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Flows on C*-algebras

A. Kishimoto
Department of Mathematics, Hokkaido University, Sapporo

This is considered as the subject started by S. Sakai et al. some 30 years ago as the
theory of unbounded derivations, after completion of the theory of bounded derivations.
(Unbounded, or bounded, derivations include the generators of lows. My understanding is
that the purpose was to gain insights into dynamics/mechanics of nature.) See 8,9, 3, 44]
for the motivations and developments made after initial impetus. This is a sort of head-on
assault on the subject and I find this approach still too difficult.

Thus we are taking an easy approach through, say, back gates, where it looks we could
set up numerous traps without drawing excessive reproaches.

This is a survey article on what I have been doing on flows. I suppose I made many
attempts, each short-lived, to try to understand some aspects of flows and wrote in general
a paper for each with whatever I got. For clarifying motivations and presentations, I also
include some other results.
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1 Semi-flows on Banach spaces

We mean by a semi-flow on a Banach space A a semi-group homomorphism « of [0, 00)
into the bounded operators B(A) such that ay = 1, and o4(z)—z as s—0. The generator

§ = 6, of a is defined by
5(z) = lim 222 =2
s—0 S

for 7 in A such that the right hand limit exists. The set of such z, the domain D(é) of
8, is a dense linear subspace and d is a closed linear operator from D(§) into 4. We will
call o a contraction semi-flow if ||a,|| < 1 furthermore. In this case the generator ¢ is
dissipative; i.e., if ||(1 — 6)(z)|| = ||z|| for any = € D(J).

Theorem 1.1 Let A be a Banach space and & a linear operator in A such that the domain
D(6) is dense. Then § generates a contraction semi-flow on A if and only if § is dissipative
and the range R(1 — d) of 1 — 0 equals A.

Proof. See, e.g., [46, 8].
Theorem 1.2 Let (o) be a sequence of contraction semi-flows on a Banach space and
o be a contraction semi-flow on A. Then the following conditions are equivalent:

1. (ay) converges strongly to a, i.e., |lant(z) — a(z)||—0 uniformly in t on every
compact for any z € A as n—oo.

2. (8,) converges to d, in the graph sense, i.e., For any z,y € A it follows that z €
D(8,) and y = 8,(z) if and only if there is a sequence (2,) in A such that z, € D(én),
|lzn — z||—0, and ||6n(zn) — y||—=0, where 6, = da, .

Proof. See, e.g., [46, 8].



2 Flows on (C*-algebras

We mean by a flow on a C*-algebra A a one-parameter automorphism group of A. We
always assume that a flow is strongly continuous; if a is a flow on A, then a;(z)—z in
norm as t—0 for all z € A. The domain D(4,) is a dense *-subalgebra of A and é, is a
derivation from D(d,) into 4, i.e., d, satisfies:

60(:5?/) = da(z)y + z6a(y), T,¥ € D(éa)

and
da()" = da(z"), = € D(da)-

If § is a derivation defined everywhere on A, then it is known that ¢ is automatically
bounded. If A is assumed to be unital and simple, then there is an h € A,, such that
§ = adih; such a derivation is called inner [45]. If A is simple but does not have a unit,
there is an A = h* in the multiplier algebra of A such that 6 = adih.

We call a flow a uniformly continuous if ||a; — 1||—0 as t—0. If a is a uniformly
continuous flow on a unital simple C*-algebra, then d, is defined everywhere and hence
is inner. Thus « is also inner in the sense that a; = Ad e** for some h € A,,.

Theorem 2.1 [45, 44] Let & be a densely-defined linear operator in the C*-algebra A.
Then & generates a uniformly continuous flow if and only if § is a derivation with D(5) =

A.

We recall that B is a hereditary C*-subalgebra of A if B is a C*-subalgebra of A and
BAB C B.

Definition 2.2 [22] A flow @ on a C*-algebra A is said to be almost uniformly continuous
if for any a-invariant closed ideal I of A the induced flow & on the quotient A/I has a
non-zero a-invariant hereditary C*-subalgebra B such that &|B is uniformly continuous.

Definition 2.3 A flow o on a C*-algebra A is said to be universally weakly inner if there
is a unitary flow U in the second dual A** such that oy(z) = UzU;, z € A, t € R.

Theorem 2.4 Let o be a flow on a C*-algebra A. Then the following conditions are
equivalent:

1. o* is strongly continuous on A*.

2. For any pure state ¢ of A, ||pas — ¢||—0 as t—0.
3. a is almost uniformly continuous.

4. a is universally weakly inner.

5. There ezists a net (h,) in Asq such that ||Ad e (z) — a(z)|| -0 and e*™ converges
to a unitary flow U, in the weak® topology (and hence oy(z) = UzUf, = € A).
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Proof. See [22] for the equivalences between (1) to (4). See (13, 10] for the equivalence of
(4) and (5).

Let A be a simple C*-algebra and suppose that o* is strongly continuous on A*. If A
is unital, then « is uniformly continuous and hence is inner. If A is not unital, then there
is a unitary flow » in the multiplier algebra of A, continuous in the strict topology, such
that ap = Ad Ug.

Definition 2.5 Let a be a flow on a C*-algebra A. If there is a sequence (hn) in Asa
such that (Ad eith») converges strongly to a, i.e., Ad e (z) converges to ay(z) uniformly
in t on every compact subset of R for any z € A, o is called to be approximately inner.

Any uniformly continuous flow is approximately inner. We may ask a question if there
is an approximately inner flow which is not uniformly continuous. For that purpose we
define a property which is not shared by uniformly continuous flows but is possessed by
many examples.

Definition 2.6 Let a be a flow on a C*-algebra A. We say that « is profound if for any
non-empty open subset O of R there ezists a bounded sequence (2,) in A (O) such that
[z, zn]l| converges to 0 and limy, ||zz,|| = O entails z = O for any z € A. Here A%(0)
is the closure of the set of elements of the form [ f(t)a:(z)dt, where Tz € A and f is a
continuous integrable function on R such that its Fourier transform of f has support in
-0.

In particular a profound flow has full spectrum and so is not uniformly continuous. It
also follows that any cocycle perturbation of a profound flow is profound.

Theorem 2.7 Let A be a separable antiliminal C*-algebra. Then there ezists an approz-
imately inner profound flow on A.

Proof. Since A is antiliminal and separable, there exists a (at most) countable family {m:}
of irreducible representations of A such that m;(4) N K(Hr,) = {0} and ), Ker(m;) = {0}.
By using this fact we can argue as in [32].

Corollary 2.8 Let A be a separable antiliminal C*-algebra. Let my and m be irreducible
representations such that Kerm, = Kerm,. Then there is a flow a such that ma; is
equivalent to ms.

Proof. If m; and m, are equivalent, there we may take the trivial flow id for c.

