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Modifying the Graybill-Deal estimator of the common regression matrix in two growth
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Abstract

We consider the problem of estimating the common regression matrix of two
growth curve models with different unknown covariance matrices under a certain
type of loss functions which include a weighted quadratic loss function as a special
case. We extensively use the techniques of Haff, Stein, and Loh to derive an unbiased
estimate of risk function for a subclass of equivariant estimators, from which we give
an alternative combined estimator to the Graybill-Deal type estimator. Finally, we
conduct the Monte-Carlo simulation to show that our proposed estimator performs
better than the Graybill-Deal type estimator.

1 Introduction

There has been a lot of literature on estimating the common mean of normal distributions,
which includes Graybill and Deal (1959), Brown and Cohen (1974), Khatri and Shah
(1974), Shinozaki (1978), Chiou and Cohen (1985), and Loh (1991). Of these, Graybill
and Deal (1959) first showed that the Graybill-Deal estimator, a combined estimator for
the common mean of two univariate normal distributions, has smaller variance than either
of each sample mean when the sample size is at least eleven.

This paper is mainly concerned with estimating the common regression matrix of two
growth curve models with different covariance matrices. Sugiura and Kubokawa (1988)
first considered this problem and proposed the Graybill-Deal type estimator of the com-
mon regression matrix of two growth curve models. In the present paper we propose an
alternative to the estimator of Sugiura and Kubokawa in a decision-theoretic point of
view. The precise formulation of this problem is as follows.

Let Y;, i = 1, 2, be N; x p; matrices of response variables and consider two growth
curve models

Y, =AnEAp+¢ and Y,=AnEA»+e, (1)

where A;; and A, are, respectively, N; xm and g x p; known full-rank matrices with N; >
m and p; > ¢, E is an m x ¢ matrix of unknown parameters, and ; are N;x p; error matrices
which are independently distributed as the multivariate normal distributions with the
covariance matrices Iy, ® €, and Iy, ® £2;, respectively, i.e., the rows of the matrix
¢; are independently and identically distributed as the multivariate normal distributions
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with the mean zero and the covariance matrix €2;. Here we assume that the Q,’s are
unknown positive definite p; X p; matrices. In the sequel of the paper we use notation
B, |B|, and tr (B), and (B)'/? which stand for the transpose, determinant, trace, and
a non-negative definite square root of a squared matrix B, respectively. Here we note
that the model (1) occurs in missing data model of one-sample growth curve model and
multivariate mixed linear models treated in Kubokawa and Srivastava (2002).

We consider the problem of estimating & under the loss function

L(E, 0, M), B) = tr{AuE-E)A.074,E - E)A,}
+tr {C(E - BE)An0;1A)E - 5)C'}, 2)

1)

where E is an estimator of & and C is an Ny x m known matrix of full rank. When
C = A,,, the above loss function is a natural extension of an invariant loss function of the
regression matrix of the growth curve model, which was used by Kariya, et al. (1996, 1999).
This loss function includes a quadratic loss which was used by Loh (1991) in estimating
the common mean of the multivariate normal distributions. Then the inaccuracy of an
estimator = is measured by the risk function E[L((E, €2, ©22), E)]. On the other hand,
Kubokawa (1989) considered the problem of estimating the common regression matrix of
several growth curve models and employed the quadratic loss function tr {(.':_':". - E)Q(f -
E)'} for a ¢ x g known positive definite matrix Q.

In Section 2, we derive a canonical form of two sample problem of estimating the
common regression matrix of the growth curve models and we give a family of fully
equivariant estimators for this problem. Using the methods of Stein-Haff-Loh, we obtain
an unbiased estimate of the risk for a subclass of equivariant estimators. In the view of the
unbiased estimate of the risk, we give an alternative estimator to the Graybill-Deal type
estimator. In Section 3, we carry out Monte-Carlo simulation to show that our proposed
estimator reduces the risk substantially over the Graybill-Deal type estimator when we
observe the data (Y1, Y,) from the model (1). In Section 4, we give technical lemmas
and the proof of the main result.

