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1 Introduction and Main Result.

In this paper we are concerned with formal power series solutions of the following first
order semi-linear partial differential equation:

L
P(z,D) = Zai(a:)Diu(a:) = f(z,u(z)), u(0)=0,

(1.1)
z=(z zg) €CY, D;= 9
= 1y--+yd ) z_axia
where coefficients a;(z) (i =1, ..., d) and f(z,u) are holomorphic in a neighborhood of

z = 0 and (z,u) = (0,0), respectively.

Our problems in this paper are the existence, the uniqueness, convergence and di-
vergence of formal power series solutions u(z) = Zla121 uez® (¢ = (oq,...,04q) € N4,
N = {0,1,2,...}, lo| = oa + -+ 0q, % = 7™ ... z4*) centered at the origin for
the equation (1.1). If a;(0) # O for some i, the solvability is well known by Cauchy-
Kowalevsky’s theorem. Therefore we shall study the case where

(1.2) ;(0)=0 forall i=1,...,d,

which is called a singular or degenerate case. In the following we always assume (1.2).
Furthermore, as a compatibility condition, we always assume the following:

(1.3) 7(0,0) = 0.

As we will see later, we can prove the existence and the uniqueness of the formal
solution of (1.1) under some condition on the principal part P(z, D). However, this
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formal solution u(z) does not necessarily converge. Our main purpose in this paper is to
obtain the rate of divergence, which is called the Gevrey order, of the formal solution (cf.
Definition 1.1).

Now let us state the main result. Firstly, we state the assumptions.

Let D;a(0) := (D;a;(0)); j=1,..4 be the Jacobi matrix at the origin of the mapping

a = (ay,...,aq) and let its Jordan canonical form be
A
B,
By
OP
where ‘
PV 01 MN#O0@G=1,...,m),
_ )\2 _ 0 . 6»;-_-001‘1 ‘
A= : b} ’ Bh— t. 1 ! (’i=1,...,m—1),
. ' h=1,...,k
A, 0 =1,...,k,
na

and O, is a zero-matrix of order p (m, k, p>0; np > 2; m+n; + -+ ng + p = d).
Let us assume the following condition (Po) according to the value of m (“Po” derives
from Poincaré):

) X — £(0,0)| > dla| forall a € N™ (if m > 1),

i=1

f.(0,0) # 0 (if m = 0),

where. § is a positive constant independent of & € N™, and £,(0,0) = (8f/8u)(0,0).
Before stating the main result, let us give the definition of the Gevrey order, which
gives the rate of divergence of formal power series.

(Po)

Definition 1.1 Let u(z) = Nd UaZ® be a formal power series centered at the
origin. We say that u(z) belongs to Gf} (s= (31, . ,84) € R9), if the power series

Z Ua T e 1@ (a| )s—1@

aENd

d
converges in a neighborhood of £ = 0, where 1) = (1,...,1), s—1@ = (5, —1,... ,85—1)
and (a!)*1? = (ay!)*1=1- .- (ag!)®!. Especially, u(z) € G} if and only if u(z) is a
convergent power series near r = (. —m

The main result in this paper is stated as follows:
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Theorem 1.1  Under the condition (Po), the equation (1.1) has a unique formal
power series solution u(z) = Y, 5; UaT®. Furthermore the formal solution u(z) belongs

to G2V 2N} yphere

max{ny,...,nx} (Gf k=>1),

N=1{41 (if k=0and p>1),
1 :
5 (if k=p=0).
Therefore in the case k = p = 0 the formal solution converges, but in other cases it

diverges in general.

We will start the proof of Theorem 1.1 from the next section. For simplicity, we
consider the two dimensional case, and consider the case m = 1 and k = 0 in this paper.

In order to prove Theorem 1.1, we shall transform the equation (1.1) in §2. For that
transformed equation we can obtain the precise Gevrey order in individual variables of
the formal solution (cf. Theorem 2.1). We shall prove the unique existence of the formal
solution and its Gevrey order separately. Admitting the unique existence of the formal
solution, we will prove its Gevrey order in §4 by using the contraction mapping principle
in a Banach space which consists of formal power series. The Banach spaces employed in
the proof will be introduced in §3. The unique existence of the formal solution will be
proved in §5.

