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Abstract

Semidefinite Programming (SDP) is aclass of convex optimization problems with alinear objective
function and linear matrix inequality (LMI) constraints. SDP problems have many applications in engi-
neering and applied mathematics. We propose areasonably fast algorithm to prove and solve SDP exactly
by exploiting the convexity of the SDP feasibility domain. This is achieved by combining asymbolic
algorithm of cylindrical algebraic decomposition (CAD) and alifting strategy that takes into account the
convexity properties of SDP. The effectiveness of our method is examined by applying it to some examples
on QEPCAD and maple.

1Introduction
Semidefinite Programming (SDP) is one of the recent main developments in mathematical program-

ming, with many applications in engineering problems. In particular, awide variety of questions in
systems and control theory, as well as in several other areas, can be cast and solved as SDP problems,
that is, optimization problems with alinear objective function and linear matrix inequality (LMI) con-
straints (see $[2],[6]$ ). For these reasons, SDP problems are of great practical and theoretical interest in
control theory.

Usually, SDPs are solved by using numerical packages based on an interior point method, hence obtain-
ing an approximate solution with finite precision. In certain applications (for instance, SDP algorithms
based on algebraic geometry [9] $)$ or critical situations, such as ill-posed problems, there is areal danger of
arriving at an incorrect answer; we may obtain a“numerically” feasible solution for an infeasible problem,
or vice versa. Hence it is important to develop methods of computing the exact feasible solution of SDP
problems, and that are also able to determine their infeasibility exactly. This can be accomplished by a
symbolic optimization method based on quantifier elimination (QE). The downsides of this approach are
the bad computational complexity properties of generic QE algorithms.

Therefore, in this paper we propose areasonably faster algorithm to prove and solve SDP problems
exactly based on asymbolic method of cylindrical algeb raic decomposition (CAD)[4], and the careful
exploitation of the convexity of the SDP domain. Moreover, we also assume that we have afeasible
interior point as anumerical interior point method requires one. We examine the performance of our
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method by solving some examples by using $\mathrm{Q}\mathrm{E}\mathrm{P}\mathrm{C}\mathrm{A}\mathrm{D}^{1)}$ and maple. Our method can be regarded as
aspecialized CAD algorithm for SDP exploiting convexity and an initial interior point. This could be
generalized to other classes of convex programming.

2Semidefinite programming
SDP problems. We briefly show the definitions of LMIs and SDP problems. Asymmetric matrix $A\in$

$\mathbb{R}^{n\mathrm{x}n}$ is positive (semi) definite if and only if quadratic forms $x^{T}Ax>0(\geq 0)$ for all $x=(x_{1}, \cdots, x_{n})\in$

$\mathbb{R}^{n}\mathrm{s}.\mathrm{t}$ . $x\neq 0$ , where $x^{T}$ stands for the transpose of $x$ . In the sequel, when $A$ is positive (semi) definite,

we denote it by $A>d0(\geq_{d}0)$ . For areal symmetric matrix $A$ , $A>d0(\geq_{d}0)$ if and only if all eigenvalues
of $A$ are positive (non negative). Alinear matrix inequality (LMI) is amatrix inequality of the form

$\mathrm{M}(\mathrm{x})$ $=M_{0}+ \sum_{i=1}^{m}$ $XiMi>_{d}0(\geq_{d}0)$ (1)

where $x\in \mathbb{R}^{m}$ is the variable vector and $M_{i}=M_{i}^{T}\in \mathbb{R}^{n\mathrm{X}n}$ , $i=0$ , $\ldots$ , $m$ , are given symmetric matrices.
In general, there are three types of generic LMI problems; Feasibility problem, Linear objective $\min-$

imization problem under $LMI$ constraints and Generalized eigenvalue minimization problem (see [6]).
Among them we consider the problem of minimizing alinear objective function in avector variable
$x\in \mathbb{R}^{m}$ subject to alinear matrix $M(x)$ ,

rninirnize $c^{T}x$

(2)
subject to $M(x)\geq_{d}0$ ,

where $c\in \mathbb{R}^{m}$ . This problem is called Semidefinite Programming (SDP). For avector So, if $M(x_{0})\geq_{d}0$ ,

$x_{0}$ is called feasible. If there is no feasible solution, we say that the problem (2) is infeasible. Notice in

particular that the optimal solution is on the boundary of the (convex) feasible set. Also, SDP includes
many important optimization problems such as linear programming, as special cases.

