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Plan of the talk.

1. The real elimination problem. Motivation and history.

2. Aformal framework. Elimination problems and elimination procedures in the real setting.

3. Problems in science, engineering and operations research. How to formulate some funda-
mental application problems as real elimination problems. The problems can be grouped naturally

into problem types that are not geometric in their initial formulation, and problems that are of a
geometric nature in their initial formulation.

4. Three implemented real elimination methods.

(a) QEPCAD Quantifier elimination via partial cylindrical algebraic decomposition.

(b) CGB and MRRC Comprehensive Gr\"obner bases and multivariate real root counting.

(c) REDLOG Low-degree real elimination by virtual substitution of parametric test points.

5. Computational examples in REDLOG, QEPCAD, $\mathrm{C}\mathrm{G}\mathrm{B}+\mathrm{M}\mathrm{R}\mathrm{R}\mathrm{C}$ . Some successful applica

tion examples of these implementations.

6. Conclusions. Achievements, shortcomings, and potential of real elimination methods.

1The real elimination problem

Since Tarski’s discovery of algorithmic real elimination in the 1930, huge progress has been made con-
cerning both theoretically and practically more efficient elimination methods. Nevertheless applications

of implemented real elimination methods have been limited to small academic examples for along time.
Only since about 10 years these methods have begun to solve non-toy problems in mathematics, science,

engineering, and operations research.
Purpose of the talk: Astatus report on the practical applicability of implemented real elimination

methods.
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Problem: “Eliminate” unwanted variables from an algebraic description of some situation. The
unwanted variables may represent unknown quantities, e.g. quantities that can not be measured or
determined directly in the given model. Geometrically elimination of variables corresponds to aprojection
along the coordinates of the eliminated variables.

Asimple example.

$\exists x(ax^{2}+b=0)$ is equivalent to

$a\neq 0$ or $b=0$ in the complex domain

$ab<0$ or ($a=0$ and $b=0$) in the real domain

2The real and complex elimination problem
Aformal framework for elimination theory can be sketched as follows:

We consider polynomials: $f=f(x, u)=f(x_{1}\ldots, x_{n}, u_{1}\ldots, u_{m})$ with rational coefficients in two lists
$x$ and $u$ of variables. We call $x$ the main variables and $u$ the parameters.

Equations will be expressions of the form $f=0$ or more generally $f=g$ for polynomials $f,g$ . In the
real case we also consider inequalities of the form $f\geq 0$ , $f>0$ . Atomic formulas are equations or
inequalities.

quantifier-free (qf) formulas $\varphi(x, u)$ are boolean combinations of atomic formulas by the operators
$\wedge,$ $\vee$ , $\neg$ .

An existential (ex) formula is of the form $\varphi(x, u)$ : $\exists x_{1}\ldots$ $\exists x_{n}\psi(x, u)$ , where $\psi$ is aqf-formula.
Similarly auniversal (univ) formula is of the form $\varphi(x, u)$ : $\forall x_{1}\ldots$ $\exists x_{n}\psi(x, u)$ , where $\psi$ is aqf-
formula.

Ageneral (first-0rder) formula has several alternating blocks of existential and universal quantifiers
in front of a qf formula.

The (real or complex) quantifier-elimination (qe) problem can be phrased as follows:
Given an existential formula $\mathrm{i}\mathrm{p}(\mathrm{u})$ : $\exists x_{1}\ldots$ $\exists x_{n}\psi(x, u)$ , find a qf formula $\varphi’(u)$ such that both are

equivalent in the domain of real (or complex) numbers.XS Aprocedure computing such a $\varphi’$ ffom $\varphi$ is
called a(real or complex) quantifier-elimination (qe) procedure.

Notice that a qe procedure can be iteratively applied to several blocks of existential and universal
quantifiers to yield aquantifier elimination also for arbitrary formulas.

Quantifier elimination for an existential formula $\varphi(u)$ : $\exists x_{1}\ldots$ $\exists x_{n}\psi(x, u)$ has astraightforward ge0-

metric interpretation:

Let $M$ be the set in $(x, u)$-space defined by $\mathrm{i}\mathrm{p}(\mathrm{x}, u)$ , and let $M’$ be the set in $u$-space defined by $\varphi(u)$

or equivalently by $\varphi’(u)$ . Then $M’$ is the projection of $M$ along the coordinate axes of the existentiaUy
quantified variables $x$ onto the parameter space. Sets defined by first-0rder formulae in real or complex
space are called definable sets. Sets defined by qf formulae in real or complex space are called semial-
gebraic sets and constructible sets, respectively. Notice that in the complex case inqualities are not
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allowed. So real or complex quantifier elimination asserts that every definable set is in fact semialgebraic,
or constructible, respectively.