2 Reduction of Equation and Newton Polyhedron.

As mentioned in the previous section, we consider the two dimensional case from this
section, and we will prove Theorem 1.1 in the case m = 1 and k = 0. Firstly let us
rewrite the equation (1.1) in the two dimensional case:

a(z, y) Dou(z, y) + bz, y) Dyu(z,y) = f(z,y,u(z,y)), (0,0)=0,

(2.1) 8 )
x’yeca Dz“"_azy Dy—ég’

where a(z,y), b(z,y) and f(z,y,u) are holomorphic in a neighborhood of the origin such
that a(0,0) = b(0,0) = 0 and f(0,0,0) = 0. Our assumptions imply that

D;a(0,0) Dya(0,0) A0 _
(Dmb(O,O) D,b(0, 0) 0 0 (Jordan canonical form),

where ) is a nonzero eigenvalue satisfying (Po). That is, there exists some positive number
0 > 0 such that

(2.2) |Aa — £,(0,0,0)| > da forall a=0,1,2,....

Our purpose is to prove the following fact under the above conditions:
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(%) The equation (2.1) has a unique formal solution u(z,y) = ¥, 551 Uapz®y’ and
the formal solution belongs to G122},

In order to do that, let us transform the equation (2.1) by a linear transform of
independent variables which reduces the Jacobi matrix to its Jordan canonical form. A
reduced equation is written as follows:

(2.3) Piu = go(z,y) + 9(z,y,u(z,y)), u(0,0)=0,

where g and g are holomorphic at the origin with go(0,0) = 0 and g(z,y,0) = g.(z,¥,0) =
0, respectively. Furthermore P, is a linear partial differential operator which has the
following form:

@49 P, = \zD, — £,(0,0,0) + P' + P," + P"" + P,"" + h,

where

finite finite
P'= ( > caﬂ(w,y)x“y") D;, A"= ( > eaﬂ(w,y)w"y") Dy,

o+822 at+f22
a2l a2l

finite finite
Hmz(E:%@ﬁwﬁDw sz(E:%@ﬂwgDm

B2 B>2
finite
h = h(z,y) = E hos(z,y)z°yP.
a+821

Here all coefficients c,s(z,¥), €as(z,¥), es(z,y), cs(z,y) and hog(z,y) are holomorphic
at the origin, and none of them vanish at the origin unless they vanish identically.

Now we shall study the equation (2.3).

In order to give the Gevrey order in an individual variable for formal solutions of the
equation (2.4), we study the Newton polyhedron of linear partial differential operators.

Newton Polyhedron. Let
finite

P(:E, Yy Dx’ Dy) = Z aaﬂa’ﬂ’(m, y)xayﬁDa:alDyﬁ‘
a’ﬁYQ’lﬁIZO

be a linear partial differential operator, where all coefficients are holomorphic at the origin
and do not vanish at the origin unless they vanish identically.
Let us define Q(a, 8,0/, 8') C R3 by

Qe B, f) = {(X, Y, 2) R, X >a—d, Y2 -, Z<a +f)
and let us define the Newton polyhedron N(P) of the operator P by

Ch U Q(e,B,0/,8) p (if P #0),

(a8, ,8") with a,g,rer#0

Q(0,0) - (if P=0),

N(P) =
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where Ch A denotes the convex hull of a set A C R3.