Reducing SDP to QE problems Optimization problems of minimizing an objective function $h(x)$

subject to aconstraint that is afirst-0rder formula $\phi(x)$ are solved by using QE as follows: First introduce
anew indeterminate $z$ assigned to the objective function $h$ and consider the new first-0rder formula
$\mathrm{M}(\mathrm{x})z)=\phi\Lambda(z-h\geq 0)$ . We call the polynomial $z-h$ aobjective polynomial Then the problem

minimizing $h$ subject to $\phi$ is formulated as aQE problem $\Phi\equiv$ $\exists x_{1}\cdots$ $\exists x_{n}(\phi’)$ . Next eliminate all

quantified variables $x_{1}$ , $\ldots$ , $x_{n}$ to have the resulting quantifier-free formula $\Phi’$ in $z$ . Then $\Phi’$ gives a
finite union $M$ of intervals for $z$ , which shows apossible range of $z$ . If $M$ is empty, $\psi$ is unsolvable $(i.e$ .
infeasible); if $M$ is unbounded from below, $h$ has no minimum w.r.t. $\phi$;if $m\in M$ is alowest endpoint of
$M$, then $m$ is the minimum value of $z$ w.r.t. $\phi$ (for details [10]).

Now we show how SDP problems are reduced to QE problems and solved by using QE techniques. De-
termining (semi)definiteness for areal symmetric matrix can be achieved without computing eigenvalues
matrix by using the following well-known Sylvester’s criterion:

Theorem 1(Sylvester’s criterion)
$\underline{L\mathrm{e}tA=(a_{ij})\in \mathbb{C}^{n\mathrm{x}n}}$be affermitian matrix. Then $A$ is positive semidefinite if and only if all principal

1) See http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . $\mathrm{c}\mathrm{s}$ . usna. $\mathrm{e}\mathrm{d}\mathrm{u}/\sim \mathrm{q}\mathrm{e}\mathrm{p}\mathrm{c}\mathrm{a}\mathrm{d}/\mathrm{B}/\mathrm{Q}\mathrm{B}\mathrm{P}\mathrm{C}\mathrm{A}\mathrm{D}$.html
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minors of $A$ axe non negative i.e.

$\det A$ $(\begin{array}{lll}i_{1}i_{2} \cdots i_{r}i_{1}i_{2} \cdots i_{r}\end{array})\geq 0$ ,

for $1\leq i_{1}<i_{2}<\cdots<i_{r}\leq n$, $r=1,2$ , $\cdots$ , $n$ , where

(3)

$A$ $(\begin{array}{llll}i_{1}i_{2} \cdots \cdots i_{r}j_{1} j_{2} \cdots j_{r}\end{array})$

denotes the $r\cross r$ submatrix of A which consists of $(i_{k},j_{l})$ -entries of $A$ , where $1\leq i_{1}<i_{2}<\cdots<i_{r}\leq n$

and $1\leq j_{1}<j_{2}<\cdots<j_{r}\leq n$.

By this criterion, $A(x)\geq_{d}0$ can be reduced to an equivalent formula which is the conjunction of $2^{n}-1(\equiv$

$\sum_{r=1}^{n}$ $(\begin{array}{l}nf\end{array}))$ inequalities.

3CAD algorithm
We briefly sketch the basic ideas of cylindrical algebraic decomposition, see [4] for details. Assume

that we are given an input formula

$\varphi(u_{1}, \ldots,u_{m})\equiv \mathrm{Q}_{1}x_{1}\ldots$ $\mathrm{Q}_{n}x_{n}\psi(u_{1}, \ldots,u_{m}, x_{1}\ldots x_{n})$, $\mathrm{Q}_{i}\in\{\exists,\forall\}$ .

Let $F$ he the set of polynomials appearing in $\psi$ as left hand sides of atomic formulas. We say that
$C$ $\subseteq \mathbb{R}^{m+n}$ is sign-invariant for $F$ if every polynomial in $F$ has aconstant sign on all points in $C$ . Then
$\psi(c)$ is either “true” or “false” for all $c\in C$ .

Suppose we have afinite sequence $D_{1}$ , $\ldots$ , $D_{m+n}$ for $F$ which has the following properties:

1. Each $D_{i}$ is afinite partition of $\mathbb{R}^{:}$ into connected semi-algebraic cells. For $1\leq j\leq n$ each $D_{m+j}$ is
labeled with $\mathrm{Q}_{j}$

2. $D_{i-1}$ for $1<i\leq m+n$ consists exactly of the projections of all cells in $D_{i}$ along the coordinate of
the $i$-th variable in $(u_{1}, \ldots, u_{m}, x_{1}\ldots x_{n})$ . For each cell $C\in D_{\dot{\iota}-1}$ we can determine the preimage
$S(C)\subseteq D_{i}$ under the projection.

