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On a location parameter family of distributions
attaining the Bhattacharyya bound

PBA - MR HT BA (Hidekszu Tanaka)

Institute of Mathematics, University of Tsukuba

Summary

It is well known that, under appropriate regularity conditions, the
variance of an unbiased estimator of a real-valued function of a real
parameter can attain the Cramér-Rao lower bound only if the family of
distributions is a one-parameter exponential family. But it seems that
the necessary conditions about the probability distribution for which
there exists an unbiased estimator whose variance coincides with the
Bhattacharyya lower bound, are not completely known. The purpose
of this paper is to specify a location parameter family of distributions
attaining the general order Bhattacharyya bound. We also discuss the
relation between the family of distributions attaining the Bhattacharyya
bound and an exponential family of distributions involving a location
parameter. Subsequently, these results are applied for a scale parameter
family of distributions.

1. Introduction

For the lower bound of the variance of unbiased estimators, the Bhattacharyya in-
equality is known as a generalization of the Cramér-Rao one (Bhattacharyya (1946), see
also Zacks (1971)). The Bhattacharyya inequality has been discussed by many authors
from some point of view (Kakeshita (1962), Blight and Rao (1974), Mase (1977), Khan
(1984)). It is well known that the family of distributions must be a one-parameter ex-

ponential family, if there exists an unbiased estimator whose variance coincides with the
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Cramér-Rao lower bound (see Wijsman (1973)). Therefore, it seems to be natural to
restrict the distributions for which there exists an unbiased estimator whose variance co-
incides with the Bhattacharyya bound to a distribution from an exponential family. It is
shown by Fend (1959) that in some class the family of distributions attaining the Bhat-
tacharyya bound is included in an exponential family of distributions. Further, a family of
distributions attaining the Bhattacharyya bound is extended to the linear combination of
distributions which belong to an exponential family (Tanaka and Akahira (2003), Tanaka
(2003)). It is also shown in Tanaka and Akahira (2003) that the distribution which is
not a linear combination of distributions belong to an exponential family can attain the
Bhattacharyya bound. Hence, it seems to be unknown what is the family of distributions
attaining the Bhattacharyya bound.

On the other hand, a necessary and sufficient condition for a location parameter fam-
ily of distributions belong to an exponential one is derived (Ferguson (1962), see also
Dynkin(1961)). Further, it is shown by Takeuchi (1973) that, among a location parameter
family which has a one-dimensional minimal sufficient statistic, the distributions which
have a uniformly minimum variance and unbiased (UMVU) estimator of a location pa-
rameter are limited to a normal distribution and an exp-gamma distribution in a regular
case, and an exponential distribution in another case. (For the more general problem,
see Bondesson (1975).) Consequently, this fact shows that a location parameter family of
distributions attaining the Cramér-Rao bound is limited to the two distributions in the
regular case.

In Section 3, we shall specify a location parameter family of distributions for which
the variance of a UMVU estimator attains the general order Bhattacharyya bound un-
der the suitable conditions. The restriction that the unknown parameter is a location
parameter helps us to understand the structure of the family of distributions attaining
the Bhattacharyya bound. In Section 4, we also discuss the relation between a location
parameter family of distributions attaining the Bhattacharyya bound and an exponential
family involving a location parameter. In section 5, the theory discussed in Section 3 is

applied for a scale parameter family.

2. Bhattacharyya inequality

Let (X, B) be a sample space and suppose that a family of probability distributions
P = {P : 0 € B} is dominated with respect to (w.r.t.) some o-finite measure u, where
© is a parameter space which is an open interval of Rl. Denote by f(z,6) := dPy/du a
probability density function (p.d.f) w.r.t. u. We consider an estimation problem of a
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U-estimable function g(f), i.e. the function g(8) for which its unbiased estimator with a
finite variance exists, based on a sample X.
We state an information inequality as the well-known Bhattacharyya one. Assume the

following regularity conditions.

(A1) For p-almost all z, f(z,8) is k-times differentiable w.r.t. 6.

(A2) The integral [ f(z,8)du(z) can be i-times differentiated under the integral sign for

eachi=1,...,k.

(A3) [|((8°/06°)f(z,6)(&" /067)f(,0))/f(z,0)| dp(z) < oo for all § € © and for each
ij=1,... k.
(A4) For p-almost all z and for all § € ©, f(z,6) > 0.