Suppose that m, and 7 are disjoint. We find a profound flow & on A by the previous
theorem. Since such a flow cannot be almost uniformly continuous, there is an irreducible
representation 7 of A such that Ker 7 = Kerm; and 7o, is disjoint from . By a stronger
version of [39] (as in [16]) we have an approximately inner automorphism 7 of A such that
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Tayy is equivalent to m, and 7y is to m. Set § = 4 lary. Then the flow 3 satisfies the
required condition.

Without knowing the global structure of the C*-algebra A it seems hard if not im-
possible to construct a flow which is not approximately inner. But for many examples of
C*-algebras we can construct such a flow.

For an approximately inner flow « there is a sequence (hy) in A, such that o =
lim Ad eithn: but there seems to be no canonical way to choose such (hn). The following
result is not entirely trivial (compare it with (4)<(5) of 2.4).

Proposition 2.9 [32] Let A be a separable C*-algebra and a an approzimately inner flow
on A. Let 7 be an a-covariant type I representation on a separable Hilbert space H such
that there is a unitary flow U in w(A)" which implements a. Then there ezists a sequence
(hn) of self-adjoint elements of A such that

1nl_i_r)nm Ad e (z) = au(z), = € A4,

- ithny _
nlg)noo'zr(e ) = U, strongly,

both uniformly in t on every compact subset of R.

3 Inductive limit C*-algebras

We sometimes consider examples of C*-algebras, which are all obtained as inductive limit
C*-algebras and also give abundance of examples of Alows. We sketch these examples.

3.1 UHF and AF C*-algebras

UHF (uniformly hyper-finite) C*-algebras are introduced by Glimm and AF (approxi-
mately finite dimensional) by Bratteli. A C*-algebra is UHF if it is obtained as the
inductive limit of full matrix algebras with unital homomorphisms. A C*-algebra is AF
if it is obtained as the inductive limit of finite-dimensional C*-algebras. These algebras
are classified in terms of dimension groups (or ordered Ko groups) and look rather (tech-
nically) simple C*-algebras but yet it seems extremely if not most difficult to get useful
knowledge on flows on them. The original motivation for studying flows far from in-
ner concerns these C*-algebra, mainly because these C*-algebras are the ones we often
encounter in statistical mechanics. See [44].

Besides flows (i.e., time developments) coming from statistical mechanical models,
there are what we will call UHF flows (on UHF C*-algebras) and AF flows (on AF
C*-algebras), which will be defined later. (AF flows are essentially flows generated by
commutative derivations in Sakai’s terminology [44].) Noteworthy are quasi-free flows on
the CAR algebra, which is the UHF C*-algebra of type 2% whose position is still unclear
among the approximately inner flows.



3.2 Simple AT C*-algebras of real rank zero

This class is introduced by Elliott [14] and is now only a small class among classifiable
classes of stably finite C*-algebras.

A C*-algebra is AT if it is obtained as the inductive limit of tensor products of C(T)
and finite-dimensional C*-algebras. AT C*-algebras can have non-trivial K; contrary to
the AF case above; K, can be an arbitrary torsion-free countable abelian group while Ko
is still a dimension group. A unital C*-algebra A has real rank zero if any self-adjoint
element of A can be approximated by self-adjoint elements of finite spectra; in particular
A has so many projections that they can separate tracial states. AT C*-algebras of real
rank zero can be classified in terms of K theoretic data. This class includes the above AF
C*-algebras and all simple non-commutative tori ([15, 26] and Phillips) and allows much
more wilder flows such as Rohlin flows.

An n-dimensional non-commutative torus A is generated by n unitaries uj,...,uUn
satisfying usujuju; € Cl and has a natural action of the n-dimensional torus T". Any
one-parameter subgroup of T" defines a flow on A.

3.3 Separable nuclear purely infinite simple C*-algebras with
UCT

This class is classified by Kirchberg and Phillips [19, 20] in terms of K theoretic data, Ko
and K, as abelian groups. If A is such a C*-algebra with a unit, then for any non-zero
z € A there are y,z € A such that yzz = 1. And A has real rank zero. By using their
result a simple C*-algebra is in this class if it is obtained as the inductive limit of finite
direct sums of tensor products of C(T) and a corner of a Cuntz algebra [12]. Possibly the
flows in this class would be the easiest to handle.

The Cuntz algebra O, belongs to this class. If n < oo, then O, is generated by n
isometries sy, ... ,Sn satisfying 3 p_; sks; = 1. The unitary group U(n) acts on O, by
automorphisms and this gives many examples of flows (see [21, 17]).

4 Cocycle perturbations

Let A be a unital C*-algebra and o a flow on A. If h € A,,, then adth : z — i[h, z] is an
inner derivation. It follows that d, + ad ih generates a flow on A, which we call an inner
perturbation of & and denotes by a(®.

Definition 4.1 Let o be a flow on a C*-algebra A. A continuous function u on R into
the unitary group U(A) of A is said to be an a-cocycle if uga,s(us) = usqe for s,t € R.
Then t — Ad usoy is again a flow and is called a cocycle perturbation of c.

Note that cocycle perturbations are more general than inner perturbations, but only
slightly, see below.




Definition 4.2 Let o and 3 be flows on A. « is an approximate cocycle perturbation of
8 if there is a sequence (un) of B-cocycles such that Ad u,B converges strongly to «.

If the cocycle u is differentiable with ¢h = du;/d#t|:=o, then the generator of the cocycle
perturbation is given by J + ad ih.

Proposition 4.3 [28] Let u be an a-cocycle and € > 0. Then there is a differentiable a-
cocycle w and v € U(A) such that |[v—1|| < e andu; = vwyoy(v)*. Thus ifih = dw,/dt|i=o,
then Adusap = Ad vagh)Ad v*.

Proof. We use the 2 by 2 trick devised by Connes. We define a flow v on A ® M, by

(2311 2»‘12) _ ( at(xn) at(xlz)u; )

Tt = N

To1 ZT22 upoe(To1)  were(Toz)ut

Note that (1 ® e21) = u¢ ® ep1, where (e;;) are the matrix units for M,. Since D(4,)
is dense and 7;(1 ® e;) = 1 ® ey, we have a z € D(J,) such that lz — 1 Q@ exll < €and
z = w® ey for some w € A. We may suppose that w is a unitary by functional calculus.
Let v, = w*usoy(w), which is an a-cocycle. Since 1(z) = war(w) @ ezr = wur @ en,
t — v, is differentiable.

In the conclusion of the above proposition we could also require that ¢ — v; is analytic.

Proposition 4.4 Let o and 3 be flows on a unital separable C*-algebra A. Then the
following conditions are equivalent:

1. There ezists a 6 > 0 such that ||Ja; — B|| < 2 for t € (=4,9).
2. a is a cocycle perturbation of .

9. o is inner-conjugate to an inner perturbation of 3, i.e., o = Ad w(és+adih)Ad w*
for some h € Ay and w € U(A).