Aqe procedure may be regarded as ageneralization of atest that determines the solvability of a
parametric system of equations in dependence of the parameters. The procedure may not give any
information on the actual solutions of the system. So there is an obvious generalization of the real qe
problem:

The extended qe problem: In the situation of the real qe problem, find in addition afinite list
$(t_{1}(u), \ldots, t_{k}(u))$ of parametric test points (given by $n$-tuples of expressions in the parameters $u$), such
that $\exists x_{1}\ldots$ $\exists x_{n}\psi(x, u)arrow \mathrm{V}_{i=1}^{k}\psi(t_{i}(u), u)$ holds in the reals.

Aprocedure achieving this goal will be called a(real or complex) extended quantifier-elimination
(qe) procedure.

For fixed values of the parameters $u$ one can then find asolution $x=tj$ of $\psi$ by testing all $t_{t}$ .

3Problems in science, engineering and operations research.

We explain by some typical examples how to formulate some fundamental application problems as
real elimination problems.

The first group of problems concerns non-geometric problems.

1. Constraint solving.

Here one has anumber of real polynomial equations and inequalities and tries to test solvability and
and to exhibit sample solutions. The first problem can be solved by real qe for existential formulas,
the second by extended real $\mathrm{q}\mathrm{e}$ .

2. Optimization problems.

We consider the problem of mimimizing apolynomial (or rational) objective function $q$ with respect to
aboolean combination of polynomial inequalities as constraints. By introducing anew variable $z$ and
the additional constraint $q\leq z$ , one can aPPly qe to the corresponding formula $\varphi(z)$ with existially
quantified main variables and obtains a qf formula $\varphi’(z)\mathrm{i}\mathrm{n}z$. Prom this formula one easily determines
the minimal real value $k$ satisfying $\varphi’(z)$ . By aPPlying extended qe to the original ex formula $\varphi(k)$

with $k$ substituted for $z$ one obtains the coordinates of apoint, where $q$ assumes the minimal value $k$ .
By introducing one or more parameters in the constraints and the objective function (e.g. time $t$ )

one obtains parametric optima, and can also test on sensitivity of optimal soultions $\mathrm{w}\mathrm{r}\mathrm{t}$ . variations
of parameters.

By allowing arbitrary boolean combinations of polynomial inequalities as constraints we can also
model in this way alarge class of scheduling problems.

3. Problems in simulation and diagnosis

We consider technical networks (e.g. electrical or hydraulical networks), where the static behaviour
of each component can be modeled by a qf formula in terms of flows, potentials etc. in connecting
pipes. Then the behaviour of the whole network at specified $\mathrm{i}\mathrm{n}/\mathrm{o}\mathrm{u}\mathrm{t}$ connections can be determined
by real $\mathrm{q}\mathrm{e}$ . Fault diagnosis of internal components can also be modelled as an extended qe problem.
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4. Problems in control theory and stability

We consider open loop linear control systems. Then the forward reachability problem concerns the set
of states reachable in agiven time interval from agiven set of initial states for fixed control parameters.
The backward reachability problem concerns the largest set of initial states that will keep the states
in agiven prescribed set in agiven time interval for fixed control parameters. The control set problem
concerns the largest set of control parameters that will for agiven set of initial states keep the states
in another given set in agiven time interval.

All these problems can be formulated as qe problems relative to afundamental system of the corre-
sponding homogeneous differential system and special solutions for the corresponding homogeneous
differential system, where the control parameters are standard unit vectors.

B. Geometric problems.

1. Real implicitation problems.

Given apolynomial (or rational) parametrization of areal variety, find an implicit description of this
variety by a qf formula (involving possibly inequalities). This is a qe problem for the corresponding
input formula with existentially quantified parameters.

2. Automatic theorem proving in geometry

Successful popular methods for automatic theorem proving in geometry are Wu’s method by extended
charactersitic sets or Gr
“obner basis methods. Both try to prove the given geometric statement as valid in the complex
domain, and may therefore fail. Moreover they are not applicable to geometric statements involving
inequalities.

We formulate real geometric statements as universally quantified first-0rder formulas and apply real
$\mathrm{q}\mathrm{e}$ . If the output is “tru\"e, then the theorem is proved; otherwise the output specifies “forgotten”
non-degeneracy conditions on the geometric configuration that are required to make the statement a
theorem.

3. Computing projections, lighting and shading of solids.

All these standard problems of solid geometry can be formulated as qe problems for existential for-
mulas, provided the solids are given by qf formulas.

4. Reconstruction of solids from images.

We consider images of solids or wire- rames obtained by parallel or central projections. Given the
type of the original object we try to reconstruct its dimensions and position in space. This turns out
to be an extended real qe problem.

5. Collsion and path finding problems.

Given astatic or time-dependent semialgebraic environment of obstacles in tw0- or $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\triangleright \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$

space and one or several semialgebraic solids in this space; then there are several types of problems
that can all be formulated as extended real qe problems: Given translational speed vectors for the
objects, will they collide with the environment or each other, and if yes, when will they collde. Given
several translational speed vectors, try to find acontinuous trajectories from given initial positions
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to given final positions for all objects such that the trajectories consist of agiven number of pieces of
these speed vectors and such that no collition occurs.