Let I(6) be a k x k non-negative definite matrix with elements

5 [(3"/69‘)f(X, 6) (87/067)f(X,6)
) F(X,8)

and g(6) :=*(g™(8),...,9*)(8)), where g()(8) is the i-th order derivative of g(§) and *A

denotes a transposition of a matrix A.

» (Za] = 17"-9k))

Theorem 1 (Bhattacharyya inequality). Suppose that the conditions (A1) to (A4) hold.
Assume that g(6) is a U-estimable function which is k-times differentiable over 6. Let

§(X) be an unbiased estimator of g(@) with a finite variance, and assume that,

(A5) The integral [ §(2)f(x,60)du(z) can be i-times differentiated under the integral sign

foreachi=1,...,k.
If I () is non-singular over ©, then
(2.1) Varg(3(X)) > *g(6)1x(6)~*9(6) =: Bx(6)
for all § € ©. Here the equality holds in (2.1) if and only if

k . R
g(z) — = Qi W
(2.2) (=) — g(6) ; (0 T

for all § € ©, where (ax1(6), . .., ars(0)) = tg(8)I(8)1.

p-a.0.x



The proof is omitted, since it is given in Bhattacharyya (1946) and Zacks (1971). The
lower bound Bg(6) in (2.1) is called the k-th order Bhattacharyya (lower) bound. Note
that B;(6) coincides with the Cramér-Rao lower bound. Further, we remark that the

condition (A4) can be relaxed to the next condition to show (2.1) only.
(A4)’ The support of f(z,6), i.e. the set {z € X|f(z,6) > 0} does not depend on 6.

But, here we assume the stronger condition (A4) in order to show (2.2).

Throughout the present paper, we treat only sufficiently smooth functions f(z,8),
d(z), 9(0), ari(6) (¢ = 1,...,k), since we investigate the distributions using differential
equations. We shall say that the probability distribution (uniformly) attains the k-th order
Bhattacharyya bound By (6) if there exist an estimand g(6) and its unbiased estimator §(z)
such that Varg(§(X)) = Bx(9) for all 6 € ©.

3. Location parameter family

In this section, we shall specify a location parameter family of distributions attaining
the Bhattacharyya bound based on the equation (2.2). Suppose that X = R!, 6 = R!
and f(z,0) = f(z — ), then (2.2) is reduced to

(3.1) §(z) = ars1(8)hpsa(z — 0)
for all z and all # € R!, where |
dr+1(0) =="*(aro(0),ak1(8),...,ak(6)),  axo(8) := g(6),
hr1(u) = (ho(u), ha(u), . .., hu(w)), hi(w) = (=1)'FO (w)/ £ (u).

Further, we denote
8i(@) =*(9(2),60@),-...a0 V@),  g;(6) =*(s(6),9V(@),..,897D(®)),

() = (ha(w), AV @), b @) ase(6) = (ai(6), 0 (6), .., a0 ())

for each i,j. Although we are concerned with the p.d.f. f(u) which satisfies the condition
(3.1) in addition to the conditions (A1) to (A5), we focus only (3.1) for the present. Put

.Ak = {fik_H(-) | 390 € Rl s.t. |(ak+1,0(0), e ,ak+1,k(0))| 75 0} N
By == {f(-)|39(-) and ax.1(-) € A s.t. (3.1) is satisfied for all 7,6 € R'}.

When Ggt; € Ay, let 6p € R! be the point such that |[(ar41,0(60),-- ., k+1,k(00))| # 0.
We consider the (k + 1)-th order differential equations
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(3.2); '( ki1,:(w)> ak+1,1(00), - - ak+1,lc(9o))l =0,

and put
Fiei = {f(-) |(3.2); is satisfied for all u € R }

fori=1,...,k.

Lemma 3.1. It holds that By C ﬁ 1 Fri-
Proof. Let f € By, then by induction, we get

89 () =&}, (0)hws1(z — ),

which implies

(3.3) g,(jjl(z) = (ak+1,0(0),- - -, ar+1,%(0)) th(w 6),

for each j. This leads to

(34) l (g£:21(m)3 ak+1,1(00), - - -, ak+1,k(90)) l =0,
since hg(z —6) = 1. Further, by arranging the equalities (3.3) for j = 1,...,k+ 1, we have
(9;(;21( )s ---,9k+11)(z)) = (ak+1,0(60); - - -, @k+1,6(60)) (ﬁiﬂll(w — ), - - hl(ck-::;l)(m - 90))
By considering the transposed matrix, it can be rewritten as