Proof. That (1)<(2) is shown in [41]. That (2)«>(3) follows from the previous proposition.

Definition 4.5 Let o be a flow on a C*-algebra A. The cocycle conjugacy class of o is the
set of all flows given as ¢(Adu o)¢~!, where u are a-cocycles and ¢ are automorphisms of
A. Note that the cocycle conjuagey class of a equals the set of all flows given as paMp=1,
where h € A,, and ¢ are automorphisms of A.

One of the main purposes is to determine the cocycle conjugacy classes of flows. In the
following sections we introduce several invariants which could be used for this purpose.



5 Invariants

5.1 Connes Spectra

There is a notion called Arveson spectrum (or simply spectrum) for a flow (which is
just a closed subset of R containing 0, symmetric under ¢ — —t); we denote by Sp(a)
the spectrum of a flow . This is defined as follows: For a closed subset F of R let
A%(F) be the subset of z € A which satisfies that [ f(t)as(z)dt = 0 for any f on R with
supp(f) N (—F) = 0. (Note that A*(R) = A and A%(@) = {0}.) The spectrum Sp(a) is
defined as the smallest F' such that A%(F) = A. :

Proposition 5.1 Let a be a flow on A. Then a is uniformly continuous if and only if
Sp(«) is compact.

The Connes spectrum may be called as Essential Arveson spectrum and is a closed
subgroup of R.

Definition 5.2 [42] Let o be a flow on a C*-algebra A. The Connes spectrum R{c) of
a is defined by
R(c) = |Sp(al|B)
B

where B runs over all non-zero a-invariant hereditary C*-subalgebras of A.

While Sp(c) may not be invariant under cocycle perturbations of a, the Connes spec-
trum R(a) is. If a flow o is profound, then it easily follows that R(c) = R. For the
converse we have:

Proposition 5.3 Let A be a separable prime C*-algebra and o a flow on A. Then the
following conditions are equivalent:

1. R(a) = R and there is a faithful family of a-covariant irreducible representations
of A.

2. a is profound.

Proof. See [23, 24].

Since R(c) is a closed subgroup of R, there are three cases:
1. R(a) = {0}.

2. R(a) = A\Z for some A > 0.

3. R(a) =R.

If o is uniformly continuous, then R(a) = {0}; but the converse does not hold.
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Proposition 5.4 (8.9.7 of [42]) Let o be a flow on a unital simple C*-algebra such that
R(a) = AZ for some A > 0. Then there is a unitary u € A such that oy, = Adu with
to = 27 /X and o(u) = u for all .

But in general there may be no cocycle perturbation o' of a such that oy = id.

Theorem 5.5 [42] Let o be a flow on A. Then the following conditions are equivalent:
1. The crossed product A X, R is prime.

2. A is a-prime (i.e., for two non-zero a-invariant ideals I and J it follows that INJ #

{0}) and R(a) = R.

Definition 5.6 Let o be a flow on A. We define the strong spectrum Sp(a) of a as the
set of p € R satisfying: For any closed neighborhood F' of p the closed linear span of
A*(F)*AA*(F) is A.

Definition 5.7 Let o be a flow on A. The strong Connes spectrum R(a) is defined by

R(a) =(")Sp(«|B),

where B runs over all non-zero a-invariant hereditary C* -subalgebras of A.

_ It is known that R(a) C R(a), that R(e) is a closed subsemigroup of R, and that
R(c) is invariant under cocycle perturbations of a.

Theorem 5.8 [21] Let o be a flow on a C*-algebra A. Then the following conditions are
equivalent:

1. The crossed product A X, R is simple.
2. A is a-simple (i.e., A has no non-trivial a-invariant ideal) and R(a) =R.

When A has a tracial state, say 7, it is often left invariant under the flow a. Then o
induces a flow @ on the weak closure 7,(A)” and we may compute the Connes spectrum
of @; in general R(@) C R(e); and hence we have another invariant R(@).

5.2 Symmetry

For a flow a we should define a symmetry group of c as the group of automorphisms
which commute with all ;. But since what we actually consider is the set of cocycle
perturbations of ¢ rather than « itself, we introduce the following definition:



Definition 5.9 When o is a flow on A, the symmetry group G, of o is defined as
Gq = {7y € Aut(4) | yay™! is a cocycle perturbation}.
The topology on G4 s defined by y,—y if
1. ||va(z) = v(2)|| =0 for allz € A, and

2. there ezists a-cocycles un,u such that yaayy' = Adup(t)as, Yoy = Adu(t)oy,
and ||un(t) — u(t)|| >0 uniformly in t on every compact subset of R.

When v € G, v extends to an automorphism of the crossed product A x4 R by
am(a), A(t) = ueA(t),

where )\ is the canonical unitary flow in the multiplier algebra of A X, R and u is an
a-cocycle such that yayy~! = Aduy. If A is simple (or has trivial center), then the
extension is unique up to dual automorphisms.

Definition 5.10 When « is a flow, the core symmetry group Gog of o is defined as the
group of automorphisms v which satisfy: There ezists a continuous map v : [0, 00)—U (A)
such that v = lim,—e Ad v, and lims—seo v,04(v}) ezists uniformly in t on every compact
subset and defines an a-cocycle u such that youy™' = Adus oy,

It follows that each v € Gqo extends to an asymptotically inner automorphism of the
crossed product A X, R.

Theorem 5.11 [37] Let o be a flow on a separable antiliminal simple C*-algebra A. Let
(m1,Ut) and (ma, Us) be representations of (A, @) such that m; and 7y are irreducible, the
Connes spectrum of the flow a is non-zero, and Ker(my x Uy) = Ker(mg x Uy). Then there
ezists a v € Gop such that w7y is equivalent to m,.

The condition above in terms of Connes spectrum is made to ensure that the crossed
product A X, R is antiliminal.

The proof of this theorem uses techniques from (39], where it is shown that the pure
state space of a separable simple C*-algebra is homogeneous under the action of asymp-
totically inner automorphisms.

5.3 Orbits in the spectrum

Let a be a flow on a C*-algebra A and let A be the set of equivalence class of irreducible
representations of A. Then o acts on A by a!m = ma,. We define a representation 7 by

@
T = / 7ratdt

10
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11

on L?(R,Hx). Define a unitary flow U by
(Ug)(s) = &(t+5), €€ L*(R, Ha).

Then it follows that AdUm(z) = Ta(z), i.e., (T,U) is a covariant representation of
(A,a). Since AdU acts on the center of M = 7(A)" ergodically, M is homogeneous in
the sense that M is not isomorphic to the direct sum of two non-isomorphic von Neumann
algebras. Hence for such von Neumann algebras M; and Mo, it follows that they are either
isomorphic or do not have isomorphic direct summands. We define the type of such a von
Neumann algebra M as the set of von Neumann algebras isomorphic to M. Note that for
example M is either type I, type II, or type III,, with A € [0,1].