2 Derivation of alternative estimators

2.1 A canonical form

Recall that we observe random matrices Y; and Y5 which are independently distributed
as

Yi s NN;XP{ (AiIEA-i?, IN-; ® Q‘i), 1= 1) 23 (3)

that is, the rows of Y; — A;;EA;, are distributed as p;-variate normal distribution with
the zero mean and the covariance matrix §;. To derive a canonical form of (3), let I';,
i = 1,2, be N; x N; orthogonal matrices such that T';A; = [(A}; Ai1)Y?, Omx(N;~m)]
and also let Y; be p; X p; orthogonal matrices such that ApY; = [(AnAl,)Y?, Ogx (pi—a)]-
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Furthermore we write

e = (A111A11)1/2E(A12Al12)1/2: ‘ (4a)

A = (AyAy) AL AL, (4b)

A = ( (A22Al22())_1/ 2(A12AI12)1/ 2 Oqu(pz—q) ) , (4c)
(pz-;ZlX)q 2(1) P2—q |

! =P B
22 = AT202T2A= 2 (2) ) (48)
2:21 222

where 25?, i = 1,2, are q x ¢ positive definite matrices. Then the transformations of
bothY; - I'Y Y, and Y, = I Y, YA yield the following form: We observe that Y,
and Y, yield a set of random matrices (X, Z;, S;, ¥;, Wi|i =1, 2), where

X1 Z1  ~ Npug(®+ Z1v,, I, ® 1)), (5a)
X3| Zy  ~ Npxg(A® + Zyvy, In @ B2, (5b)
and, for ¢ =1, 2,
Z; ~ Npxipig)(0, 1, ®Z3)), (62)
S; ~ Wq(z(lil).g, ni), n; = N;—m—p; +4¢, (6b)
qil W; ~ N(p,-—q)xq('Yi, Wi_l ® 2:?1)-2 ) (6(:)
Wi~ Woo(E5,m+p: — 9), (6d)

where (), = = — 202128 and v, = (Z))'SY). Here, note that A is an
m x m known nonsingular matrix and that (X;, Z;), (W3, ¥;), and §; are independent.
Furthermore, the loss function (2) turns into

L(®, 5, %), 8) = (6 -6)(=(;) (6 - 8)]
+r[C'C(6 - ©)(Z1,) (8 - )], (7)
where © is an estimator of © and C is an N, X m known matrix of full rank. Under
this canonical form, the problem of estimating = in (1) changes into that of estimating

© based on (X;, Zi, Si, §;, Wi|i = 1, 2) under the loss function (7). Then the risk
function is defined by v

R((®, 31, 5,), 8) =E[L((8, =1, ), 8)], (8)

where the expectation is taken with respect to (X, Z;, S;, ¥;, Wili =1, 2).
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2.2 An equivariant estimator of ©®

Next we derive a class of estimators of @. To this end, let G be a group of transformations
on the sample space. Each element of G consists of triples (D, P;, P,), where D ism Xxq

matrix and p p
Pz — 11 '5'12 , » — 1, 2.
( Opi—g)xg Piaz ’

Here P;; and the P;.y,’s are ¢ X g and (p; — ¢) X (pi — ¢) nonsingular matrices, respec-
tively, and the P;13’s are ¢ X (p; — ¢) matrices. Here note that the left-upper blocks
of P; and P, are identical so as to capture the structure of estimation problem of
the common regression matrix in two growth curve models. The group composition is
given by (D, Py, Py)(D, Py, Py) = (D + D, P\ P,, P,P;) where (D, Py, P;) and
(D, P;, P,) are elements of G. The action of (D, P;, P;) on (X, Z;, S;, 7;, Wi|i=
1, 2) is defined as

(X1, Z,] = [ X1, Z\]P]} + [D, O (p, ),
(X2, Zo] = (X3, Z,5]P; + [AD’Omx(pz—q)],

S +¥.WH, ¥W; S;+3WHA,  FW; /
( WA, W, - P WA, W; P

and we denote by go (X, Z;, S;, ¥,;, W;|i =1, 2) the action of g on this sample where g
is an element of G, i.e., g = (D, P,, P;). Furthermore, the action of g on the parameter
is defined as ® —» OP); + D, and £ — P,X® P! i = 1, 2. Then the model is easily
shown to be invariant under the group of transformations. Furthermore, let

e.=X.-25, i=12 (9)

Note that @1 and ég are the maximum likelihood estimators of @ and A© for one-
sample problem, respectively. Then the actions of g on the parameters and the samples
are rewritten as

© - P, + D,

(=9, =5, (=) =)

= (PuZ8,Ply, PinS3 Py, (Phy)  (59) 'S8 Py + (Pig) " Piy),
(61, Z,, 8, Z5)

— (©.,P), + D, Z,P, ,, ©,P,, + AD, Z,P,,,),

(Si, Wi, 75)