(g,ijl(z) g (m)) - (h,(:ll,o(w —60),..., b, (o~ 90)) (a,,+1(o) ag’fgl(o))
which implies that

I (hiﬂ.l (1), ak41,1(60), - ,ak+1,k(90)) | =0

for all u € R! and for each i = 1,...,k, by (3.4) and a multilinerity of a determinant. [J
Lemma 3.2. For m = 1,...,k, hm(u) can be represented as

(3.5) hm(u) = BT (u) + Pr—1(hm1(w)),

where Py,_1(hmi1) is a polynomial in h,; of degree m — 1 at most.
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Proof. Obviously, (3.5) holds for m = 1. By induction, suppose that (3.5) is true for

m=1,...,mg. Then we have
himo+1(w) = ha (w)hamg (u) — B3y (u)

= hy(w) {B7 (1) + Prg—1(Fmo,1 ()} — mohT* ™ (w)h{ (u)

mo—1

Z hH—l)( ) [ (z PTno l(hmo 1)]

1=0 hm0,1=hm0,1(u‘)

= 7% () + Prng (Bmo+1,1(w))

This completes the proof. O

Now, since we are concerned with the solution of the (k + 1)-th order differential

equation

3.6) A ) akr16(00))| =0

( k+1(u),ak+1 1(60), - - -, aky1,%(60 )

where hpi1(u) := *(h(u), h(l)(u), ..., ¥ (u)), we consider the (k + 1)-th order algebraic

equation

(3.7) |(Zk+1, @k+1,1(60), - - -, @+1,%(60))] = 0

where 241 1= %(2,2%,...,2%"1). Let S be a set of solutions of (3.6), and we shall call h(u)
the highest term of Ay, (u) if |hm(u)/h(u)] = ¢ (0 < ¢ < 00) a8 u — oo.

Lemima 3.3. If f € Bg, then h; is limited to the case when

Hj + Hae** if the solutions of (3.7) are 0, zq, 22, .. . , 28,

H, + Hau if the solutions of (3.7) are only 0,
ha(w)
H, otherwise,

where H; and H, are arbitrary complex constants and 2y is arbitrary non-zero complex
constant.

Proof. (I) When the solutions of (3.7) are only 0, we see S = Span[u®~!|§ = 1,...,k+1],
which denotes a linear space spanned by u®~1 for § = 1,...,k + 1. Further, hy(u) is

represented as
l
hi(u) = ZH5u6_1
5=1

for some ! (1 <1 < k+ 1) by Lemma 3.1, where Hs (§ = 1,...,!{) are arbitrary complex
constants. Then by Lemma 3.2, we see that the highest term of hg(u) is that of h¥(u),
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that is, HFu*{~1). On the other hand, the highest term of the elements of S is u¥ at most,
which leads to H;=0foreach ! (3 <1 <k+1).
(IT) When the solutions of (3.7) are not only 0, we classify the solutions of (3.7) according
to the absolute into Y _~_; € + 1 groups like

0,

211, 212, --- 21g;,
221y 222, ... 222y

Zrly 2x2y .- i

where |zaﬂ] = |zaﬁr| for a = 1,...,x and ﬁ,,@' = 1,...,&1,0 < |21.| < |Z2.l < e < |z,,,.|
and let wp and wag be the algebraic multiplicities of 0 and 2,4, respectively. Then

S = Spa.n [ud-—l’ uY~lgtast

6=la""wo;a=1’---1K/;,3=1a--~:£a;7=17"-awaﬂ]

and hi(u) can be represented as

l Ea waﬁ

hi(u) = Zﬁrauis -1y ZZZHGL‘H“’Y -1 %apu

a=1f=1+y=1
for some ! (1 <1 < k), where H,p, and Hj are arbitrary complex constants and
.7 fn
(3.8) ZZwaﬂ+'wo=k+1.
a=1p[=1

Let Quys-1,m(u) := 5% H w™~1). Then we note that Qu,,—1,1(u) = 0 for all u if and

only if Qu,5—1,m(u) = 0 for all v and each m. Therefore, the terms Quyg—1,m(u)e™*8% in

hm(u) vanish if and only if Qu,s—1,1(u) = Oforallu. Put Z := {zpgla = 1,...,58=1,...,

&2}. Then we see from (3.8) that

(3.9) k> #{z€Z||z| < |2}
for 1 > 2, and
(3.10) k> #{z € Z||z.| <|2l}.