Now we shall apply the above general definition to our first order linear partial differ-
ential operator P;. In order to state the main theorem in this section, we shall define the
sets S, §', §”, 8, 8, §", whose elements give the Gevrey orders of formal solutions, as
follows: We define II(p, o) and II(p,a) ((p,0) € [1,+00)?) by

(2.5) O(p,0) ={(X, ¥, 2)€R® (p— DX + (0 -1)Y-22-1}
and
(2.6) I(p,0) = {(X,¥,2) €R% (p— DX + (0~ 1)V~ Z 20},

respectively, and define S, S 5" 8, 8, S by

VN

= {(p,0) € [1,+00)% N(PA') C l(p,0)},
S = {(p,0) €[1,+00)% N(A") C I(p,0)},
8" = {(po) €L, +00)% N(PA"™) c (p,0)},
S = {(p0) €[1,+00)% N(PA") C lI(p,0)},
S = {(p,0) €[1,+00)* N(R") c I(p,0)},
8" = {(po) €[1,+00)% N(A"™) C II(p,0)}.

It

Then we obtain the following theorem.

Theorem 2.1 Under the contidion (2.2) the equation (2.3) has a unigue formal power
series solution. Furthermore the formal solution belongs to G} if (p,o) satisfies the

following condition:
P" =0= (p, )eSnSnS’

P"=0= (p, )eSnSmS"
P, P"™ £0= (p,0) e SNSN{(E NS U(SNS"}.

Remark 2.1 We can easily see that the following sp always satisfies the condition
in Theorem 2.1:
= (3/2,2) (if A" #0), = (1,2) (if " =0).
Therefore by a linear transform of independent variables again we obtain () from
Theorem 2.1 and the next Lemma 2.1. Thus the proof of () is reduced to that of
Theorem 2.1.

Lemma 2.1 Let u(z,y) = 3, gjenz Uas® ayB ¢ Gls2} (s > 1). Then for any linear
transform L : C* — C2, it holds that v(z',y") = w(L(<',¥)) € Glssl,

We omit the proof of Lemma 2.1 (cf. Hibino[1}).
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3 Banach Spaces G{»?}(X,Y) and GI»7}(X,Y).

Theorem 2.1 is proved by contraction mapping principle in Banach spaces which consist of
formal power series. For this purpose we shall define two types of Banach spaces necessary
in the proof, and we shall give some lemmas needed later. We omit the proof.

Definition 3.1 (1) Let (p,0) € R.?> (R, = [0,+00)) and (X,Y) € (R4 \ {0})%.
The spaces of formal power series G{F”"}(X Y) and G{""’}(X Y) are defined as follows:
We say that u(z,y) = >_ 4 sjenz Yap® @yf belongs to GPo}(X,Y) if

[ 28 = 3 apl A2 xoys < yoo,
mene  pat b))

We say that u(z,y) = 3_(, gjene UapT®yYP® belongs to GlroX(X)Y) if

. ol
Nulll$5 = D" |tagl ——== XY < +o0.
S (oot o)

Here k! = I'(k + 1), k > 0. Then G»°}(X,Y) and G{»*}(X,Y) are Banach spaces
equipped with the norms || - ]|{p <} and ||| - |||§£’§}, respectively.
(2) We define the subspace G¥*7}(X,Y) (resp. G{°}(X,Y)) of the Banach space

G{p,v}(X, Y) (resp. é{”’”}(X’ Y)) by

G({)p,o’}(X, Y) = {u(a:,y) - Z ua,ea?ayﬂ € G{P»”}(X, Y), UO0(= u(O, 0)) = 0}
(a,B)EN?

(resp. égp"’}(x, Y):= {u(a:, y) = Z UagZY" € G} X,Y); ugo = 0})
(,B)EN?

Then G} (X,Y) (resp. G} (X,Y)) is also a Banach space as a closed linear subspace
of GIPe}(X,Y) (resp. GIP7H(X,Y)).

Lemma 3.1 Ifp, 0> 1, then

ger= ) »xyv= Gy
(X, Y)e(Ry\{0})? (X,Y)e(R\{0})?

