gobooooboo 13350 20030 13-19

13

A Relation between a Group and a Ring

Hidetsune Kobayashi Hideo Suzuki
Nihon University Tokyo Institute, Polytechnic University

Hirokazu Murao
University of Electro-Communications

1 Introduction

We tried to prove abstract ring theory with Isabelle/HOL [1]. And we saw differences between expressions
in a text book of abstract ring theory and Isabelle/HOL. In mathematics, an abelian group is defined
as a group with a condition “commutativity of the binary operator”, and the operator is traditionally
expressed by + which may different from the originally adopted symbol expressing the binary operator.
But in Isabelle in some situations, we cannot change the symbol. In Isabelle/HOL we have two ways to
treat abelian groups. One is to use locale; we can define an abelian group locale with “commutativity”
added to the assumption of a general group. But, in this case we have to use the symbol expressing the
binary operator which is non-commutative. This gives an uncomfortable feelings when we treat a ring.
Another way to treat an abelian group is to define abelian group independently to the general group,
and make a bridge between a general group and an abelian group. The latter way is our main object to
be discussed in this report.

2 A Definition of a Group

We first prepare a structure for groups consisting of a binary operation, an inverse operation and a unit
for the operation:

record ’a grouptype =
pcarrier :: "’a set"
bOp1 i "[%a, ’a] = ‘a"
iOp1 tr "a = a®
unitl :r "mat ("(u)" [81180)

and then, we define a group by assigning required properties:

31

constdefs Group :: "(’a, ’'more) grouptype.scheme = bool"
"Group G == (bOpl G): pcarrier G — pcarrier G — pcarrier G A
(i0pl G) € pcarrier G — pcarrier G A
(unitl G) € pcarrier G A
(Vx € pcarrier G. Vy € pcarrier G. Vz € pcarrier G.
(bOp1 G (unitl G) x = x) A
(b0p1 G (i0pl G x) x = unitl G) A
(bOpl G (bOpl G x y) z = bOpl G x (bOpl G y 2)))"

Using locale facility[2], we may define the same as follows:

record ’a grouptype =

pcarrier :: "’a set"

bopi :: "[’a, ’a] = ’a" (infixl "x+" 65)
iopi i1 "a = cat ("(_T2)" [81] 80)
unitil o "rar ("ua")

locale group = struct G +

assumes bopl_fun: "bOpl G € pcarrier G — pcarrier G — pcarrier G"
and iopl_fun: "iopl G € pcarrier G — pcarrier G"
and uniti_elm: "v € pcarrier G"

and bopl.assoc:"[x € pcarrier G; y € pcarrier G; z € pcarrier G | =
(x*xy)kz=xx*(y*x2z)"

and unitl fx:"x € pcarrier G => v * x = x"

and left_inv:"x € pcarrier 6 = (x) xx=v "

Locale facilitates defining local contexts, i.e., locally fixed variables, local assumptions and local defini-
tions. This is a convenient gear to treat an object extracted from the category of group. Since we have
to treat the category of group with functor, we do not adopt locale. We use the former definition, and
we introduce a symbol expressing the bOp1 and the i0p1i as

syntax
"@BOP1" :: "[’a, (’a, ’'more) grouptype_scheme, ’a] = ’a
(@3 ./ -~/ " [80,80,81]80)
"QIOP1" :: "[’a, (’a, ’more) grouptype_scheme] = ’a'
("(-7-)" [82,83]182)
translations
"x ¢ y" == "bOpil G x y"
wx~Gn == wipgpt G x"

With these definitions and symbols above, we prove propositions on groups. For example, we give a
simple proposition insisting that the intersection of subgroups of a group is also a subgroup of the group,
as follows, where the notation H « G is defined elsewhere and means H is a subgroup of G. The proof
is almost automatic as shown below.

lemma inter.subgs: "[Group G; H« G; K<« G] = (HNK) « G"
apply (simp add:Subgroup._def)

apply auto

done

3-2

3 A definition of an abelian group

15

In order for later expansion into rings, we want to use “4” as a symbol expressing a binary operator of

abelian groups. For this purpose, we define an abelian group, independently from groups, as follows:

record ’a agrouptype =

carrier :: "’a set"
abOpt :: "[’a, ’a] = ’a"
ai0pt :: "’a = ’a"
aunitli :: "’a"
constdefs AGroup :: "(’a, ’more) agrouptype_scheme => bool"
"AGroup G == (abOpl G): carrier G — carrier G — carrier G A