Now, we suppose that for I > 2, there exist 8 (1 < 8 < &) and u such that Quys—1,1(u) # 0.
Since hmm(u) € § for m = 1,...,k, it must satisfy that e™*#* € S form = 1,...,k. But
this contradicts (3.9). Hence we get Qu,,—1,1(u) = 0 for all u and each S.

Next, we suppose that there exist 8 (1 < 8 < &;) and u such that Quyp-1,1(u) # 0.
Then by the same way as | > 2, it follows that e™*1#* € § for m = 1,...,k. Further, by
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(3.10), we see that for only 8 = 1, there is a possibility that Qu,,-1,1(u) # 0 for some w.
Hence hi(u) is deduced to

wo
ha(w) = Hsu™! + Quyy-1,1 (w)e™ ™.
6=1

Here we consider the next two cases.
(i) The case when Qu,,—1,1(u) # 0 for some u. Since hp(u) € S form =1,...,k, it follows
that S = Span [1,e11%, ... ek#11%] | thus

hi(u) = Hy + Hip e,

(ii) The case when Qy,,-1,1(u) = 0 for all . Since hi(u) can be represented as
!
hi(u) = Zng‘s_l
§=1

for some I (1 <1 < wy), it follows that the highest term of hyq(u) is H;"*u®*(~1). So we
get H; =0 for Il > 2, hence hy(u) = H;. O

Lemma 3.3 is essential to get the next main theorem.

Theorem 2. A location parameter family of distributions attaining the Bhattacharyya
bound consists of a normal distribution and an exp-gamma distribution.

Proof. By Lemma 3.3, we get

exp {—(Ho + Hyu + Hye*"/2)} if the solutions of (3.7) are 0, 29, 23, - . -, z{,‘,

exp {—(Ho + Hiu + Hau?/2)}  if the solutions of (3.7) are only 0,
flu) =
exp {—(Ho + Hiu)} otherwise,

whe.e Hy, H; and H are arbitrary complex constants and zp is arbitrary non-zero com-
plex constant. We consider whether the distribution uniformly attains the Bhattacharyya
bound for each cases.

(I) First case (normal). It follows that f(u) € R! if and only if

H — ==  H
exp{-— (H0+H1u+72u2>} =exp{-— (H0+H1u+ Tzuz)},

where Z denotes the conjugate complex of z. Further, from the condition that f(u) > 0
for all u € R!, we get e7H0 > 0 and Hy, H, € R!. It is well known that this function is a
p.d.f. over (R!, B) if and only if f(u) can be represented as

_ 2
flu) = \/—21_71_—5exp{—(u2b:) } (u € RY;a € RL,b > 0).



By (3.4) we see that §(z) is a polynomial in z of degree k at most, and g(6) is also so,

since g(#) is an expected value of §(X). So it can be rewritten as
k A~ . k I3
§(z)=> Gz’ and g(6) =) G;b’
j=0 =0
for some constants éj and Gj, where G; (j = 0,1,...,k) may depend on éj =

0,1,...,k). Further, we see that hm(u) is a (Hermite) polynomial in u — a of degree

m by Lemma 3.2. Therefore, there exists a non-singular matrix U4 such that
t(l,u —a,...,(u— a)k) = Uk+1l~zk+1(u).
By using this matrix, we get the relation
4(z) = (Co(6),C1(6), - - ., Ck(8)) Urt1hn 1 (w),

where Cp,(8) := _?:m G’j (7'31) (a+6)~™ for m =0,1,...,k, which shows that (3.1) is
satisfied.

(IT) Second case (exp-gamma). In a similar way to the case (I), we get

exp {— (Ho + Hyu+ —gf-e““)} = exp {—— (Fo-’rmu + %eﬁu)}

for all u € R'. When z # Zj, we see that f(u) = exp{—(Hp + Hiju)} (u € Rlje~Ho >
0,H; € RY). In this case f(u) is not a p.d.f. over (R!,B), since the definite integral of
f(u) over R! diverges for any Hy and H;. When zg = Zg, we see that

f(u) =exp {— (Ho + Hwu+ g_ﬂ%ezo")} (u e RY;e 0 > 0,Hy, Hy € R, 29 € R \ {0}) :

It can be easily shown that this function is a p.d.f. over (R!, B) if and only if f(u) can be
represented as

6]

) = Faya

bu
exp{——%—-&-abu} (u € RY;a,¢> 0,b #0).

