations, which are supposed to closer to the original Euler
system than the usual Navier-Stokes perturbation. In order to optimize the
results we use the Triebel-Lizorkin spaces.

Our first perturbation of (E) is the following:

% +a(t)(u-Viu=—Vq, (z,t)€R"x (0,c0)

(aE) divu=0, (z,8)€R"x (0,00)
u(z,0) = ug(z), z€R"

where u(z,t),q = q(z,t) are similar to the above, and ug is a given initial
vector field satisfying div ug = 0. a(t) > 0 is a given continuous real valued
function on [0,00). If we set a(t) = 1, then the system (aE) reduces to
the well-known Euler equations for homogeneous incompressible fluid flows.
Below we will impose the condition that a(-) € L(0,00). We observe that
if we choose e.g. a(t) = 1 for t € [0,%], and a(t) = Wl—to)f for t € (tg, 00),
then the system (aE) coincides with (E) during the time interval [0,,], and
distorts from (E) after that. For the system (aE) we have the following small
data global existence result. For an introduction to the function spaces we
use below, we summarized basic facts about about the Triebel-Lizorkin and
the Besov spaces in the Appendix. The detailed proofs of the results below
are in [6].

Theorem 1.1 Let s > n/p, with (p,q) € [1,00], or s = n withp = 1,
g € [0,00]. Suppose a(-) € L'(0,00). There exists an absolute constant
Co > 0 such that if initial vorticity wy € Fy, satisfies

fwollsg,, < (Co I a(t)dt)'l,



then a global unique solution u € C([0,00); F5t') of (aE) exists. Moreover,
the solution satisfies the estimate

Co Ji alt)dtwol g0
e < , R 1.1
02 [(t)leg, < llwolz, exp(l_oo iz, )

Remark 1.1 Since W*P(R") = F3, is the usual fractional order Sobolev
space, Theorem 1.1 implies unmedlately the global well-posedness of (aE)
in W*?(R") for initial data uo € W*P(R") with [lwol| 0 | sufficiently small.

We emphasize here that we need smallness only for P"c?o,l norm of vorticity.

In view of the embedding Fgo,l < L*°(see Lemma 2.1 below), it would be
interesting to extend the above result to the case with smallness assumption
on ||wpl|ee.

The following theorem states the equivalence of local existence of the Eu-
ler system with the global existence of the perturbed system with suitable
modification of initial data.

Theorem 1.2 The solution vE of the Fuler system (E) with the initial data

¢ blows up att =T, < oo in F;,, namely

lim sup [l (2) L3, = oo, (12)

t—-T,

if and only if for solution u of (E,) associated with the initial data

T,
uo(z) = -f-—(—ﬁ; 5 ()

we have

/0 T Il adt = oo (13)
fors>n/p+1, (p,q) € [1,00]2, while

| ool ottt = co (14)
fors=n+1,p=1, q€ [1,00] respectively.

Remark 1.2 As in Remark 1.1 we can replace |[v®(t)||rs, by [vE @) lwer@n) in
(1.2). Also, since L* < BMO — || B ,» We can replace the norm, ||w(t)||bd,,

by lw(®)||zamo, or |lw(B)[|z~ in (1.3).

Remark 1.3 By following exactly the same procedure as in [3] and [4] it is



easy to find that the following blow-up criterion holds for the system (aE):
The solution u(t) of the system (aE) blows up at t = T, < co in F; ., namely

limtsug lu@®)llF, = oo, (1.5)
if and only if .
| 16y, a0t = o0 (16)

for s >n/p+1, (p,q) € [1, 002, while

JRZCIPRCT RS (17)

for s =n+1, p=1, ¢ € [1,00] respectively. Thus, the conditions (1.3)
and (1.4), in turn, are equivalent to the blow-up of solution u(t) of (aE) at
infinite time, namely

limtsllg lu@)lzg, = oc. (1.8)

Next, we consider the following ‘damping’ perturbation of the Euler equa-
tions:

%tu—+ (u-V)u=-Vg—eu, (z,t)€R"x (0,0c0)

(E), div u=0, (z,t) €R" x (0,00)
u(z,0) = uo(z), e R"

with € > 0, which could be considered as a ‘milder’ perturbation of the Euler
system than the usual Navier-Stokes system. We will see below that the
system (E). can be treated as a special case of (aE). Applying Theorem 1.1
and 1.2, we establish the following two results regarding (E)..

Corollary 1.1 Let s > n/p, with (p,q) € [1,00}%, or s = n with p = 1,
g € [0,00]. There exists an absolute constant C; > 0O such that if initial
vorticity wy € Fy, and the ‘viscosity’ € satisfies

€

lenlsg, < &

then global unique solution u € C([0,00); F3+') of (E). exists. Moreover the
solution satisfies the estimate

(1.9)

<t<oo

Cillwollgo )

su w t s < [7) s X
D lw(t)les, < ool "(e—auwollsgo,l



Similar remark to Remark 1.1, concerning the changes of the function spaces
into to the more familiar spaces such as W*?P(R"), also holds for Corollary
1.1.