— (PnSiP’u: Pi-22WiP:-22, (P;-zz)_lﬁipln + (P’i-zz)_l 5-12)

. . . .. . ~ EQI .
for i = 1, 2. Tt is reasonable to require that an equivariant estimator ® = should satisfy

8"V (go(X;, Z:, 8., 7, Wili=1,2))=8"" (X, Z:, Si, Wi, §,li =1, 2)P}; + D,
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~EQI

so that ©° (go (X, Z;, Si, ;i =1, 2)) estimates the parameter @ P}; + D as does
~ EQI

6™ (X, Z;, Si, Wy, 5,|i = 1,2)P};, + D. Next theorem characterizes the form of

equivariant estimators.

Theorem 1. Let B be a q X q nonsingular matriz such that B(S; + S;)B’' = I,
and let F = diag(fi,..., f,) be a ¢ X g diagonal matriz such that BS,B' = F and
fi >+ > f3 2 0. Then under the group of transformations, an equivariant estimator of
OFe!l is given by

~EQI A ., = _ _1A = -
© " =6,B'®¥B)'+A'6,B(I,-®)(B)", (10)

where & = ((6, - A'6,)B/, F, Z, WV | Z,W;?) is a g x g matriz and 6, i=
1, 2, are given by (9).

Proof. The proof of this theorem can be obtained similarly as in that of Theorem 4.1 in
Loh (1988). O

Since the class of the equivariant estimators (10) is too large to evaluate their risk
systematically, we restrict ourselves to an equivariant estimator (10) where ® is a diagonal
matrix and depends only on F, i.e.,

8°? = 8,B'®(B)! + A'6,B'(I, - ®)(B), (11)

where ©;, i = 1, 2, are given by (9) and & = ®(F) is a ¢ x ¢ diagonal matrix with
diagonal elements ¢;(F),i = 1,2, ..., q. Here we assume that ¢;(F) depends only on
F = diag(f1, f2, --., f;) With fi > f, > --- > f,, the eigenvalues of S»(S; + S2)7*.

Remark 1. Since §; is independent of X;, Z; and ¥; for i = 1,2, we can see that B and
F' are independent of ®; and ©,. Therefore we have

~EQ

E[6 ] = E[E[6,B'®(B)+ A™6,B'(I,- ®)(B)™'|(B, F)|

= E[@B'®(B)'+OB(I,-®)(B) =6,

which shows that @EQ is an unbiased estimator of ©.

2.3 Graybill-Deal type estimator

In this subsection, we look over the connection between our proposed class of estimators
and the Graybill-Deal type estimator given by Sugiura and Kubokawa (1988). Further-
more, we state our scenario to obtain an alternative estimator. Using the transformation
(4a) — (4e), we can see that the estimator of Sugiura and Kubokawa is rewritten as

vec(@°") = {I.® (Si/ni)~' + (A'A) ® (Sa/ng) '} A
x{In ® (S1/n1) 'vec(8;) + (A’A) ® (S3/n;) vec(A™10,)},  (12)
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where we denote by vec(U) an mgq x 1 vector consisting of (u1, ug, ..., Um) for U =
(uy, uh, ..., u) and G ® H stands for the Kronecker product of matrices G and H
defined by (g;; H) for G = (g;;). On the other hand, we can rewrite the estimator (11) as

vec (8°%) = (I, ® (B'diag(6;)B) + I.. ® (B'diag(a;)B)}"!
x{I,, ® (B'diag(8;)B) vec ©,)
+I,, ® (B'diag(a;)B)vec(A™16,)},
if we put ¢; = B;/(e; +5;),5=1,2, ..., q, where a; and ; are real-valued functions
of F. Here we denote by diag(3;) a g x ¢ diagonal matrix whose j-th diagonal elements

are given by ;. Furthermore, putting o; = ny/f; and B; = n1/(1 — f;), we can see that
the equivariant estimator of the form (11) reduces to

vec(®™”) = {In®(81/n1)™ + I, ® (Sa/n)"1}!
x{In ® (S1/n1) 1vec(©1) + I, ® (Sa/ny) vec(A™18,)}, (13)

equivalently

8°° = (81(81/m) ™ + A718,(So/ma) KD (Si/n) )N

i=1

The estimator (13) can be regarded as a counterpart of the Graybill-Deal type estimator
(12) inside the class of equivariant estimators of the form (11). It is well known that
the eigenvalues of §3(S; + S;)~! are more spread than the eigenvalues of expected value
of §,(S; + S3)~'. Hence we look for alternative estimators for © by correcting the
eigenvalues of S5(S; + S7)~%.