(ailpl G) € carrier G — carrier G A
(aunitl G) € carrier G A
(Vx € carrier G. Vy € carrier G. Vz € carrier G.
(abOpl G (aunitl G) x = x) A
(abOp1 G (ailpl G x) x = aunitl G) A
(abOp1 G (abOpl G x y) z = abOpi G x (abOpl G y 2)) A
(abOpl G x y = abOpl G y x))"

Types grouptype and agrouptype are similar but independent each other. Therefore, we cannot use

lemmas obtained with a structure grouptype as those for abelian groups directly. We need a bridge
between these two types. The numbers of lemmas and definitions for multiplicative groups are converted

through the bridge lemmas and definitions for abelian groups. In some situations, we have to treat both

multiplicative group and abelian group, and the bridge gives us a natural way to treat them together.

constdefs
BAG::"(’a, ’'more) agrouptype_scheme =

"BAG G == (| pcarrier = carrier G, bOpl = abOpl G,
i0pl = aiOp1 G, unitl = aunitl G)"

(pcarrier::’a set, bOpl::(’a, ’a] = ’a, iOpi::’a = ’a, unitl::’a)"

Using B_AG as a bridge between the grouptype and the abelian grouptype, we can induce lemmas for
abelian groups from the lemmas obtained for the grouptype. And we can define mathematical concepts
concerning abelian group by means of concepts already defined for general groups. For example, we

define a subgroup of abelian group as:

constdefs
ASubgroup :: "[(’a, ’'more) agrouptype.scheme, ‘a set] = bool"
"ASubgroup G H == H « (BAAG G)" (*x H«G = H is a subgroup of G *)

and a definition of a normal subgroup is simply:

constdefs
ANsubgroup :: "[(’a, ’more) agrouptype_scheme, ’a set] = bool"

"ANsubgroup G N == N <« (B.AG G)" (* H<G = H is a normal subgroup of G *)

16

4 Groups and subgroups in Isabelle/ HOL

In Isabelle/HOL a group is a structure having underlying set as the carrier, binary operator, inverse
operator and unit as the components. Subgroup is a subset of the carrier, satisfying conditions. Subgroup
and group has different structures. So, in Isabelle/HOL we cannot discuss whether two subgroups are
isomorphic or not, provided the isomorphism means the group isomorphism as in mathematics. It seems
to us a natural way to define a group structure induced to the subgroup from the group containing it:

constdefs Grp :: "[(’a, ’'more) grouptype_scheme, ’a set] = ’a grouptype"
"Grp G H == (| pcarrier = H, bOpl = Ax€H. AyeH. (bOpl G x y),
i0p1l = Ax€H. (i0Opl G x), unitl = unitl G "

The following from the homomorphism theory gives the second isomorphism theory, and demonstrates
the Grp, where the group structure of AN denoted by H ¢g N is treated. We further use the following
notations and definitions:

o for f: F—@G, f'rc: F/ker f—G,

) Pj
e forg is a function composition of f and g where F is H HN HN/N

a range of f,
e PjGH: G—G/H; 7 (Pjot)™: bijective

eip=)eF.z. H/ ker(Pjor)

theorem homomé4:
"] Group G; N2 G; H« G] =
- bijec((Grp G H)/(H N N)),((Grp G (H O¢ N))/N)
(((Pj (Grp G (H Qg N)) N) °(Grp G H) (L(Grp G H)))
“(Grp G H), ((Grp G (H O¢ MI/M))"
apply (frule homom3Tr2 [of "G" "H" "N"], assumption+)
apply (frule subgnsl, assumption+)
apply (frule homom4Trif{of "G" "N" "H"], assumption+)
apply (frule subgGrp [of "G" "H"], assumption+)
apply (frule ind hom injec
fof "Grp G H" "(Grp G (H Qg N)/N)"
"(Pj (Grp & (H Oc M) M) o(erp ¢ 1) C(Grp ¢ 0"
assumption+)
apply (simp add:surjec_def)
apply (frule inducedhomsurjec
[of "Grp G H" "(Grp G (H Q¢ N))/N"
"(Pj (Grp G (H Q¢ N)) M) °(Grp G H) (L(Grp G H))"]'
assumption+)
apply (frule homom3Trifof "G" "H" "N"], assumption+)
apply simp
apply (simp add:bijec._def)
done

34

5 A definition of a ring

A definition of ring is as follows:

record ’a ringtype = "’a agrouptype" +
b0p2 . n[)a, ‘a] = a"
unit2 :: "’a"
constdefs
Ring :: "(’a, ’more) ringtype_scheme => bool"

(unit2 R) € carrier R A
(Vx € carrier R. Vy € carrier R. Vz € carrier R.