Definition 5.12 [23] Let a be a flow on A and € A. The type of the orbit {afm | t € R}
is the type of the von Neumann algebra T(A)", where T = f ® ra,dt is a representation on
L* (R, Hx).

Theorem 5.13 (23, 24] Let o be a flow on a separable simple C*-algebra such that the
Connes spectrum of a is full. Then the following conditions are equivalent:

1. (A, a) has an covariant irreducible representation.

2. (A,a) has an anti-covariant irreducible representation m in the sense that ™ =
f ® ra,dt is the central decomposition of T.

Theorem 5.14 [31] Let o be a flow on a separable simple C*-algebra A such that the
Connes spectrum of a is non-trivial. Then if the flow o” on A has a type I orbit, then it
has orbits of type Il, type 11T, X €[0,1].

In the proof of the above theorem we use the following résult, which is a Glimm’s
type result for (A, @). This result gives representations of (A, ) through those of a very
special flow on a UHF C*-algebra. “

Theorem 5.15 [31] Let A be a separable prime C*-algebra and let & be a flow on A with
R(a) # (0). Then the following conditions are equivalent:

1. There exists a faithful family of a-covariant irreducible representations of A.

2. There ezists a faithful a-covariant irreducible representation of A which induces a
representation of the crossed product A Xo R (on the same Hilbert space), whose
kernel is left invariant under 6|R(a).

8. For any UHF C*-algebra D and any UHF flow y on D (i.e., 7+ = @2, Ad eithn om
D = ®% My, with hy = h}, € My, ) such that Sp(v) € R{a), and any € > 0, there
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is a C*-subalgebra B of A, an h = h* € A, and a closed projection q of A™ such
that

1] €
o"(B) B,
(@) @) = g
qAq By,
(Bg, («™)**|Bg) = (D,7),
where (a®)3* = (™)™ on A**, and if c(q) denotes the central support of g in A™,
z = 0 iff zc(q) = 0 for any T € A.

Since R(c) # (0), then A is automatically antiliminal (i.e., it has no abelian hereditary
C*-subalgebra), which was the standing assumption for the Glimm’s theorem.

A

R Il

Corollary 5.16 Let A be a separable prime C*-algebra and let o be a flow on A. Then
there is an a-covariant representation m of A such that the flow on the weak closure n(A)”
induced by a has R(a) as the Connes spectrum.

Proof. If R(c) = {0}, then there is nothing to prove. If R(ca) # {0}, then we apply
the previous theorem. Let v be a UHF flow on a UHF C*-algebra D such that Sp(y) =
R(y) = R(c) and the flow on ,(D)" induced by v has R(c) as the Connes spectrum,
where 7 is the tracial state on D. By the above theorem we find a covariant representation
7 of A by extending 7, on D = gAg in the notation there. We then check that the Connes
spectrum of the induced flow on m(A4)”" is the same as the Connes spectrum of an inner
perturbation of it on 7(g)m(A)"7(g), which is R(c).

5.4 Domains

Let o be a flow on a C*-algebra A and let §, denote the generator of a. The domain
D(6,) is a Banach *-algebra with the norm defined by

jeti =1 (5 %)

See [44] for more on domains and related topics. The domain as a Banach *-algebra is
apparently an invariant for cocycle-conjugacy class. In many cases the domain actually
determines the generator up to inner perturbations and constant multiples.

Theorem 5.17 Let A be a separable prime C*-algebra and let a be a flow on A such that
R(a) # {0}. Suppose that there is an a-covariant faithful irreducible representation of A.
Let & be a derivation defined on D(8,). Then there is a constant A € R and a bounded
derivation d on A such that § = A, + d. In particular if A is simple, then § generates
either a flow which is an inner perturbation of a re-scaled o (i.e., t = ay) or an inner

flow.

12
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Proof. This follows from 3.1 and 3.6 of [7] with 5.16 above.

There are quite a few results in this direction, which all show how difficult it is to
determine the domains of generators and where we actually depart from the realm of
C*-algebras. We do not know how to characterize Banach *-algebras which appear as the
domains of generators: See [3] for more results.

5.5 Marginal spectra

Let @ be a flow on A. We denote by A%(0,00) the closure of the union U, A®[1/n,00)
and by A%(—00,0) the closure of the union {J, A*(—0o0, 1/n]. Note that A%(—o0,0)" =
A2(0, ).

Definition 5.18 [28] The bottom marginal spectrum Sp_(a) of & is defined by
Sp_(a) = {p € R | Ve > 0 A%p — €,p+ *A°[p — ¢, p + ¢ & [4%(0, 00) AA*(—00, 0)]}-

The top marginal spectrum Sp, () is defined by
Sp.(@)={pER|Ve>0A%p—€p+ €]’ A%lp — &, p + €] & [A%(—00, 0)AA%(0, c0)]}-

It follows that Sp. () is closed and that Sp_(a) C [0, 00) and Sp, (@) C (—00,0]. It
also follows that Sp_(a) is empty if and only if A%(0, 00)AA%(—00,0) = A and that if
Sp_(a) is not empty then Sp_(a) > 0. The bottom (resp. top) marginal spectrum is
associated with the spectra of the unitary groups implementing the flow in ground state
representations (resp. ceiling state representations).

Let £°(A) be the C*-algebra of bounded sequences in A and let £°(A) be the max-
imal C*-subalgebra of £°(A) on which the action @ is continuous, where @ is the (non-
continuous) flow on £*(A) defined by @((zn)) = (ce(z5))- Let co(A) be the ideal of £° (A)
consisting of £ = () With limp—eo [|Zall = 0. We set AT = £2(A)/co(A), on which @
induces a flow, denoted by o below.

Definition 5.19 Let o be o flow on A. The essential bottom (resp. top) marginal spec-
trum R_(a) (resp. Ry(e) of a is defined as Sp_(a]A'N A®) (resp. Sp,(a]A' N AT)).

Let B = A' N A%. It follows that p € R_(a) = Sp_(a|B) if and only if there is an
2 € B such that oy(z) = €'z and z*z ¢ (B*(0, 00) BB*(—00,0)].

The essential marginal spectra are of course invariant under cocycle perturbations.

To give some legitimacy to the above definition in terms of central sequence algebras
we state:

Proposition 5.20 [24] Let A is a separable prime C*-algebra and « a flow on A. If
there is a faithful family of a-covariant irreducible representations of A (or equivalently
a faithful covariant irreducible representation), then the Connes spectrum R(a) equals
Sp(alA’ N AZ).
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Let 7 be an a-invariant tracial state of A. We will need the following definition later.
Definition 5.21 The T-essential bottom marginal spectrum R, _(a) is defined by
{peR|z e ANAY, au(z) = €'z, 3"z & [B*(0,00)BB*(—00,0)], limsup 7(z7zn) > 0},

where B = A'NA%®. The T-essential top marginal spectrum R 1(c) is defined in a similar
way.