Through these consideration, we use the following scenario to obtain an alternative
estimator to (12). First we look into the class of equivariant estimators of the form (11)
and obtain an alternative estimator which has the form (11). Then we change the term
I, ® (B'diag(a;)B) in (13) into (A’A) ® (B'diag(c;)B) to get an alternative estimator
which is in the class of the estimators (12).

2.4 A subclass of equivariant estimators and its risk

To obtain alternative estimator of the form (11), we evaluate its risk in terms of unbiased
risk method due to Stein-Haff-Loh. The risk of the estimator of the form (11) can be
written as

R((8, £, 5,), 6)

~ B[ (8, - ©)(=,) (61 - )}
+2tr {(6; - B)(Z1,) ' B~V(I, - 8)B(A7'8, - 6.}
+tr {(Z{0) B~ (I, - ®)H1(I, - 2)(B) 7'}
+tr {(CA™Y(CA™)(B, - 46)(2{),) (8, - A8)'}
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+2tr {(CA™Y(CA™) O, — 40)(=?,)'B'®B(46, - 6,)'}

+tr {(=%,)'B'®H,®(B')"'}|, (14)

where
H,=B(®©,- A16,)(®, - A'6,)B, (15a)
H,=B(®, - A6,)(C'C)(68,- A™16,)B'. (15b)

Now we use the Haff-Stein identity for Wishart distribution and calculation on eigen-
structure technique due to Stein (1975,1977), Haff (1991), and Loh (1988) to evaluate
the third and sixth terms in right-hand side of (14) while we use formula for the second
moments of the maximum likelihood estimator of the growth curve model to evaluate the
other terms in right-hand side of (14). Then we obtain an unbiased estimate of risk for
the equivariant estimators (11). Since the proof of Theorem 2, the main result of the
paper, involves in technical argument, we postpone it until Section 4.

Theorem 2. The risk of éEQ is given by
~EQ ’
R((©,%,,X,),0 )
: (1-¢5)°
=E [Q(Tz —r1)+ 2{2(7'1 —72)¢; + (1 —q— 1)TT‘{H1}J'J'
J

+4{H,};;(1 - ¢j)fjg% +2) {Hi};(1 - ¢;)(¢5 — ‘mﬁ
J

Py
995
of;

i

where ry = m(ma-+p1—g—1)/(n~1), r; = {(na+pa—g—1)/(na~1)} tr {(CAY(CA™)},
and {H1};; and {H,};; are j-th diagonal elements of the matrices given by (15a) and
(15b), respectively.

Hna— g = ) LLHLY, + A{HL}5650 - £)

.. . ;  — 1 _ fk
+2 ;}{H 2}ii®i (05 — k) fi — f

2.5 Choice of ®

From Theorem 2, we obtain the unbiased estimate of the risk of the subclass of equivariant
estimators given by (11). We denote by R the unbiased estimate of the risk, ie,, the
terms inside large bracket in the right-hand side of (16). Although we obtain the unbiased
estimate of risk for the class of estimators given by (11), it is still difficult to deal with it to
derive an alternative estimator. We adapt the argument given by Loh (1991) for obtaining
more feasible estimate of the risk from the unbiased estimate of the risk. The derivation
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below to give alternative estimators is no longer mathematically rigorous. However we
believe that the following argument results in promising estimators which perform well in
our simulation study.

First we replace H; and H in (16) by their approximation. To this end, we observe
that

E[(6, — A™18,)(0, - A7'8,)]
= mf B4, + Fatr {(4) P AT)ED,,
E[(AS, — 8,)(CA™)(CA™)(A8, — 6,)]
=1t (C'C)S, + Ratr {(CATY) (CATH}ED,,
where 7; = (n; + p; — ¢ — 1)/(ns — 1). Replacing »®. i =1, 2, in right-hand side of

the above equations with their maximum likelihood estimators S;/n;, we approximate
{Hl}jj and {H2}jj: .7 = 1’ 27 .- 4, by

{H:};; =~ {B(mfSi/mi +7tr{(A")"A7'}Ss/na)B'Yj,

m#y (L = f)/m + Fatr {(A) LA} f/ma

h1j7

{B(Fl tr (C'C)Sl/nl + ’Fz tr {(CA—I)’(CA_I)}SQ/'"Q)B,}]']‘
7.:1 tr (C’C)(l - f,-)/nl + FQ tr {(CA—I)'(CA_l)}fj/nz

hgj.