6. Solid modeling -offsets, rounding and blending.

These operations on solids in three-space are achieved by moving aball of constant radius in all
possible positions inside, respectively outside the given solid. Then the set of all points covered,
respectively deleted by this operation gives arounding of the solid from inside, respectively ffom
outside. Blendings between two solides result from rounding ffom outside of the union of both. All
three operations applied to semialgebraic solids yield again semialgebraic solids that can be obtained
by real $\mathrm{q}\mathrm{e}$ .

4Three implemented real elimination methods.
1. QEPCAD Quantifier elimination via partial cylindrical algebraic decomposition has been developed

by G. Collins and his grouP, in particular H. Hong, S. McCallum and C. Brown. It is implemented in
$\mathrm{C}$ by H. Hong and C. Brown and avariant also in REDUCE on top of REDLOG. Here all polynomials
in an input formula are collected in afinite set $F$. Arecursive projection operation produces from $F$

successively new finite polynomial sets $F_{1}$ , $\ldots$ , $F_{n}$ in lesser and lesser variables, such that the real zeros
of each $F_{i}$ are “delineated” over every connected set, where all polynomials in $F_{i+1}$ are sign-invariant.
In the extension phase one constructs recursively in $(-i)$ apartitioning of the variables space of $F_{i}$

into connected semialgebraic cells on which all polynomials in $F_{i}$ are sign-invariant. Moreover one
obtains qf formulas describing each cell. Then the qe problem for the given input formula becomes a
finite combinatorial problem of sign-evaluation of polynomials at one test point in each cell. Numerous
variations of the construction obtained during 20 years have drastically reduced the number of cells
and thus the size of the output formula. The method is in principle acomplete real qe method without
degree restrictions and has solved anumber of interesting applications. Its practical complexity grows
rapidly both with the number of quantifiers and the number of parameters. This limits its use to
examples with asmall total number of variables.

2. CGB and MRRC This method combines Comprehensive Grobner bases and aparametric version
multivariate real root counting ala Hermite. It has been implemented in MAS by A. Dolzmann. It
typically works well for existential input formulas with many equations and very few inequalities in
the quantified variables.

3. REDLOG REDLOG is apackage of REDUCE 3.7 developed by T. Sturm and A. Dolzmann. Real
qe in REDLOG is limited to input formulas, where the quantified variables occur only in polynn0-
mials of low degree. The method works by virtual substitution of parametric test points and has
been significantly optimized over aperiod of 10 years. In this parameters costs almost nothing and
elimination of linear variables is very efficient. So it has proved to be of great value in problems with
only linear and quadratic quantified variables and many parameters. I. Mazzucco has developed a
special purpose package SYMOPT for linear, quadratic and hyperbolic optimization under aboolean
combination of linear constraints that is based on REDLOG methods.
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5Computational examples in REDLOG, QEPCAD, $\mathrm{C}\mathrm{G}\mathrm{B}+\mathrm{M}\mathrm{R}\mathrm{R}$

The talk has presented anumber of successful application examples of these implementations taken
from the application areas mentioned above. Many of them use REDLOG or SYMOPT only, but a
number of advanced problems required acombination of REDLOG with QEPCAD or CGB $+\mathrm{M}\mathrm{R}\mathrm{C}\mathrm{C}$ ,

or even both of them. In the examples involving only linear variables the maximal number of quantified
variables or parameters ranges uP to about 50. The examples show that real qe has by now definitely
become asignificant solution method for awide variety of application problems due to ist great flexibility,
even if the size of these problems is still somewhat limited.

6Conclusions.

Real quantifier elimination has evolved ffom an esoteric method of mathematical logic to aserious
tool for anumber of application problems. Each of the implemented methods has its specific advantages
and shortcomings, that makes aproper selection $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ combination of these methods hard for the
non-expert. The future of real quantifier elimination as an application tool therefore lies in asmooth
and widely automated combination of the available methods. Moreover specific application areas will
need specialized qe packages that take advantage of restricted problem type. Moreover the acceptance
of qe algorithms by users in aapplication field depends heavily on suitable user interfaces that hide the
technicalities of the methods.

About half of the material in this talk is contained in the survey article [DSW98], that contains detailed
references. More recent material is contained in the following references: [Br098, $\mathrm{H}\mathrm{o}\mathrm{n}98\mathrm{a}$ , $\mathrm{H}\mathrm{o}\mathrm{n}98\mathrm{b}$,
$\mathrm{M}\mathrm{c}\mathrm{C}98$ , SW98, Stu99, $\mathrm{D}\mathrm{o}199$ , DOIOO, DWOO, DOrOO, AWOI, WeiOlb, WeiOla, MazOl, SS03].
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