Further, §(z) and g(@) can be represented as
k -~ . k 3
§(z) = Gje™ and g(8) =) G
=0 =0

for some constants G ; and G;. Since hy,(u) is a polynomial in e® of degree m, there exists

a non-singular matrix Uky; such that

t(l»elm, .. ,Ckb") = Ugy1h41(u).
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Then we obtain
g(z) = (éo,é1eb9, ce erkw) Ukt1hi+1(u),
which shows that (3.1) is satisfied.
(IIT) Final case (exponential). In this case, it is impossible to consider the Bhattacharyya
inequality since f(u) is not a p.d.f. over (R, X). O

Remark 3.1. A location parameter family of distributions attaining the Bhattacharyya
bound coincides with that of distributions with a UMVU estimator of a location parameter,
under the condition that the dimension of the minimal sufficient statistic is one (Takeuchi
(1973)). But, if this condition is violated, then the former family is strictly narrower than
the latter one. For example, suppose that a random variable X is distributed according
to the p.d.f. f(z —8) = Cexp{—(z — 6)*} (z € R%;0 € R'), where C is the normalizing
constant (Bondesson (1975)). Let g(6) := 6 be an estimand. Then the UMVU estimator
of g(6) is X, but it can be easily shown that the variance of X does not attain the k-th
order Bhattacharyya bound for any k. (See also Remark 4.2 in the next section.)

4. The relation between a family of distributions attaining the Bhat-
tacharyya bound and an exponential family

An exponential family involving one location parameter has derived by Dynkin (1961)
and Ferguson (1962). In this section, we shall specify this family by a differential equa-
tion approach which helps us to understand the relation between a family of distributions
attaining the Bhattacharyya bound and an exponential family. First, we suppose that the

pdf. f(z —6) w.r.t. uis given by

(4.1) f(z — 8) = exp {"tx(z)8x(6) + 50(6) + to(2) } ,

for all z,6 € R, where 8,(0) := !(51(0),...,84(8)), tu(z) = *(t:i(z),...,tx(z)) and the
dimension of Span[1,s;(6)|l = 1,...,k] is kK + 1. Let x + r + 1 be the dimension of
Span(1, 5;(6), sV (O)l = 1,...,x]. Put

Ee = {f(-) |3(8x(-), tx(")) s.t. (4.1) is satisfied for all z,6 € R }.
Further, we consider the differential equation
1
(4.2); l(huu(u)vagﬂ,p .. ’a’g+1,k)( =0,
and put

Dyi = {f() ‘B(agﬂ,l, cooy @Ry ) St (4.2); is satisfied for all u € R? } X
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Then it clearly holds that Fi; C Dy; foreach i = 1,...,k.

Lemma 4.1. It holds that £ C Dy if & < k, especially & = Dg;.
Proof. Without loss of generality, we assume that Span[l,sl(e),sl(l) Ol =1,...,5 =
Span[l,sl(H),sg)(H)ll =1,...,6m=1,...,7]. Then there exists a (k +7r+1) x (k =)

constant matrix R such that

(43) a5, (0) = (1,%84(8), s (6)) R
for all 6 € R!, where 8,.(0) := *(s1(8),...,8:(0)), 8.x—r(8) := *(sr+1(8),...,5x(8)). Since
f(z — 6) is of the form (4.1), we see that
(2)
(1,2x(6), ' (0)) t%) +185, (0t (2) =0,
2 (@)
where t..(z) and t.._.(z) are defined similar to s,.(6) and s8.._.(6), respectively By
(4.3) and the linear independency of 1,%s,(6), tsg)(ﬂ), we get (t(()2) (ar:),tt (a:), tt(l)(a:))
—t¢M) (2)R. Put 'R =: (*Ro,‘Ry,*Ry) where Ry, R; and Ry are (r + 1) x (k — 1),
(k —7r) x (k —r) and r X (k — r) matrices, respectively. Then it follows that
(87 @), 42 (@) = ~45L (2)'Ro,
(o) =~ (o) Ry,
M (z) = —tt)_(2)'R,.