o

Q

{H}

i

th

We extensively use notation {A};;, =1, 2, ..., g, to denote the j-th diagonal element
of a ¢ x q squared matrix A. Using the fact that

6¢J ¢3 ﬁ_ 0 ¢J 1_¢J'
a7 f’@f;(b)* =550 f;)(l—fJ)Jrl—fj’ an

~E
we can see that the unbiased estimate for risk of © ° given by (16) is approximated by

~ 1 2
R = g(rp—m)+ 2{2(7”1 —T2)¢; + (M — )(1 ) haj
i=1

— f;

0 ¢\, 1-¢;
+4h1;(1 — &) f; [(1 fJ)a(]_ f]) <1 - f,) * 1- fJ]
+2) (11— ¢;)(¢5 — ¢k) - f,c

k#j

+(n2 - 1)¢J haj + 4h’2.7¢3(1 ) |:fJ of; (¢J) * %]
+2Z hajdi (9 ¢") }
ksj




Ignoring the derivative terms, we get

~

alrs—m) + Z{z(n )

g —q - 1)( ¢f’)2h1, + 4h1,(1 - 4) %

—fi
+2Zh11(1 ¢J)(¢J ¢k)
k#j
+(ng — —1)-{;h2,+4h2,¢31 ff’+22h21¢,(¢, ¢k)
! I k#i

&

q(ra —r) + Z{Q(rl —72)0;
j=1
1—¢;)? ;
+(n1 —q— 1)-(————¢;7)—h1_, + 4h1_,(1 — ¢j)2 fJfJ
LR ) DR BICETALS

k+#j

—2 Z hy;(1 — ¢; )2

k#5

fk
J 21
+(ny—q—1)-2 h2] + 4hg;¢?

R I ORT A
J
= R, say.

k#5 }

Although the estimate of the risk Ris no longer unbiased, it is feasible to obtain alter-
native estimators of ®. Then we minimize R with respect to ¢;, j = 1
gives

,---,q, which
— @;
Ty —Tq — ('n,1 - 1) J

h'lJ 4h1.1(1 ¢J) f

- fi
+2Eh13(1 ¢Jf f Zh]-](l ¢k) fk
k#j

+(ng —q— l)ﬁhzj + 4h21 7 fj ¢]
j
k#j k#5
side above, we finally get

Hence, solving for ¢; with ignoring the sixth and the tenth terms in the last right-hand

(18)
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fj@fT = (ng—q— Dhy; + (11 — o) fj +4hoi(1 — f;) + 2hy; Z ——————fJ(l__;k),
Ay 1k
_ £\AST _ Y _ ¢ e _on N = fi)fe
A= FBET = (m=g=Dhy+(ra = ra)(1 = f) + dhufy = 2hy; 3 =,
P A

hlj = mfl(l - fj)/ﬂl + Fy tr {(A’)_IA—I}fj/ng,
hyj = F1tr(C'C)(1 - f;)/ny + Ftr {(CA™YY (CA™)}f;/na,

" ni+p—q—1 Ny—m—1 :

ri — = =1,2,
n,-—-l N,—m—p,-i—q—-l (1, )

ry = mi,

Ty = fz tr {(CA_I)’(CA—I)}
Consequently we propose an estimator of the form

vec (8°") = {I,® (B'diag(35T)B) + (A'A) ® (B'diag(a5T)B)}™!
x{In ® (B'diag(357)B) vec (8,)
+(A'A) ® (B'diag(45T) B)vec(A~'6,)}, (19)

with (18). Because of complex nature of the estimation problem, we can not carry out
analytic comparison between the Graybill-Deal type estimator (12) and our proposed
estimator. However, we justify our proposed estimator via simulation study in Section 3.

Remark 2. From similar argument as in Remark 1, we can also see that the estimator
(19) is unbiased estimator of ©.

Remark 3. For the special case, the estimator (19) reduces a simple form. When
C'C = A'A, N, = N; and p; = p,, we have r; = r5. This case generalizes the results
obtained by Loh (1991). When C'C = I,,,, we have hy; = hy;, j =1,...,q.

3 Numerical studies

Since the risk of the Stein type estimator is complicated, we have not been able to compare
risks of the Stein type and the Graybill-Deal type estimators analytically. Therefore we
investigate the risk performance of these estimators via a Monte-Carlo simulation.