Lemma 3.2 Let us fixr (K,L) € (R4 \ {0})? and let us assume that a(z,y) =
Y (a8)enz Gapz®y’ are holomorphic on {z € C; |z| < K} x {y € C; |y| < L}. If
0< X< Kand0 <Y < L, then the multiplication operator a(x,y)- is bounded on
Gl (X)Y), G({,p"'}(X, Y), G*e}(X,Y) and é({)p’a}(X, Y) for all (p,0) € [1,+00)? with
the norm bounded by |a|(X,Y), where [a|(X,Y) := 3, sjena [3as| X*Y?. Especially in
each space the operator norm is bounded by |a|(K,L). —————
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The following lemma will play a very important role when we deal with nonlinear
terms.

Lemma 3.3 (1) Let (p,0) € [1,+00)? and assume that u(z,y) and v(z,y) belongs
to G (X, Y) (resp. G HX,Y)). Then u(z,y) - v(z,y) also belongs to G} (X,Y)
(resp. G({,p o} (X,Y)). Furthermore for all u(z,y) and v(z,y) as the above it holds that

(3.1) lu-olli£9? < Mlfullies? - Il 852,

where M = max{p,c}.

(2) Let (p,0) € [1,+00)? and assume that u(z,y) and v(z,y) belongs to Gl (X,Y)
(resp. GP“H(X,Y)). Thenu(z,y)v(z,y) also belongs to GPoH(X,Y) (resp. G¥H(X,Y)).
Furthermore for all u(z,y) and v(z,y) as the above it holds that

(3.2) e - oI35 < MJJulll 57 - 111wl15ES

where M is same as in (1).

4 Proof of Theorem 2.1.

Let us start the proof of Theorem 2.1. We shall prove the unique existence of the formal
solution in §5. So in this section, admitting the unique existence of the formal solution,
we will prove its Gevrey order.

We assume that (p, o) satisfies the condition in Theorem 2.1, and prove that the formal
solution of the equation (2.3) belongs to G{#7}.

Proof of Theorem 2.1. First we define the operator A : Gl#7} — G{#7} by
A= zD, — £.(0,0,0).

The condition (2.2) implies that Aa — £,(0,0,0) # 0 for all & € N. Hence the operator A
is bijective and A~! is given by

( 2 U":”ayﬁ) e ATk

(a,8)eN2 (a,8)ENZ

Now we introduce a new unknown function U(z,y) by
U(z,y) = Au(x;y), that is, u(z,y) = A7U(z,y).

Then the equation (2.3) is equivalent to the following one:
(4.1) PU = go(z,y) + g(z,y, 47 U(z,y)), U(0,0)=0,

where ‘
P2 — I+ (Pll +P1” +P1”, + P1””+h)A—1

(I : identity mapping).
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Let us define the operator T' by

(4.2)
TU = —(P/ + P" + B"" + P"" + h) AU + go(z,y) + 9(z, 9, 47U (z,y)),

and let us write the e-closed ball G} (X,Y) and G{¥7}(X,Y) as

Gp ¥ = V) = T Uassy? B 06Y VIS <)

a+p8>1
and
GP 06, ¥10) = {U) = X Vs €GP Y 01 <],
a+p>1
respectively.

We shall prove that T is well-defined as a mapping from G to itself by choosing X, Y
and € suitably and that it becomes a contraction mapping there, where

oo | GF(XYie) (when A" =0o0r “R", B"" # 0 and (o) €5nSNFn S™),
G{’“’}(X Y;e) (when P” =0or “P" Pl”” # 0 and (p,0) € SNsSNsS'n S"”)

Let us estimate the operator norm of (P’ + P,” + P, + P,"" + h)A~! on the spaces
G{Pﬂ} (X,Y) and G{P,U}(X Y).
By the condition (2.2) there is some constant C such that |1/(Aa— £.(0,0,0))| < C for

all & € N. Hence the operator A~} : G} (X,Y) = G} (X,Y) (resp. G{P ’”}(X Y) -
G1»9}(X,Y)) is bounded and we have

@3) AN < ONVNES  (resp. 47VIEE < CIUILY).