Corollary 1.2 The solution vE of the Euler system (E) blows up at t =

T, < © in F; ,, namely

lim sup [|v®(8)|| 5z, = 0, (1.10)

t—T.

if and only if for solution u of (E,) with e = ,‘,—*. we have

| bty e = o0 (L1)

fO'I'S > n/p+ 1, (ps q) € [1’00]21 while

/0 T lw(®)l o, dt = o0 (1.12)

fors=n+1,p=1, q € [1, 00| respectively.

Remark 1.4 In terms of the usual Sobolev spaces, H™(R") with m > % + 1,
Corollary 1.2 implies that if we have local solution v* € C([0, T]; H™(R")) to
the problem (E) with initial data v, then necessarily we have global solution
u € C([0, 00); H™(R™)) of (E). with the initial data up = Av¥, and € = 2.
This resembles the comparison type of result between the Euler equations and
the Navier-Stokes equations obtained by Constantin(See Theorem 1.1[9]).

As a model problem of the perturbed Euler equation we also consider the
Constantin-Lax-Majda equation[11] first considered in {11]:

wi—Hww=0 (z,t) eRxR*
w(z,0) = wp(z) zeR

(CLM) {

with w = w(z,t) a scalar function, and H(f) is the Hilbert transform of f
defined by

H(f) = %PV f f—(_%dy. (1.13)

For the problem (CLM), Constantin-Lax-Majda derived the following ex-
plicit solution([11](see also Section 5.2.1 of [19}):

4wy ()
(2 — tHwy(z))? + t2u2(z)

w(z,t) = (1.14)



The perturbed equation we are concerned is

ot — H(o)o= -0 (z,t) e Rx Rt
o(z,0) = op(z) zeR

(L), {
We have the following relation between the two solutions:

o(z,t) = e %w (z,—i—(l—e‘d)), (1.15)
oo(z) = wo(z).

Combining (1.15) with (1.14), we easily obtain the following explicit solution
of (CLM),:

4e%0y(z)e .
(26 — Hop(z) (1 — e=t))® + (1 — e~=t)203(z)

o(z,t) = (1.16)

The formula leads us to the following proposition:

Propaosition 1.1 In case Hoog(z) < 0 for all z € R there is no blow up of
solution. Otherwise, we consider the three cases. Let us put S = {z € R :
0'0(22) =0, HU’o(x) > 0}

(i) If € > Lsup,.g Hoo(z), then there is no blow-up.

(i) If there exists z € S such that € < 1Hao(z), then solution blows up at

T. given by
| ey 2 B (1.17)
‘e SUD,cg Hoo(z) ' )

(i11) If the set Sy = {z € R: 0p(z) =0, = %Ha'g(:r)} i3 nonempty, and if
for all z € R\ S we have € > LHoy(z), or oo(z) > 0, then the solution
blows up at t = +oo.

Remark 4.1 We note that (i),(iii) above are the new phenomena of (CLM),
not occurred in (CLM).

2 Appendix: Function spaces

We first set our notations, and recall definitions of the Triebel-Lizorkin
spaces. We follow [20]. Let S be the Schwartz class of rapidly decreasing
functions. Given f € §, its Fourier transform F(f) = f is defined by

Fo = -(—2—%,75 /R ] e~ f(z)dz.




We consider ¢ € & satisfying Suppp C {€ € R* | ; < [£] < 2}, and
G€) > 0if 1 < €] < 2. Setting ¢; = $(279€) (In other words, p;(z) =
2mp(29z).), We can adjust the normalization constant in front of ¢ so that

i) =1 vEeR"\{0}.
J€Z
Given k € Z, we define the function S, € S by its Fourier transform
Sk(&)=1- ) ;).

J2k+1

Let s € R, p,q € [0,00]. Given f € &', we denote A;f = p; * f, and then
the homogeneous Triebel-Lizorkin semi-norm || f|| gz is defined by

(Z qu‘IAjf(-)l")

JeZ

if ¢ € [1, 00)
L»

3gg<zfsm,-f<-)|)”uif 4= o0

“f”ﬁ';,q =

The homogeneous Triebel-Lizorkin space F sy isa gausi-normed space with
the quasi-norm given by || - || #g - For s >0, (p,q) € [1,00]? we define the

inhomogeneous Triebel-Lizorkin space norm || f{|rs  of f € S’ as

Ifllrg, = Ifllze + 1 £ g,

The inhomogeneous Triebel-Lizorkin space is a Banach space equipped with
the norm, || - || go - Similarly, the homogeneous Besov norm ||f]|, .- is

prq
defined by

1
[e <] q
[szuw * fll‘},p] if ¢ € [1,00)
IFllss, = § L5 :

sup [27°]|; * fl|zs] if g = oo
J

The homogeneous Besov space B”q is a quasi-normed space with the quasi-
norm given by || - || 5, . For s > 0 we define the inhomogeneous Besov space

norm ||f||s, of f €S as || fllzg, = I fllze + 1155,

Lemma 2.1 Let s € (0,n), p,q € [1,00] and sp = n. Then the following
sequence of continuous embeddings hold.

n B Bl FY, - L. (2.1)



The first imbedding of Lemma 2.1 is proved in [12], while the second one is
proved in [4]. The others are obvious from the definitions of the corresponding
norms.
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