3. For each cell $C$ $\in D_{m}$ we know aquantifier-ffee formula $\delta c$ $(u_{1}, \ldots, u_{m})$ describing this cell.

4. Each cell $C$ $\in D_{m+n}$ is sign-invariant for $F$ . Moreover for each cell $C$ $\in D_{m+n}$ we are given atest
point $tc$ in such aform that we can determine the sign of $f(tc)$ for each $f\in F$ and thus evaluate
$\varphi(t_{C})$ .

Then afinite partition $D_{m+n}$ of $\mathbb{R}^{m+n}$ for $F$ is called an $F$-invariant cylindrical algebraic decornposition
of $\mathbb{R}^{m+n}$ . Aquantifier-free equivalent formula $\varphi$ is obtained as the disjunction of all $\delta c$ for which $C\in D_{m}$

is valid in the following sense:

1. For $m\leq i<m+n$ , we have $D_{i+1}$ that is labeled:

(a) If $D_{i+1}$ is labeled “$\exists"$ , then $C\in D_{i}$ is valid if at least one $C’\in S(C)$ is valid.

(b) If $D_{:+1}$ is labeled $‘\forall’$ , then $C$ $\in D_{i}$ is valid if all $C’\in S(C)$ are valid.

2. Acell $C\in D_{m+n}$ is valid if $\varphi(tc)$ is “true.

The algorithm to obtain such asequence $D_{1}$ , $\ldots$ , $D_{m+n}$ , the quantifier-free formula $\delta_{C}$ , and the test

point $tc$ consists of two phases, the projection phase and construction (lifting) phase.

$14\sim 3$
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Projection phase In the projection phase, one constructs from $F\subseteq \mathbb{R}[u_{1}, \ldots, u_{m}, x_{1}, \ldots, x_{n}]$ anew fi-
nite set $F’\subseteq \mathbb{R}[u_{1}, \ldots , u_{m}, x_{1}, \ldots, x_{n-1}]$ which satisfies the following condition: Consider $a$ , $b\in \mathbb{R}^{m+n-1}$

such that for all $f’\in F’$ the signs of both $f’(a)$ , $f’(b)\in \mathbb{R}$ are equal. Then for all $f\in F$ the correspond-
ing univariate polynomials $f(a, x_{n})$ , $f(b, x_{n})\in \mathbb{R}[x_{n}]$ both have the same number of different real and
complex roots. This guarantees the following property called “ $delineabilit \oint$’ : Let $C$ be aconnected subset
of $\mathbb{R}^{m+n-1}$ that is sign-invariant for $F’$ . For each $f\in F$ consider the functions $\rho_{k}$ : $Carrow \mathbb{R}$ assigning
to $a\in C$ the $k$-th real root of $f(a, x_{n})\in \mathbb{R}[x_{n}]$ . Then all these $\rho_{k}$ are continuous. Moreover, the graph
of the various $\rho_{k}$ do not intersect. In other words, the order of the real roots does not change as they
continuously change their position in the real line.

The step from $F$ to $F’$ is called aprojection and denoted by $F’:=PROJ(F)$ . We call polynomials in
$F’$ projection polynomials and the irreducible factors of projection polynomials of $F’$ projection factors.
Iterative application of PROJ-0perator leads to afinite sequence

$F_{m+n}$ , $\ldots$ , $F_{1}$ , where $F_{m+n}:=F$, $F_{i}:=PROJ(F_{i+1})$ for $1\leq i<m+n$ .

PHOJ-0perator computes certain coefficients, discriminants, resultants, and subresultant coefficients
obtained from the polynomials in $F_{i+1}$ and their higher derivatives, regarded as univariate polynomials
in their last variable, which is the $(i+1)$-st one in $(u_{1}, \cdots, u_{m}, x_{1}, \ldots, x_{n})$ . The final set $F_{1}$ contains
univariate polynomials in $u_{1}$ .