Using these equalities, we get
hi(z — 8) = 5 (2) (8.x—r(6) — Ras,.(0)) + t8"(2).
It follows that
(49 A(@=6) = ()" (@) BT (s.x-r(6) — ‘Rasr.(0)) + 6™+ (2)

form=1,2,..., since

D (2) = (~1)™ ¢ ()R
Let ¢g, (t) be the characteristic polynomial of Ry, Ay, ..., A« be eigenvalues of R; and
W (A) be a coefficient of t™ in ¢p, (t) for m = 0,...,k — r, that is,

K—T

o (t) = det(tEx—r — R1) = Y Wm(A)t™,

m=0
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where F,, is an n-th order unit matrix. By (4.4) we get

K—=r

> (1) W (WA (z - 6)
m=0
= Z W (’\) tt(l) r(z)tRm (sn ,,.(9) tR28r 9)) + Z( l)me()\)t(m+1)( )
m=0 oy
— Z( l)mW )«)t(mﬂ)( )
m=0
Differentiating this equation with respect to 6, we have
3 ()™ WA (@ - 6) =
m=0

which shows the first assertion of Lemma 4.1.
Conversely, we should show Di; C . We suppose that there exists some (kK + 1) x k
constant matrix (a.?c FERTRRR." +1’k) such that (4.2) is satisfied for all u € R!. Then we

consider the (k + 2)-th order algebraic equation

(4.5) z| (zk+1,a2+1,17 ey a2+l,k)| =0,

since we are concerned with log f(u) instead of hj(u) (cf. (3.7)). Denote the solutions of
the equation (4.5) by z = 2, and the algebraic multiplicities of z, by w, for @ =0,1,...,7,
where zp := 0 and Y7 _,wo = k + 2. Then log f(u) can be represented as

log f(u / hi(u)du = — ZHWJ 1 ZZHﬂuﬂ lg7au,

a=1 (=1
where Hop, Hs (. = 1,...,7;8 = 1,...,wa;8 = 1,...,wp) are arbitrary complex con-
stants. Thus log f(z — 6) is of the form
wo—2 Wa—1
log /@~ 6) = 50(68) + 3 50y (@)t (2) 4 16(2) + 32 3 s (@tan(®),
=1 a=1 =0

where

s0(0) = _Hwo(—g)wo—la Smy 0) =-(-0)", Saryz 0) = _(___0)’726—-&;0,

< 7. 6-1 < 0—-1\ 5y
to(z) = =Y Hsz® ', ty,(z)= Y H; W )® ,
=1

d=v1+1

Wa
tay(T) = Z Hap (ﬂ,y_z 1) e*atghml,

B="r2+1



which implies that Dy C & since 1,8y,(0),804,(0) (@ =1,...,mm =1,...,wp — 2;79 =
0,1,...,wq — 1) are linearly independent. [J

I'rom Lemma 4.1, we get the next theorem which coincides with Theorem 1 in Ferguson
(1962).

Theorem 3. Under the above notations, a x-th dimensional exponential family involving

one location parameter is limited to the form

wo N Wa
fle=8)=exp |~ Hs(@—0)"" =Y )" Hog(z — 6)P1er="0)
6=1

a=1 (=1

Remark 4.1. The setting in Lemma 4.1 is somewhat different from Ferguson (1962),
who assumed the linearly independency of 1,¢;(x),...,ts(z) instead of the smoothness of
t1(),...,tx(x), that is, a full rank exponential family. If we assume the conditions of Fer-
guson, then the latter part of Lemma 4.1 is not right, since the functions 1, %, (z), tan, (2)
(@=1,...,mm1=1,...,w0 — 2;72 = 0,1,...,we — 1) are not necessarily linearly inde-

pendent.

Remark 4.2. By Lemma 3.1 and Lemma 4.1, we see that B, C N*_, Fi; C Diy = &.
Therefore, a family of distributions attaining the Bhattacharyya bound is included in an

exponential family in a location parameter family.

5. Scale parameter family

In this section we shall specify a scale parameter family of distributions attaining the
Bhattacharyya bound. Let f(z,6) = f(x/6)/0 where z > 0 and 6 > 0. We transform the
variables z, § and the functions §(-), g(-), f(-,), as(*) i = 1,...,k) as

y:=logz, o :=logh, §*(y) := g(e¥), g*(0) := g(e”), f*(u) := f(e*), ap;(0) := ari(e”)

(see Ferguson (1962)). Using these transformations, we have f(z,60) = e=? f*(y — o).