Our simulation is based on 10,000 independent replications and these replications are
generated from the canonical form (5a)-(6d) with special cases for (N1, N3, p1, P2, m, Q).
These results are given in Tables 1-3.

For example, in case of Ny = N, = 12, we assume that A’A = diag(1,1) and
A’ A = diag(1/3, 3) are chosen in consideration of, respectively,

1 O
A11=A21=(0: 1:)
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_ [ 1o Og _( 13 O3
All—(03 13) and A21_(09 19).

Note that the matrices A;; and A, given above are obtained from some examples of
monotone missing data patterns of one-sample growth curve model. Also note that we
consider only the case p; > p, since this restriction can be naturally obtained from the
monotone mlssm data set-up of one-sample growth curve model.

For ({7, =%2),), we assume that the eigenvalues of =3 (=),)1 are close together
and that these eigenvalues are widely spread out. Furthermore, we put @ = O,xg,

¥i = O(pi—g)xq, aNd 2(‘) = Ip,—g-
Recall that, when (21, 3,) are known, the maximum likelihood estimator of © in (5a)
and (5b) is given by v
~ ML
vee(®) = [In ® (B(,) ' + A4 ® (B12,) ]

X[{In ® () 1 vec(©)) + {A'A ® (EZ,) }vec(4716,)],  (20)
where ©; = X; — v,Z; (i = 1,2). Here the risk of vec(éML) is evaluated as follows:
Lemma 1 We have

~ML
R((©, %, %,),0 )
=t {{In ® (Z0) 7 +(C'C) ® (81) ]
x[In ® (22) 7 + (4'4) ® (510,) 7'}
Furthermore, if A'/A = C'C, then R((©, £, 5,), ") = mq.
When (X;, X;) are unknown, 8"’ is o longer estimator. However, its risk serves as
a lower bound of risk of estimators.
In Tables 1-3, “ML” indicates the maximum likelihood estimator (20) and its risk
value was calculated by Lemma 1. Moreover, “GD” and “ST” denote the Graybill-Deal
type estimator (12) by Sugiura and Kubokawa (1988) and the Stein type estimator, respec-

tively, and estimated standard errors are in parentheses. Here, the Stein type estimator
is of the form

vec(8°") = (I, ® (B' diag (57)B) + (4'A) ® (B’ diag (&5")B)]
x {I ® (B' diag (377)B)}vec(81)
+{(4'A4) & (B' diag (") B)}vec(A7'8y)],
where {a$7}_, and {87T}._, are made from Stein’s isotonic regressions on {637}, and
on {ﬂJST}J_l, respectively, and 657 and 357 are given by

{(M — g — 1)hgj + 4ho;(1 — f;) + 2hy; Z ff ;l:k)}/f,-,

k#j

ﬂST = {(m — g — 1)hy; + 4hy; f; — 2hy; z a f; faf)fk}/(l - fi)-
k#j k
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Note that we modify &; and §; in (18) as above by ignoring the second terms (ry — r3) f;
in &; and (r, —r1)(1 — f;) in B;. For a detailed description of Stein’s isotonic regression,
see Lin and Perlman (1985). Furthermore, “AV” in Tables 1-3 indicates the average of
improvement in risk of ST against GD, i.e., AV = 100(1 — R*5T/R*3P) %, where R*GP
and R*5T are, respectively, values of estimated risks for the Graybill-Deal type and the
Stein type estimators by our simulations.

These simulation results are summarized as follows:

1. In Table 1, when the eigenvalues of 2&21)2 ?1)2) ~1 are close together, the AVs are
large. Specially, in cases when A'A = diag(3,1/3), C'C = diag(1,1), N, =
Ny, =20,p, =7,p; =6, m =2, g =5, and these eigenvalues are equal to 1, the
largest AV is 15.9% in Table 2.

2. On the contrary, when the eigenvalues of 211 2(2(111)2)'1 are widely spread out, the

AVs are small.

Remark 4. Under another assumptions for £, 5{,)~! as examined by Loh (1991),
we simulated the risk values of GD and ST and obtained the results that ST performs
better than GD.