Construction phase In the construction phase first construct apartition $D_{1}$ of the real line $\mathbb{R}^{1}$ into
finitely many intervals that are sign-invariant for $F_{1}$ : The real zeros of univariate polynomials in $F_{1}$

define asign invariant decomposition of R. The partition $D_{1}$ consists of cells that are these zeros and
the intermediate open intervals. Thus we isolate the above zeros and find test points in each interval.
This procedure is called the base phase. For an open interval we may choose arational test point but for
azero in general we need an exact representation of an algebraic number.

For $1\leq i<m+n$ the partitions $D_{i}\subseteq \mathbb{R}^{i}$ are computed recursively: The roots of all polynomials in
$F_{i}$ as univariate polynomials in their last variable are delineated above each connected cell $C$ in $D_{:-1}$ .
Thus we can cut the cylinder above $C$ into finitely many connected semi-algebraic cells. Then $D_{\dot{1}}$ is a
collection of all these cells arising ffom all cylinders above the cells of $7)_{t-1}$

Consider the lifting from the partition $D_{1}$ of $\mathbb{R}^{1}$ to apartition $D_{2}$ of $\mathbb{R}^{2}$ since remaining lifting
procedures until $\mathbb{R}^{m+n}$ are achieved by repeating the same procedure as the lifting from $\mathbb{R}^{1}$ to $\mathbb{R}^{2}$ . We
show the construction of the test points of each cell of $\mathbb{R}^{2}$ belonging to the cylinder over acell $C\in D\mathrm{l}$

with atest point $\alpha$ . First specialize the polynomials in $F_{2}:=PROJ^{m+n-2}(F)$ by the test point $\alpha$ of $C$ .
We then get aset of univariate polynomials in $u_{2}$ and deal with these polynomials in $u_{2}$ in the same way
as the base phase, i.e., root isolation and choice of test points. The lifting from $\mathbb{R}^{1}$ to $\mathbb{R}^{2}$ is regarded as
the construction of the second component of the test points of $D_{m+n}$ .

The Construction phase produces alist of (indexed) cells and their test points. We know which cells
$S(C)$ in $D_{i}$ origin from which cell $C$ in $D_{\dot{|}-1}$ . This implies that afinite sequence $D_{1}$ , $\ldots$ , $D_{m+n}$ for $F$ has
astructure of atree representation. The first level of nodes under the root of the tree corresponds to
the cells in $D_{1}$ . The second level of nodes stands for the cells in $D_{2}$ , i.e., the cylinders over the cells of
$\mathbb{R}^{1}$ . The leaves represent the cells of $D_{m+n}$ (i.e., CAD of $\mathbb{R}^{m+n}$). Atest point of the corresponding cell
is stored in each node or leaf. To each level of the tree there are anumber of projection polynomials $F_{i}$

whose signs define acell when evaluated over atest point.
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4Aspecialized CAD for SDP

4.1 Improving CAD algorithm

Projection phase It is crucially important for the efficiency of CAD construction that the PRO3
operator produces as small aset of polynomials as possible, while still ensuring the cylindrical arrangement
of cells in resulting decomposition. Several improved projection operators have been proposed so far
[8, 7, 3].

The complexity of the projection phase is given by the following: given $r$ irreducible polynomials
of degree less than or equal to $d$ in $N$ variables, then after $N-1$ projection steps we have $(r\cdot d)^{2^{O(N)}}$

polynomials of degree at most $d^{2^{O(N)}}$ . It is often the case that we cannot decrease the number of variables
when we reduce the target problem considered to an equivalent first-0rder formula. Thus, ideally we
should produce an equivalent input formula with fewer polynomials, and smaller degree.

Construction phase There are two devices to improve the efficiency of the construction phase:
(1) Avoiding algebraic computation during lifting processes: Revisit the extension of $D_{1}$ to $D_{2}$ . Let

$C$ be acell of $D_{1}$ with atest point $\alpha$ . Consider all polynomials fi\^u) $:=/(\mathrm{a}, u_{2})\in F_{2}$ that are not
identically zero. The real roots of $f(u_{2})’ \mathrm{s}$ determine the test points of each cell of $\mathbb{R}^{2}$ in the cylinder over
acell $C$ . Let $\beta$ be aroot of $f(u_{2})$ . If the test point $\alpha$ is an algebraic number, we need computations

over the algebraic extension field $\mathbb{Q}(\alpha)$ for root isolation. Moreover it is required that the test point
of each cell be avector of algebraic numbers over asimple algebraic extension of $\mathbb{Q}$ . Hence we need
to compute aprimitive element $\gamma$ for $\mathbb{Q}(\alpha, \beta)$ and represent the test point $(\alpha, \beta)$ as pairs of elements

of $\mathbb{Q}(\gamma)$ . Computations over an algebraic extension field are typically more expensive than those over
$\mathbb{Q}$ . For the efficiency of the construction phase, we should consider the possibility of avoiding the use of
algebraic test points.