Therefore it follows from Lemma 3.2 that the operator h-A~! : GS#7H(X,Y) — G} (X,Y)
(resp. G¥7H(X,Y) — G} (X,Y)) is bounded and we have

Ik - A72U)|| < AX, YV)IUNIES

(4.4) ) ]
(resp. 11+ 47 UNES < M VIUIES)

where fimit
A(X,Y) =Cl( > X"‘Yﬁ)
a+p>1

for some constant C;. Here and hereafter X and Y are taken so small that the coefficients
in the equation (4.1) are holomorphic on {z € C; |z| < X} x{y € C; |y| < Y}. In
order to estimate the operator norm of (P’ + P," + P\ + P,"") A~ we need the following
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Lemma 4.1 (1) Letp, o, p, v, i, V' satisfy
(4.5) po>1 and p(p—p)+ov—v)Zp+v

Then the operator .'10“y"Dm“'Dy"'/1“1 is bounded both on GP°}H(X,Y) and on GI*7}(X,Y),
and the operator norm is bounded by C(X*Y")/(X #y"), where C is the same constant
as in (4.3). Futhermore if p + v > 1, the operator ar:"y"Dx“'Dy"'/1'1 s bounded both on

GireH(X,Y) and on GY(X,Y), and the operator norm has the same estimate.
2) Ifpzl,

(4.6) p,o>1 and plu—p)+o(v—v)2u+v-1,

then the operator z#y” D, DY A~" is bounded both on G{PoH(X,Y) and on G x,Y),
and the operator norm is bounded by Cy (X*Y*)/(X¥Y"') for some constant Cpy.

(3) If ¢ > 1 and (4.6) hold, then the operator a;“y”D,,“’Dz’,"'A‘1 is bounded on
GleoY(X,Y), and the operator norm is bounded by Cpuw (X*Y") /(X #Y" for some con-
stant Cpprs. Furthermore if u+v > 1, then ghy” D* D,” A7! is bounded on G{ N X,Y)
and the operator norm has the same estimate.

Remark 4.1 Let us write the Newton polyhedron of the operator gty D,* DY as
N(z*y*D* DY) = {(X,Y,2) R, X > pu—p, Y>v -V, Z< p+v}.

Furthermore we define II(p, o) and II(p, o) by (2.5) and (2.6), respectively, and define S
and S as follows |

= {(p,0) €[1,+00)% N(z*y*D;*D,”) C (p,0)},

= {(p,0) € [1,+00)?* N(z*y"D.* D,”) C I(p,0)}.

»n W

Then the condition (p,5) € S and (p, o) € S are equivalent to (4.6) and (4.5), respectively.

We omit the proof of Lemma 4.1 (cf. [1]). We remark that the condition (2.2) plays
an important role in the proof. |

Proof of Theorem 2.1 (continued). When P,"" =0, it follows from the
assumption (p,0) € SNSNS, Lemma 3.2, Lemma 4.1, (1) and (2) that the operator
(P! + P" + A" A1 : GYoY(X,Y) — GE7H(X,Y) is bounded for sufficiently small X
and Y. Moreover we have

(4.7) (P + P + P AU 82 < A(X, MIUINES,
where

finite finite finite '

1 1 1
= ay B ayp B
A2(X,Y)_Cg{< E:XY)X-{—( S XY)Y+(§:Y)Y}

a+B2>2 a+52>2
a>1 a>1
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for some constant Cs. ' ~ ~
When P,” = 0, it follows from the assumption (p,0) € SNSNS”, Lemma 3.2, Lemma

4.1, (1) and (3) that the operator (P’ + P," + P")A71: G (X, Y) - GPH(X,Y) is
bounded. Moreover we have

(4.8) (P + P + P AU |88 < As(X, V) U )8,

where

-l (5 (B (£r)4)

at+B322 £>2 B>2
a2l

for some constant Cj. _ _
When P,”, P,"" # 0 and (p,0) € SNSNS'NS", it follows from Lemma 3.2, Lemma 4.1,

1) and (2) that the operator (P’ + P, + P, + P,"")A™* : Glpet X,Y)— Glret XY
0 0
is bounded. Moreover we have