Table 1. Estimated risks (Estimated standard errors are in parentheses)
(N1, Nay p1, p2, m, q) = (12, 12, 7, 6, 2, 5)

© = Omxgy ¥i = O(p;—q)xq> 222) = Ip,—q
A’A = diag (1,1), C'C = diag(1,1)

Ti12(Zig) 7t ML] GD | ST | AV |

diag (1,1,1,1,1) 10 | 17.767 | 15.175 | 146 %
(0.093) | (0.078) |

diag (10,10,10,1,1) 10 | 18.320 | 16.584 | 9.5 %
(0.104) | (0.090)

diag (100,1,1,1,1) 10 [ 17.840 | 16344 | 84 %
(0.097) | (0.088)

diag (100,100,10,1,1) 10 [ 18129 | 16687 | 7.9%

(0.108) | (0.094)
diag (10%,10%,10%,1,1) | 10 | 17.853 | 16520 | 75 %
(0.106) | (0.094)
diag (107, 10°,107,10,1) | 10 | 17.950 | 15.993 | 109 %
(0.119) | (0.094)
diag (10%,1,1,1,1) 10 | 17.797 | 16.288 | 8.5 %
(0.095) | (0.086)
diag (10°, 10°,10%,10%,1) | 10 | 16.992 | 15.508 | 8.7 %
(0.120) | (0.096)




Table 2. Estimated risks (Estimated standard errors are in parentheses)

(Nla N27 Pi, P2, ™M, Q) = (12, 12,_ 7, 6, 2, 5)

0= Oqu’ Yi = O(Pi—Q)X‘I’

3),

zglz) =Ip,—q

C'C = diag(1,1)

[ Si1a(Sins)

| ML | 6D | sT | aAv |

diag(1,1,1,1,1) 10.000 | 18.493 | 15.557 | 15.9 % |
(0.111) | (0.091)

diag (10,10,10,1,1) 9.732 1 18.183 | 15.441 | 15.1 %

| | (0.118) | (0.089)

diag (100,1,1,1,1) 9.987 | 18.559 | 16.159 | 12.9%
(0.117) | (0.097)

diag (100, 100,10,1,1) 9.885 | 18.224 | 15.600 | 144 %
(0.121) | (0.092)

diag (10%,10%,107,1,1) 9.987 | 18.236 | 15.692 | 13.9 %
(0.121) | (0.088)

diag (10%,10°,10%,10,1) | 9.896 | 17.770 | 14.938 | 159 %
(0.125) | (0.086)

diag (10%,1,1,1,1) 10.000 | 18.511 | 16.064 | 132 %
(0.114) | (0.091)

diag (10%,10%,10%,10%,1) | 9.987 | 17.005 | 14.729 [ 138 %
(0.127) | (0.089)

Table 3. Estimated risks (Estimated standard errors are in parentheses)

(NI’ Nz, p1, pa, m, Q) = (12’ 12(’.)7’ 6, 2, 5)
0= Oqu’ Yi = 0(p¢—q)xq’ 22; = Im-q

A’A = diag(1/3,3),

C'C = diag (1/3,3)

(=) ML| GD | ST | AV |
diag (1,1,1,1,1) 10 | 18.651 | 16.880 | 95 %
(0.105) | (0.095)
diag (10,10,10,1,1) 10 | 18.400 | 17458 [ 51 %
(0.109) | (0.102)
diag (100,1,1,1,1) 10 | 18.402 | 17.711 | 3.8 %
(0.105) | (0.102)
diag (100,100,10,1,1) 10 | 18.206 | 17.413 [ 44 %
(0.112) | (0.106)
diag (10%,10%,10%,1,1) | 10 | 18.000 | 17.262 | 41 % |
: (0.109) | (0.103)
diag (10%,10°,10%,10,1) | 10 | 17.819 [ 16.383 | 8.1 %
(0.117) | (0.100)
diag (10%,1,1,1,1) 10 | 18.312 | 17.598 [ 39 %
(0.103) | (0.099)
“diag (10%,10°,10%,10%,1) | 10 | 16.990 | 15.934 | 6.2 %
(0.117) | (0.103)
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4 Proof of Theorem 2

In this section, we state lemmas which are useful in proving the main theorem. These
include some computational lemmas on moments of the maximum likelihood estimators,
integration-by-parts formulae, and calculus lemmas on eigenstructures. Once we introduce
the lemmas, it is straightforward to give the proof of Theorem 2.