Lemma 5.1. For each j = 0,1,...,k, the function (87 /967) f(z,6) can be represented as

61 af@6) =~ (- Y (Fu-0), FOu=-0),..., Oy - 2)) brs

for some constant vector byy1; :=*(bjo,...,b;;,0,...,0).
Proof. It is clear that (5.1) is satisfied for j = 0. By induction, suppose that (5.1) holds
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for j =0,1,...,750 < k. Then

Hlot1
Frs e
0

== {(—e o (Fly= o) O =) P = 0)) brsro fe™

z,0)

= (e P £y = 0), £ Oy = )y, Py =) brrrorss

where
jo+1 o)
1 jo+1
b 11,4o+1 = L - bi+1,4o
O 1 jo+1

which implies that (5.1) holds for j =jo+ 1. O

By Lemma 5.1, we get

(1 (6/06)f(z,6) (3’°/<99’°)f(m,0))
© f=0) T f(=z,06)

|, FYy=-0) Py -a)
= (L f*(y—a) PRRRR) f*(y——a) )Bk+1(0),

where

Byi1(o) = (bk+1,0: (=7 )brs1,15- - - (_e_a)kbk+1,k) .
Thus (2.2) is equivalent to
(3.1)* *(¥) = *(Be+1(0)at 41 (o) A i (y — 0),

where @, ,(0) = Y(ao(0),a}1(0),...,a5(0)) and A}, (u) = (1, Y@ ),.. .,
FE(u)/ £*(w). Put A} := {@ks1()|Ber1(0)ar,(0) € Ap}, and

By = {£(-)|3§(") and Fax41(-) € A% s.t. (3.1)* is satisfied for all y,0 € R'}.

In a similar way to the location parameter case, we see that if f € B}, then f*(u) is limited

to the case when

exp {—(Ho + Hiu + Hye%%/z)} if the solutions of (3.7) are 0, zg, 22, ..., 28,

exp {—(Ho + Hiu + Hau?/2)}  if the solutions of (3.7) are only 0,
fHw) =
exp {—(Ho + Hyu)} otherwise,

where Hy, H; and Hj arc arbitrary complex constants and 2o is arbitrary non-zero complex

constant. So we get the next theorem.



Theorem 4. A scale parameter family of distributions attaining the Bhattacharyya
lower bound consists of a log-normal distribution and an extended normal and gamma
distribution.

Proof. (I) First case (log-normal). Under the condition that f(z,0) is a p.d.f. over
(X, B), f(z,0) can be represented as

f(z,0) = \/_b exp{ 55 (loge )2} (z>0;0>0;a€R1,b>0).

(IT) Second case (extended normal and gamma). Under the condition that f(z,6) is a

p.d.f. over (X, B), f(z,60) can be represented as

f(z,0) = I‘(clzz;lc“e (%)ab—l exp {-—;‘:— (%)b} (z > 0;8 > 0;a,¢c>0,b+#0).

(III) Final case (extension of a triangular). In this case, f(z,#) has the form

sl =g (5)

It is impossible to consider the Bhattacharyya inequality since the definite integral of
f(z,8) over (0,00) diverges for any Hy and H;.

We can justify the theorem by the suitable transformation. O

6. Concluding remarks

In this paper, we specified the family of distributions attaining the Bhattacharyya
bound for a location and a scale parameter family under suitable conditions. We conclu-
sively remark that it is possible to specify a family of distributions attaining the Bhat-
tacharyya bound if the equation (2.2) can be reduced to the form (3.1) by a suitable
transformation.

In some papers which discuss the Bhattacharyya inequality, a family of distributions
is restricted to the exponential family so that f(z,0) = exp{t(z)11(0) — ¥2(8)} where
¥5(0)/%1(0) = 6 and 1/41(0) is a quadratic polynomial in 6 (see Blight and Rao (1974),
Khan (1984), and also Shanbhag (1972)). The four types of distributions derived in this
paper, i.e., a normal distribution and an exp-gamma distribution for a location parameter,
and a log-normal distribution and an extended normal and gamma distribution for a scale
parameter do not directly belong to the above restricted exponential family. But, by

transforming the parameter appropriately, the four distributions are in that family.

Finally, the case when the determinant of the coefficient matrix (@ax41,0(8), .. ., @k+1,4(0),

is zero still remains open. In that case, the author conjectures that the support of f(z—8)
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does depend on the unknown parameter # under the essential condition that the function
f(-) is a p.d.f. over (R!, B). This shows that it is nonsense to consider the Bhattacharyya
inequality.
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