We note that the definition for this version of essential marginal spectra in [28] is not
correct and should be understood as above.

5.6 KMS states

If the flow represents a time development of a physical system, the KMS states. represents
equilibrium states of that system. The set of KMS states is essentially invariant under
cocycle perturbations.

Definition 5.22 Let o be a flow on a C*-algebra A. Let w be a state of A and ¢ > 0. If
for any T,y € A there is a bounded continuous function F on S, = {z€ C |0 < 3(z) < c}
such that F is holomorphic in the interior of S, and satisfies the boundary conditions:

Ft) = w(zos(y)),
F(t+ic) = w(a(y)z),

for all t € R, then w is called a KMS state of (A,e) at c. If ¢ <0, the same definition
applies with S, = {z € C | 0 > S(2) > c}. If c =0 and w is an a-invariant tracial state,
then w is called a KMS state of (A,a) at 0.

It easily follows that KMS states are all a-invariant.
When A = M, a flow a on' M, is of the form a; = Ad eith for some h € (Mp)sq- In
this case there is a unique KMS state w, of (M,, Ade**) for each inverse temperature

ceR: —
we(z) = —T%g:#, T € M,.
In general there may be many or no KMS states.
Let K2 be the set of KMS states at c of (4,a). It is known that K7 is a Choquet
simplex in the state space S(A) of A if A is unital. (Note that possibly K¢' is empty.)
Let K& be the cone generated by K¢; Ko ={ | >0, we K2}, which is closed and

is a lattice in the set of positive functionals.
Definition 5.23 Let o be a flow on A. Under the above notation let
K*={(c,$) | c€R, ¢ € K2},

which is regarded as a bundle over R with the base map q : K*—R defined by g(c,d) =c
such that the fiber at each point is a lattice cone or possibly an empty set. We call K¢
the KMS field of (A, c).
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The KMS field is a closed subset of R x A*.

Proposition 5.24 Let a and (3 be flows on a C*-algebra A. If and B are cocycle-
conjugate, then the KMS fields K® and KP# are isomorphic. More concretely there is
a homeomorphic isomorphism ¢ of K* onto KP which induces an affine isomorphism
Ko—K? for each c € R (where they are non-empty) such that ¢(w) is unitarily equivalent
to w, where (c,w) = (¢, p(w)).

Let o be a flow on a unital C*-algebra A. Let Fy = {c € R | KZ # 0}. For each
k=1,2,... let F} be the set of ¢ € R such that K7 has affine dimension greater than or
equal to k. Then we have:

Proposition 5.25 Suppose that o is a flow on a unital separable C*-algebra A. Under
the above notation, Fy is closed and (Fi){2, is a decreasing sequences of F, sets of R.

The property that Fj is.a F, set follows since A is separable. What is shown in 5]
is the converse: For any sequence (F}) we can realize (A, a) such that dim K¢ > k if
and only if k£ € Fx. And moreover it is very likely A can be chosen to be a simple AF
C*-algebra. Thus we see that the set of possible KMS fields is quite large. See [4, 5, 6]
and [33] for more.

Proposition 5.26 Let A be a unital simple C*-algebra, a o flow on A, andc € R\
{0}. Then there is a continuous homomorphism @ of the symmetry group G, into the
homeomorphism group of K& such that ®(7)w is unitarily equivalent to wy~! for v € Gq
and w € K2. Moreover ®() = id for any inner 7.

Proof. If v € G, and w € K2, then wy~! is a KMS state at c for the flow yay~*. Since
voyy~! = Adusoy for some a-cocycle u, we use a perturbation theory to obtain a KMS
state at ¢ for o from wy™!. See [1, 44, 7).

5.7 Rotation map

Let A be a C*-algebra and let a be a flow on A. Let T be the simplex of tracial states
of A and let T be the closed convex set of a-invariant tracial states. Let Aff(T) be the
real Banach space of affine continuous functions on T.

Definition 5.27 Under the above notation we define a homomorphism ¢, of K1(A) into
Aff(T*) by

Balla)(7) = 5 (Balu)u"),

where u € U(A) ND(8s) or u € U(M, ® A) N M, ® D(da) with appropriate modifications
in the above formula. We call this the rotation map of c.

15



The above is indeed well-defined; see [4, 11, 26]. For example, if u,v € U(A) N D(da),
then the equality 0q(uv) = 64(uw)v + uda(v) yields

(80 (uv)v*u”) = 7(0a(u)u") + 7(da(v)v")
for 7 € T* and if h = h* € D(8,), the equality 6,(e*) = [} €¥hid,(h)e1~ds yields
7(6(e)e~) = 1(id4(h)) = 0.

It follows easily that the rotation map is an invariant under cocycle perturbations. We
can show: .

Proposition 5.28 If o is an approzimate cocycle perturbation of another flow 8 on A,
then ¢o = ¢g.

Proof. We may suppose that d, is the limit of ds + adih, in the graph sense for a
suitable sequence (hy) in Aye. Thus for any u € U(A) ND(d,) there is a sequence (un) in
U(A)ND(d3) such that ||u—un||—0 and ||da(u) — (§s +2ad thy,)(us)||—0. We may suppose
that [u] = [us] for all n. Since

7((p + ad tha) (un)uy) = 7(dp(un)uy)

is independent of n and converges to 7(d,(u)u*), this concludes the proof.

5.8 Rohlin property

Since the Rohlin property for single automorphisms is so successful, we introduce:

Definition 5.29 Let o be a flow on a unital C*-algebra A. We say that o has the
Rohlin property if for any p € R there is a central sequence (un) in U(A) such that
|l (un) — €Ptuy|| converges to zero uniformly in t on every bounded interval.

Let A be a unital C*-algebra and let A% = ¢*(A)/co(A), where £*°(A) is the C*-
algebra of bounded sequences in A and co(A) is the ideal of £°(A4) consisting of those
sequences converging to zero. When ¢« is a flow on A, we define a one-parameter auto-
morphism group @ of £*°(A) by @((z,)) = (c(z)). Since @ is not continuous (if & is
not uniformly continuous), we define a C*-subalgebra £€3°(A) of £*°(A) as the maximal
C*-subalgebra on which @ is continuous and thus forms a flow. We let

AT = £3(A)/co(A),

on which @ induces a flow, which we simply denote by . Note that A is naturally
imbedded into £°(A) and in turn into A?. The Rohlin property for o on A is characterized
by the property: For any p € R, there is a v € U(AP N A’) such that oy (v) = €.

Ifu € U(A® N A') is in the connected component of 1, we denote by £(u) the infimum
of the lengths of rectifiable paths from u to 1 in U(AP N A').

16

16




17

Theorem 5.30 [25] Let A be a unital separable C*-algebra and let o be a flow on A.
Then the following conditions are equivalent:

1. a has the Rohlin property.