Lemma 2 Letr; = mfy, 1y = Fotr {(CA™YY(CA™)}, 7 = (ni+pi—q—1)/(ni—1), i =
1,2. Then we have

E[tr {(©, — ©)(Z{},)}(8: - 8)}] = ¢r, (21a)
E[tr {(©; — A0)(2(},)7(8, - AB)(CA™YY(CA ™)} =qr;,  (21b)
E[tr {(6; — ©)(Z(},)'B~(I, - #)B(A™'8, - 6,)'}]

- &|(a- Z o). (210)

E[tr {(6; — AB)(Z},) "B '®B(A46, - 6,)(CA™)(CA™)}]

=-E (i: ¢,-) 7'2] : (21d)

i=1

Proof. Note that

0.2, W1 ~ Npyo(®, (Im + Z:W'Z) @ ),
©:( 2y, Wy ~ Npxo(AB, (I, + Z,W;2,) @ 52,),

and that ©, and ©, are independent. Use the fact that EXQX'] = tr (QX)¥ + MQM'
when X ~ Npxn(M, ¥ ® ¥) to get

E[tr {(8: — ©)(={1,) (8, - ©)'}] =Elgtr (I + Z,W7'Z}),
E[tr {(8, — A8)(£Y,) (8, — 48)(CA™YY(CA™)}]
=Elgtr {(In + Z:W3'Z,)(CA™YY(CATY)},
E[tr {(6, - ©)(={),) B~} (I, -~ ®)B(A™'6, - 6,)'}]
= —E[tr {(6, - ©)(={},)'B~'(I, - ®)B(6, - ©)}]
= -E[tr {B~'(I, - ®)B} x tr (I, + Z;W{'Z})],
E[tr {(8; — AG)(=D,)'B"'®B(A6, - 8,)(CA™')(CA™)}]
= —E[tr {(6; — 4A6)(Z?,)"'B'&B(6, — A8)(CA ') (CA™)}]
= —E[tr {B"'®B} x tr {(I, + Z, W Z)(CAY(CA™)Y.

Finally, from (6a) and (6d), we get (21a)-(21d). O
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Lemma 3 (Stein-Haff identity) Assume that a g X g positive definite matriz S follows
the Wishart distribution We(X, a). Also let

( (1+ 6”)62,) , (22)

where s;; are the (i, j)-th elements of S and §;; is the Kronecker delta. For a suitable
g X q matriz V we have

E[tr (VS| = E[2tr (DV) + (a — g — 1) tr (§'V)].

Lemma 4 (Loh, 1988 and 1991) For i = 1,2, let D; be q x q differential operators
which are define by (22) with replacing S by S;. Also let  be a g x 1 vector which is
independent of 81 and S;. Then

tr {D, [B‘l(I — ®)Bzz'B'(I, - ®)(B")7'|}

a .
_ Z [{B:B}J ¢])2 Z 7 fi + 2{Bm}2( ¢J)f,1 3?1
J=1 ' ’
- Y BeRa - )0 - 072,
k#7
tr {D;[B ’1§Bmz'B"D(B')‘1]}
M SE—
— fi
- Z{Bm}k¢1¢kf f ]

k#j
where { Bz}, denote the j-th elements of Bzx.

Note here that {Bz}? = {Bz};{z'B'}; = {Bzz'B'};;, where {Bza'B'};; denote the
(j, j)-elements of Bxa'B’. Hence we have

Lemma 5
tr {D1[B~}(I, — ®)H1(I, — ®)(B) ']}

— 2 fk 6¢J
;[{Hl}n(l ¢J) ;é] f f] +2{H1}n(1 ¢J)f_1

=) {Hi}ba(l—¢;)(1 - ¢k)
a¢:

k#j
(DB (B )
_ J};[{Hz},,dn ; = L 4 2{Haii0(1 - )5

— [
- g{Hz}kk¢J¢kf =7, ]
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where H, and H, are given by (15a) and (15b), respectively.

Proof. If we put A‘lf-:)z — 0, = (1,...,%,), we can see that

H,=B(A™'6,-0,)(A7'6,-6,)B'=)_ BxzB.
1=1
Hence, from this equation and Lemma 4, we get the first expression. The second expression
can be obtained from the similar argument. O

Proof of Theorem 2. First apply Lemma 3 to the third and sixth terms in right-
hand side of (14) and then use Lemma 2 to the other terms in right-hand side of (14) to

get that the risk R((0, X,, X,), éEQ) is rewritten as

q(re —m) + ]E[2(r1 —13) Z¢j + tr {(m -¢-1)S7'B™(I,—- ®)H,

i=1

(I, —®)(B')™" +2D,(B~Y(I, - ®)H (I, — ®)(B)7]
+(ny— q—1)S;'B\&H,®(B)" + 2D2[B‘1<I>H2<I>(B’)“1]}] .

Finally apply Lemma 5 to the third and fourth terms inside the expectation of the above
equation to complete the theorem. [J
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