(2) Pruning unnecessary branches of aCAD tree: In general not every cell in the construction is
actually necessary for eliminating quantifiers in agiven input formula $\varphi$ . This observation was first made
and generalized to partial CAD by H. Hong [5]. Partial CAD systematically exploits the logical structure
of the input formula. This greatly reduces the number of cells to be considered. Furthermore we can
expect to exploit the special structure of the input formula (e.g., convexity) in order to prune unnecessary

branches of aCAD tree.

4.2 Exploiting convexity of SDP

The feasibility domain of an SDP is aconvex set, and this implies several important properties: (i)

the feasible region is aunique connected region. Then (ii) the boundary of the feasible region of the

SDP is defined by the determinant polynomial. Moreover, we also assume that afeasible interior point

is available (we can remove this assumption, at aslightly higher computational cost). We will use these
properties to improve the CAD algorithms in the sequel. The next theorem guarantees (ii):

Theorem 2
The determinant vanishes on the boundary of the domain ofpositive semidefiniteness $of\mathrm{a}$ real symmetric
matrix.
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Sketch of the proof: All eigenvalues of asymmetric matrix are real and by the principal axis theorem
the matrix is positive semidefinite iff all eigenvalues are greater than or equal to zero. Moreover the
eigenvalues, as zeros of the characteristic polynomial, depend continuously on the entries of the matrix.
Suppose now the values of $x_{i}$ are such that the matrix is on the boundary of its positive semidefinite
domain. Then in every neighborhood of this point there is apoint, where the matrix is not positive
semidefinite, and hence has anegative eigenvalue. So by the continuity of eigenvalues, the matrix must
have azero as an eigenvalue at this point, and so the determinant vanishes. 1

(1) improving projection phase As shown in \S 2, $M(x)\geq_{d}0$ can be reduced to an equivalent formula
that is the conjunction of $2^{n}-1( \equiv\sum_{\mathrm{r}=1}^{n}(\begin{array}{l}nr\end{array}))$ inequalities. Since the boundary of the feasible region of
SDP is apart of the determinant polynomial, it is sufficient that we consider, as an input of CAD, aset
consisting of an objective polynomial $z-c^{T}x$ and the determinant $\det(M)$ of $M$ as an input set of CAD
to obtain the test point which provides aminimum of the objective function. This greatly improves the
efficiency of the projection phase in contrast to the reduction according to Sylvester’s criterion.

(2) improving construction phase We construct aCAD for an input set $\{z-c^{T}x, det(M(x))\}$ in

order to solve an SDP given by (2). After $n-1$ recursive projections we have univariate polynomials in
$z$ . We denote the set of test points which are real roots of the univariate polynomials in $z$ by $T_{R}$ , the set
of test points taken ffom the intervals between the roots by $T_{I}$ .

Since the SDP feasibility domain is convex, the feasible region of $z$ is aunique isolated interval. The
endpoints of the feasible interval of $z$ correspond to the maximum and minimum of $z$ , i.e., the objective
function. We call the left endpoint atruth-boundary cell, which gives the minimum and is contained in
Tr. Suppose that we have afeasible interior point $x\circ=$ $(x_{1}^{0}, \ldots, x_{n}^{0})$ of SDP domain. This is the same
setting as the numerical interior point method for SDP. Then since we have afeasible value $z_{0}=c^{T}x_{0}$

of $z$ , the feasible interval of $z$ consists of the connected cells to the cell containing $z_{0}$ . Here we consider
only the case $z_{0}\not\in T_{R}$ because if $z_{0}\in T_{R}$ then we can regard the test point of the next left interval of $z_{0}$

as $z_{0}$ and then we can proceed in the same way as shown below.
The test points larger than $z0$ are not needed to find the minimum of $z$ . We can denote the test points

smaller than $z_{0}$ as follows:

$-\infty<\cdots<s_{l}<r\ell<s_{\ell-1}<r_{\ell-1}<\cdots<r_{2}<s_{1}<r_{1}<s_{0}<r_{0}<z_{0}$,

where $r_{i}\in T_{R}$ , $s_{i}\in T_{I}$ , and let $r\ell$ be the the truth-boundary cell, i.e., the minimum of $z$ . In order to find
the truth-boundary cell we start with construction of aCAD ffom over the cell with atest point so $\cdot$ If

the cell with atest point $s_{0}$ has a“true” leaf then we construct aCAD over the cell $s_{1}$ . In other word we
make depth-first search of “true” leaf of the CAD tree over $s_{i}’ \mathrm{s}$ from the right to the left until acertain
$s_{i}$ has no “true” leaf. We can also employ the order of $s_{i}’ \mathrm{s}$ to be considered according to bisection. Then

we obviously have the following proposition:

Proposition 3
There exists an integer $\ell$ such that $s_{\ell-1}$ has a“true” leaf but $s_{\ell}$ has no “true” leaf then $r_{\mathit{1}}$ is the
truth-boundary cell.

The coordinate $x_{\min}$ which gives the minimum value of $z$ can be obtained by lifting over the truth
boundary cell. Note that we do not have to use test poins in $T_{R}$ to identify which test point is the

14-6

102



Table 1: Computational results for projection phase

truth-boundary cell. As for the lifting at the level of the tree corresponding to $x_{i}$ , we can also prune

unnecessary branches since the feasible region consists of the connected cells to the cell with atest point
$x_{\dot{\mathrm{t}}}^{0}$ . Thus we can ignore outer both sides of the feasible region.

5Examples

We have examined how our improvements work for the following SDP problems by using QEPCAD

and maple for projection phase and for construction phase, respectively. 2)

Example 1. Afeasible interior point is: $(a, b, c)=(0,3,0)$ .

objective: $a+b+c$, $\mathrm{s}.\mathrm{t}$ . $\{\begin{array}{ll}1 a 3-ba 5c3-b c9\end{array}\}\geq 0$ .

Example 2. Afeasible interior point is: $(a, b, c)=(1, -1,1)$ .

objective: $a+2b+3c$, $\mathrm{s}.\mathrm{t}$ . $\{\begin{array}{ll}a bb c+1\end{array}\}\geq 0$, $\{\begin{array}{ll}1 b+cb+c 2-a\end{array}\}\geq 0$ .

Example 3. This example arises from the minimization of asymmetric quartic polynomial. Afeasible

interior point is: $(\gamma, a, b, c, d)=(60, -1,12,2,4)$ .

$\mathrm{o}\mathrm{b}\mathrm{j}$ective: 7, $\mathrm{s}.\mathrm{t}$ . $\{$

$\gamma$ $a$ $b$

$a$ 1 $c$

$b$ $c$ $2d$

$\geq 0$ , $1-2a\geq 0$ , $\{\begin{array}{ll}2b dd 1\end{array}\}\geq 0$ , $2c-3\geq 0$ .

Projection phase: Table 1shows the number of projection factors appearing at each level of the CAD tree

and total time to accomplish the projection phase for the above three examples. Here, $*_{1}$ means the time

until level 2and $*_{2}$ means the time until QEPCAD halted on computing level 1. “Sylv” uses Sylvester’s

criterion to reduce an SDP to afirst-0rder formula and ”A&P’’ is our approach shown in the previous

section. Our approach performs much better than the approach using Sylvester criterion.

Construction phase: We applied QEPCAD for the construction phase of the above SDP problems to get the

minimum of objective functions (with the $\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}+\mathrm{N}50000000$;asize for SACLIB’s garbage collected array.

The default value $\mathrm{i}\mathrm{s}+\mathrm{N}2000000$). However, QEPCAD halted due to lack of memory with amessage “Too

few cells reclaimed” for all examples. Unfortunately we have not yet finished the implementation of

our proposed method. We manually applied the strategy for choosing test points for the above examples

$\underline{\mathrm{o}\mathrm{n}\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{l}\mathrm{e}.}$Then wewere ableto solvethe construction phases for all examples in afew minutes.
$2)\mathrm{A}11$ the computations are executed on a PC with aCPU Pentium III lGHz and 756 MB memory.
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6Conclusions
We have proposed an efficient algorithm to compute an exact (algebraic) representations of the solution

of SDP problems. Our approach can be regarded as aspecialized CAD algorithm for partially exploiting

the convexity of SDP and as asuccessful attempt of fusing symbolic and numeric approaches to achieve
efficiency. We hope this work leads to further generalizations of symbolic approaches exploiting convexity
to other related problems.

Amaple implementation of the method proposed here on top of the SyNRAC-package[1] is planned.
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