9. For each a-cocycle u in AP N A’ such that limy—o £(u(t))/t = 0, there ezists a
unitary w € AL N A’ such that u(t) = wa,(w*).

In this case for each a-cocycle u in A such that limy—e £(u(t))/t = 0, there is a sequence
(wy) in U(A) such that ||u(t) — waae(wy)||—0 uniformly in t on every bounded interval.

If o has the Rohlin property, then « is not approximately inner and has no KMS states
(see [25]).

Proposition 5.31 [25] Let A be a unital separable purely infinite simple C*-algebra and
let a be a flow on A. If a has the Rohlin property, then the crossed product Ax,Risa
purely infinite simple C*-algebra.

6 Flows on AF (C*-algebras

Definition 6.1 [30] A flow « is called a UHF flow if it is a flow on a UHF C*-algebra A
and if it has an increasing sequence (A,) of a-invariant finite-dimensional C*-subalgebras
of A such that A, 3 1a, U, An is dense in A, and A, s isomorphic to a full matriz
algebra.

UHF flows represent non-interacting models and must be very easy to analyze; yet
I still cannot understand them. A UHF flow has a unique KMS state for any inverse
temperature.

Proposition 6.2 Let A be the UHF C*-algebra of type 2%, i.e., the infinite tensor product
of 2 by 2 matrices, and let T denote the unique tracial state of A. Let o and 3 be UHF flows
on A. IfR(a) = R = R(8), Rr,_(a) = [0,00) = Ry, (6), and Rrs(a) = (-00,0] =
R, +(B), then a and B are cocycle conjugate.

Such a flow a can be obtained as
oy Ci'\"t 0
o = @Ad ( 0 1) ,
where (\n) is a sequence of real numbers such that A,—0 and 3°, 22 = oo (cf. [30]).
Definition 6.3 [7] A flow is called an AF flow if it is a flow on an AF C*-algebra A and
if it has an increasing sequence (An) of a-invariant finite-dimensional C*-subalgebras of

A such that \J,, An is dense in A.
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Note that UHF flows are AF flows and that there are non-UHF AF flows on a UHF
C*-algebra. Since a flow on a finite-dimensional C*-algebra is inner, AF flows are approx-
imately inner.

AF flows can already give a complicated picture of KMS fields. This class is supposed
to correspond to classical statistical mechanical models, but yet there seem to be no clear
criteria by which we can distinguish classical from quantal. But we know that there are
non-AF flows on an AF C*-algebra (see below).

Theorem 6.4 [44] Let o be a flow on an AF C*-algebra A and 0, its generator. Then
there is an increasing sequence (Ay,) of finite-dimensional C*-subalgebras of A such that
U, An is contained in D(8,) and is dense in A. Hence in particular the trivial flow id is
an approzimate cocycle perturbation of a.

Proof. To show the first part we use the fact that the domain D(d,) is invariant under
C> functional calculus. The last part follows because there is an h, € A, such that
8a|An = ad thy|An. Then it follows that d, — ad thy, converges to zero on U, An as n—c0.
Hence 8, — ad th,, converges to zero in the graph sense. (But of course this does not mean
that ad ih, converges to &, by any means.)

Theorem 6.5 [44] Let a be ¢ flow on an AF C*-algebra A. Suppose that the Banach®
algebra D(8,) is AF, i.e., there is an increasing sequence (An) of finite-dimensional *-
subalgebras of D(6) with dense union. Then « is approrimately inner.

Proof. The condition that D(d,) is AF is equivalent to saying that [ J, Ax is a core for d,.
Under this condition ad ¢k, converges to d, in the graph sense as n—o00, where h, € Ay
satisfies that 0|4, = ad ihy|An.

The Powers and Sakai conjecture [43] says that all lows on a UHF C*-algebra are
approximately inner. We still do not have a definitive answer to this, but:

Proposition 6.6 [33] There is a unital simple C*-algebra A and a flow o on A such that
a is periodic and the fized point algebra A® is a simple AF C*-algebra. In particular o is
not approrimately inner.

We are still short of clear criteria for approximate innerness.

Theorem 6.7 [29] Let o be a flow on an AF C*-algebra. Then the following conditions
are equivalent:

1. « is a cocycle perturbation of an AF flow.

2. The domain D(8,) contains a canonical AF masa C, where C is an abelian C*-
subalgebra of A such that there is an increasing sequence (A,) of finite-dimensional
C*-subalgebras of A with dense union such that C is generated by CNA,NA,_, n =
1,2,..., with Ao = {0}
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Proof. The domain D(d,) remains unchanged under cocycle perturbations; so obviously
(1) implies (2).

Suppose (2). Then by a general theory §,|C is bounded. With C, = C N A, N Ay,
(C,) form a central sequence of finite-dimensional abelian C*-subalgebras which generates
C. By using this we can further argue that 8,|C is inner, i.e., there is an h € Ay, such
that &,(z) = adihk(z), = € C. Replacing 6, by 6 — ad th, we can assume that 6,|C = 0.
Then by a small perturbation one can conclude that J, generates an AF flow. See [29].

In general we expect that the continuous symmetry will not act in a non-trivial way
on the set K, of KMS states (at inverse temperature c). Recall that the symmetry group
G, is defined as the group of automorphisms  with the property that yay~! is a cocycle
perturbation of a.

Proposition 6.8 [7] Let A be a unital simple C*-algebra and let o be an AF flow on A.
Let (t)tepo,1) be a continuous path in G, such that

Yebay " = 0o + ad ib(t)

for some rectifiable path (b(t))icpo,1) in Asa. Then it follows that ®(vo)(w) = ®(7)(w) for
any extreme w € K.

Proposition 6.9 Let a be a cocycle perturbation of an AF flow. Then (A3 N A)* has
real rank zero and has trivial K.

Proof. Apparently we may suppose that a is an AF flow. Hence we suppose that there
is an increasing sequence (A,) of a-invariant finite-dimensional C*-subalgebras of A with
dense union.

Let b* = b € (A% N A')®. Then there is a sequence (b,) in A,q such that b ~ (bs)
(i.e., b = (by) + co(A)). We may suppose that ||0a(bn)||—0 and that there are increasing
sequences (k) and (¢,) in N such that k, < £,, kn,—c0, and b, € B, = A,, NAj_. Since By,
is a-invariant and finite-dimensional, there is a A%, = h,, € B, such that d,|B, = ad hn|Bn.
Since ||[An, ba]l|—0 and Ry, b, € (Bn)se, We get AL, b, € By such that [lh, — hp|[—0,
||\bp — B.||—0, and [A},, 4] =0 (3.1 of [7]).