(b0p2 R (unit2 R) x = x) A

(b0p2 R (bOp2 R x y) z = bOp2 R x (bOp2 R y 2)) A
(bOp2 R x y = bOp2 R y x))"

"Ring R == AGroup R A(bOp2 R): carrier R — carrier R — carrier R A

(b0p2 R x (abOpl R y z) = abOpl R (bOp2 R x y) (bOp2 R x 2)) A

syntax
"@BOP2" :: "[’a, (’a, ’more) ringtype.scheme, ’a] — ’a"
(@3 ./ -/)" [85,85,86]85)
"QAUNIT2" :: "(’a, ’more) ringtype.scheme — ’a" ("’1_" [87188)
translations
"x - y" == "bOp2 R x y"
"{g" == "unit2 R"

We define an ideal as:

constdefs
ideal::"[(’a, ’more) ringtype.scheme, ’a set] = bool"
"ideal R I == I <+ R A (Vrecarrier R. Vx€Il.(xr g x € I))"

6 What we have proved in Isabelle/HOL

17

The following lists what we have proved algready in Isabelle/HOL, giving sample descriptions of some

typical theorems.

1. Jordan, Hoelder, Schreider theorem of a Group

= r = g"

lemma J.HS: "[Group G; Ugp E; compseries G r f; compseries G s g; 0 <r; 0 < s]

2. Proofs related to maximal ideals e.g.

(a) existence of a maximal ideal (Zorn’s lemma is written by Jacques D. Fleuriot)

(* existence of a maximal ideal *)
lemma id.maximal Exist:

"[Ring R; —(ZeroRing R) | = JI. maximal ideal R I"

(* existence of a maximal element disjoint from a multiplicatively closed setx)
lemma ex.mulDisj.maximal:
"[Ring R; mul closed.set R S; O ¢ S; 1z € S;
T={I.idealRIASNI={}}] = Idmx. maximal set T mx"

(* existence of a prime ideal *)
lemma ex mulDisj _prime:"[Ring R; mul_closed.set R S; Oy ¢ S; 13 € S |
=> Jmx. prime ideal R mx A S N mx = {}"

(b) a lemma on the set of nilpotent elements

(* a property of the nilradical *)
lemma nilradTril: ,
*[Ring R; — ZeroRing R | => nilrad R = (| { p. prime_ideal R p }"

(c) properties concerning Jacobson radicals

lemma J.radunit: "[Ring R; — ZeroRing R; x € J.rad R]
=% Vy. (y€ carrier R — unit R (i3 +3 {(-g x) - y)"

(d) elementary properties of local rings

lemma local ring diff:
"[Ring R; — ZeroRing R; ideal R mx; mx # carrier R;
Ya€ (carrier R - mx). unit R a] = local._ring R A maximal_ideal R mx"

(e) properties related to residue class rings and a field

3. We can define a direct product of ideals parametrized by elements of a set A (not necessarily a finite
set).

(* direct product of rings parametrized by a set A *)
constdefs
Prod_ring:: "[’a set, ’a = (’b, ’'more) ringtype_scheme] =
(carrier::(’a = ’b) set, abOpi::{’a = ’b, ’a = ’b] = (’a = ’b),
ai0pl::(’a = ’b) = (’a = ’'b), aunitl::(’a = 'b),
b0p2 ::[’a = ’b, ’a = ’bl = (’a = ’b), unit2::(’a = ’b))"
"Prod_ring A B == (carrier = ac_Prod Rg A B,
abOpt = Af. Ag. prod bOpl A B f g, aiOpl = Af. prod_ilpl A B f,
aunitl = produniti A B, b0p2 = Af. Ag. prod bOp2 A B f g,
unit2 = prod_unit2 A B "

translations "rlIl, B" == "Prod ring A B"

3-6

19

4. Chinese remainder theorem in general case:

(1]

(2]

nil n+1
R/ () Ji= ALl R/
=0

theorem Chinese_remThm:
“[Ring R; (Vk€Nset (Suc n). ideal R (J k));
VkeNset (Suc n). B k = QRing R (J k); VkeNset (Suc n). S k = pj R (J k);
Vi€eNset (Suc n). VjeNset (Suc n). (i # j — coprime_ideals R (J i) (J j))]
=> Tbijec(gring R (N{ I. 3keNset (Suc m). I = (J W), M (yget (Suc n)) B
((A_toProd (Nset (Suc n)) R S B) R, (T (yget (Suc 1)) B))

References

T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle’s Logics:HOL.
http://isabelle.in.tum.de/doc/logics~HOL.pdf.

F. Kammiiller, M. Wenzel and L. C. Paulson. Locales: A Sectioning Concept for Isabelle. In Theorem
Proving in Higher Order Logics: TOHOLs ’99, LNCS 1690, Springer-Verlag, 1999.

3-7