Let ¢ > 0 and let F be a finite subset of the spectrum Sp(b) of b such that any
) € Sp(b) has p € F such that |\ — p| < ¢. Then we find a b, € (Ba)sa such that by, is a
function of b,, imsup, ||b}, —b"|| < ¢, Sp(b%s) C F. Then (b;) defines a self-adjoint element
¢ € (A® N A')® such that ||c — b|| < € and Sp(c) C F, which is finite. This concludes the
proof that (A% N A’)* has real rank zero.

Let u be a unitary in (A%® N A')*. Then as before we may suppose that there is a
sequence (u,) in U(A) and increasing sequences (¢,) and (k) in N such that kn, < £n,
kn—00, Un € Ag, N A, and ||6a(un)||—0. There is an hy, = hy, € By = Ay, N A, such
that 84|Bn = ad ih,|B,. Then by using the condition that ||[un, hn]||—0, we apply 4.1 of
[29].
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Theorem 6.10 [44, 29] Let A be an AF C*-algebra. Then it follows that C; 2 C; 2 C,
where C;’s are defined as:

C,: the class of approzimately inner flows.
C,: the class of flows whose domain is AF.

Cy: the class of cocycle perturbations of AF flows.

Proof. That Cy; D C; D C3 is immediate.

To show that C; # C, we construct a flow o such that the Ba.nach *-algebra D(d,)
does not have real rank zero (i.e., D(d,) contains h = h* which cannot be approximated
by self-adjoint elements of finite spectra). This in particular implies that D(J,) is not
AF.

To show that Cy # C3 we construct a flow « such that (AP N A’)* has real rank more
than zero or has non-trivial K; (or both).

All the examples are given by expressing an AF C*-algebra as the inductive limit of
tensor products of C(T) or C(I) with finite-dimensional C*-algebras, where T is a one-
dimensional torus and I is a closed interval. Thus we have to use the recent classification
result for C*-algebras (see [14]).

7 Rohlin flows on simple AT algebras of real rank
Zero

When 7T is a convex set, we denote by Ex(T) the set of extreme points of T; 7 € T is
extreme in 7T if there is no non-trivial expression of the form 7 = A + (1 — A)q, where
0 <A< 1andy; €T. When T is the simplex of tracial states of a C*-algebra A4, an
extreme point of T corresponds to a factorial tracial state of A. In this case there is a
natural map @ : Ko(A)—Aff(T) such that @o([e])(7) = 7(e) for a projection e € A.

Theorem 7.1 [26, 27] Let A be a unital simple AT C*-algebra of real rank zero and T the

simplez of tracial states of A. Suppose that Ex(T') is closed and Ex(T) is separated by a
finite subset of Ko(A). Suppose further that there is a homomorphism ¢, : K1(A)—Af(T)
such that Ran(¢,) is dense, and Ex(T) is separated by a finite subset of Ran(¢;). Then
there is a Rohlin flow a of A such that the rotation map ¢ : Ki(A)—Aff(T) equals to
#1, and A x4 R is a simple stable AT C*-algebra of real rank zero with Ky isomorphic to
K, (A) ordered through ¢,.

The conditions on T above is obviously satisfied when T is a singleton. The condition
of ¢, implies in particular that K; # {0}, Z. See [40] for the case K; = Z.
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As an example let us consider irrational rotation C*-algebras. An irrational rotation
C*-algebra Ay with 6 € (0,1) irrational is the universal C*-algebra generated by two
unitaries u, v with

uv = ey

It is known that Ay is simple and has a unique tracial state and that K; = Z® and is
generated by [u], [v]. It is shown in [15] that that irrational rotation C*- algebras are simple
AT C*-algebras of real rank zero. For a p € R we define a flow of on A = C*(u,v) by

af(u) — 821riptu, af( ) = ez-mt
Then the rotation map ¢q» : Z*—R is given by
(m,n) = pm +n.

If 1 and p are linearly independent over Z + §Z, then o” has the Rohlin property [25]. In
this case, by the above theorem, there is a Rohlin flow 3 om Ay such that ¢ = ¢a» such
that A xg R is again an AT C*-algebra of real rank zero.

We do not have any sort of uniqueness result in this case. This problem will be
discussed for different C*-algebras in the next section.

8 Rohlin flows on separable nuclear purely infinite
simple C*-algebras with UCT

Recall that a flow « is called an approximate cocycle perturbation of another flow 8 if «
is obtained as the limit of cocycle perturbations of (.

Theorem 8.1 [34] Let A be a unital separable nuclear purely infinite simple C*-algebra.
If each of two Rohlin flows on A is an approzimate cocycle perturbation of the other, then
they are cocycle-conjugate with each other.

Our expectation here is that there are not many cocycle conjugacy classes of Rohlin
flows on such a C*-algebra, or even there may be just one, because all the invariants we
have invented so far do not distinguish them at all (or cannot be calculated in the case
of generator domains); well this may only show my incompetence. An evidence for that
may be found for a special class of flows on the Cuntz algebras [12].

For an integer 2 < m < oo the Cuntz algebra Oy, is the universal C*-algebra generated

by m isometries 3, 81, .. , Sm—1 With the relation:
m-—1
E s;s; = 1.
=0

A quasi-free flow @ on Oy, is a flow of the form:

at(sk) =€w’°‘3k, k=0,... ,m—l,
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for some p;x € R. Although we do not know an exact condition on (py, ... ,pm-1) for a to
have the Rohlin property, we know that there are many quasi-free lows with the Rohlin
property and can show:

Proposition 8.2 [34] The Rohlin quasi-free flows on O, with m < oo are cocycle con-
jugate with each other, i.e., if & and @ are such flows, there is an automorphism ¢ of On,
such that Ad uia; = @B~ for some a-cocycle u.

A satisfactory result in this setting was obtained only for m = 2:

Proposition 8.3 [34] For py,p1 € R define a flow a on Oy by au(sk) = ePrtsg, k=0, 1.
~ Then the following conditions are equivalent:

1. po,p1 are rationally independent and pop; < 0.
2. Oy x4 R is purely infinite and simple.
3. « has the Rohlin property.

Certainly quasi-free flows are rather special. The domain of the generator of a quasi-
free flow contains the commutative C*-subalgebra D,, generated by srsj, where I runs
over all the finite sequences in {0,1,... ,m —1} and s; = s;,8;, -+ * 8;, for I = (4y,... ,1p).
Note that D,, is a Cartan masa and this reminds me of the situation of AF flows.

If o is a flow, then o, is homotopic to the identity and so often is approximately inner
for each t € R. The following is defined in [35].

Definition 8.4 Let A be a C*-algebra and a a flow on A. Then a; is said to be o-
invariantly approximately inner if there is a sequence (u,) in U(A) such that o =
lim Ad u, and ||as(un) — un|| converges to zero uniformly in s on every compact subset.

In an attempt to generalize what was obtained for quasi-free flows, we get:

Theorem 8.5 [35, 36] Let A be a unital separable nuclear purely infinite simple C*-
algebra satisfying UCT and let o be a flow on A. Then the following conditions are
equivalent. : _

1. « has the Rohlin property.

2. (4' N A¥)e is purely infinite and simple, Ko((A’' N A2)*) = Ko(A' N A¥) induced by
the embedding, and Sp(a]A’'N AY) = R.

3. The crossed product A x, R is purely infinite and simple and the dual action & has
the Rohlin property.

4. The crossed product Ax,R is purely infinite and simple and each o, is c-invariantly
approzimately inner.

If the above conditions are satisfied, it also follows that K;((A' N A¥)*) = K,(A' N A¥),
which is induced by the embedding.

22



23

References

[1] H. Araki, Relative Hamiltonian for faithful normal states, Publ. RIMS, Kyoto Univ. 9
(1973), 165-209.

[2] C.J.K. Batty and A. Kishimoto, Derivations and one-parameter subgroups of C*-dynamical
systems, J. London Math. Soc. (2) 31 (1985), 526-536.

[3] O. Bratteli, Derivations, dissipations and group actions on C*-algebras, Lecture Notes in
Math. 1229 (1986), Springer.

[4] O. Bratteli, E.G. Elliott, and R.H. Herman, On the possible temperatures of a dynamical
system, Commun. Math. Phys. 74 (1980), 281-295.

[5] O.Bratteli, E.G. Elliott, and A. Kishimoto, The temperature state space of a C*-dynamical
system, I, Yokohama Math. J. 28 (1980), 125-167.

[6] O.Bratteli, E.G. Elliott, and A. Kishimoto, The temperature state space of a C*-dynamical
system, II, Ann. of Math. 123 (1986), 205-263.

[7] O. Bratteli and A. Kishimoto, AF flows and continuous symmetries, Rev. Math. Phys. 13
(2001), 1505-1528.

[8] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, I,
Springer, 1979.

[9] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics,
11, Springer, 1981.

[10] L.G. Brown and G.A. Elliott, Universally weakly inner one-parameter automorphism groups
of separable C*-algebras, II, Math. Scand. 57 (1985), 281-288.

[11] A. Connes, An analogue of the Thom isomorphism for crossed products of a C*-algebra by
an action of R, Adv. in Math. 39 (1981), 31-55.

[12] J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys. 57 (1977),
173-185.

[13] G.A. Elliott, Universally weakly inner one-parameter automorphism groups of separable
C*-algebras. Math. Scand. 45 (1979), 139-146.

(14] G. A. Elliott, On the classification of C*-algebras of real rank zero, J. reine angew. Math.
443 (1993), 179-219.

[15] G.A. Elliott and D.E. Evans, The structure of the irrational rotation C*-algebra, Ann. of
Math. 138 (1993), 477-501.

[16] H. Futamura, N. Kataoka, and A. Kishimoto, Homogeneity of the pure state space for
separable C*-algebras, Internat. J. Math. 12 (2001), 813-845.

23



[17) T. Katsura, The ideal structures of crossed products of Cuntz algebras by quasi-free actions
of abelian groups, Canada J. Math. to appear.

(18] E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov’'s theory,
preliminary preprint.

[19] E. Kirchberg and N.C. Phillips, Embedding of exact C*-algebras in the Cuntz algebra Os,
J. reine angew. Math. 525 (2000), 17-53.

[20] E. Kirchberg and N.C. Phillips, Embedding of continuous fields of C*-algebras in the Cuntz
algebra (@3, J. reine angew. Math. 525 (2000), 55-94.

[21] A. Kishimoto, Simple crossed products of C*-algebras by locally compact abelian groups,
Yokohama Math. J. 28 (1980), 69-85.

[22] A. Kishimoto, Universally weakly inner one-parameter automorphism groups of C*-
algebras, Yokohama Math. J. 30 (1982), 141-1489.

[23] A. Kishimoto, Type I orbits in the pure states of a C*-dynamical system, Publ. RIMS,,
Kyoto Univ. 23 (1987), 321-336.

[24] A. Kishimoto, Type I orbits in the pure states of a C*-dynamical system I1, Publ. RIMS,,
Kyoto Univ. 23 (1987), 517-526.

[25] A.Kishimoto, A Rohlin property for one-parameter automorphism groups, Commun. Math.
Phys. 179 (1996), 599-622.

[26] A. Kishimoto, Unbounded derivations in AT algebras, J. Funct. Anal. 160 (1998), 270-311.
[27] A. Kishimoto, Pairs of simple dimension groups, Internat. J. Math. 10 (1999), 739-761.

(28] A. Kishimoto, Locally representable one-parameter automorphism groups of AF algebras
and KMS states, Rep. Math. Phys. 45 (2000), 333-356.

[29] A. Kishimoto, Examples of one-parameter automorphism groups of UHF algebras, Com-
mun. Math. Phys. 216 (2001), 395-408.

[30] A. Kishimoto, UHF flows and the flip automorphism, Rev. Math. Phys. 13 (2001), 1163-
1181.

[31] A. Kishimoto, Quasi-product flows on a C*-algebra, Commun. Math. Phys. 229 (2002),
397-413.

[32] A. Kishimoto, Approximately inner flows on separable C*-algebras, Rev. Math. Phys. 14
(2002), 649-673.

[33] A. Kishimoto, Non-commutative shifts and crossed products, J. Funct. Anal., to appear.

[34] A. Kishimoto, Rohlin flows on the Cuntz algebra O, Internat. J. Math. 13 (2002), 1065-
1094.

[35] A. Kishimoto, Rohlin property for flows, preprint.

24

24



25

[36] A. Kishimoto, Central sequence algebras of a purely infinite simple C*-algebra, Canad. J.
Math. to appear.

[37] Core symmetries of a flow, preprint.

[38) A. Kishimoto and A. Kumjian, Crossed products of Cuntz algebras by quasi-free automor-
phisms, Fields Institute Commun. 13 (1997), 173-192.

(39] A. Kishimoto, N. Ozawa, and S. Sakai, Homogeneity of the pure state space of a separable
C*-algebra, Canad. Math. Bull,, to appear.

[40] H. Matui, Ext and OrderExt classes of certain automorphisms of C*-algebras arising from
Cantor minimal systems, preprint.

[41] D. Olesen and G.K. Perdersen, Applications of the Connes spectrum to C*-dynamical
systems, ITI, J. Funct. Anal. 45 (1982), 357-390.

[42] G.K. Pedersen, C*-algebras and their automorphism groups, Academic Press, 1979.

[43] R.T. Powers and S. Sakai, Unbounded derivations in operator algebras, J. Funct. Anal. 19
(1975), 81-95.

[44] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge Univ. Press, 1991.
[45] S. Sakai, C*-algebras and W*-algebras, Classics in Math. Springer, 1998.
[46) K. Yosida, Functinal Analysis, Springer, 1968.

25