(4.9) (P + B + P + P A7 U5 < Adx DIUN1EY,
where
finite 1 finite finite finite
wis-af (5 ) (Er) o (Er) b ()3
atf22 a+p22 8>2 B8>2

for some constant C;. When P,”, P, # 0 and (p,0) € SNSNS' N S" it follows from
Lemma 3.2, Lemma 4.1, (1) and (3) that the operator (P’ + P\" + A" + P,"")A™! :
Gl x,y) — gl “}(X,Y) is bounded. Moreover we have

(4_10) “(P/_I_ P+ P" +Prm)A—1U”{p,o} < A4(X Y)”U“{p,o}'
Next let us estimate nonlinear terms. Let

g@yu)= D  gapr®yu

a+8>0,r>2

be the Taylor expansion of g(z,y, u) (recall that g(z,y,0) = gu(z,y,0) = 0). Furthermore
let us define the formal power series |g|(z,y, v) by

gl g uw)=" Y |gasle®yPu".

a+(>0,7>2

We may assume that |g|(z,y, u) convergesin {z € C; |z| < K}x{y € C; |y| < L}x{u €
C; |u| < M} for some positive constants K, L and M.
We remark the following. It holds that

gu(:l:, v, u) = Z (T + 1)gaﬁ,’f‘+1xayﬁur,
a+02>0,r>1
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@il viiQuu

lgul(m’ Y, ’LL) = Z (’f’ + l)lgaﬁ,r+llwayﬂu
a+8>0,r>1

converges in {x € C; |z| < K} x {y € C; |y| < L} x {z € C; || < M}.

Now it follows from (4.3) and Lemma 3.3, (1) that f X < K, Y < L, U € Gl (X, Y)
and HU”{"’”} < M/MC, where M = max{p,c}, then g(z,y, A~'U(z,y)) belongs to
G} (X,Y). Moreover it holds that

@11)  lg(z,y, A7 U(,v)| 85

IA

ol (X, v, MOU1£5)

IA

|g| (K.LMCIU|$7) < +oo.
Next by noting
o020, 00,3, 2) = (4= 9) [ gulas v+ (L -0l
we see that if X < K, Y < L, |[U|1 %5, |VI|I$¥5’ < M/2MC, then we have

(412) lo(e,y, 47U (z,9)) - 9(@,9, A7V (@ 9%
10~ VIS x Clau] (X, Y, MCUUIES + IVIET)

< |U- V”{M} X C|gul (K L, MC(||U||{P"} + ||V||{‘°"’}))

IA

Similarly it follows from (4.3) and Lemma 3.3, (2) that if U € G¥H(X,Y) and
|||U||[ oo} < M/MC, where X, Y and M are same as above, then we have g(z, y, AU (z,y))

e Gi» "}(X, Y), and that

(413)  |llgla,y, A7VE LY < ——|g|(XYMcu|Uu|{“})

< slol (K. LMOIUIIES) < +oo
Moreover if [|{UII[¥5”, [IIVIII¥7 < M/2MC, we have

(4.14) llg(z,y, 470 (z,9)) - g(z,y, A7V (@, W)LY
1V = VILES x Claul (X, Y, MCITIES +1IVIIES)

< U = VINE x Claul (K, L MO(IIDNIES + IVIIED))

IA

Under the above preparations let us take X, Y and £ > 0 as follows: We take € > 0
such that

(4.15) Rld—lgl(K, L,MCe) <e
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(4.16) lgu| (K, L, 2MCe) < 1.

Since |g|(z,y, u) = O(u?) and |g,|(z,y,u) = O(u), we can take such ¢ > 0. Furthermore
for this € let us take X and Y such that the followings hold:
In the case P,"" = 0:

o 1
@1 {AEY)+ Ak + gl + 55l9l(K, LMCe) < e
and
(4.18) A(X,Y) + Ay(X,Y) + Clga|(K, L,2MCe) < 1.

In the case P,” = 0:

(4.19) {A(X,Y) + A3(X,Y)}e + ||goll i + —|g|(K LMCe)<e
and
(4.20) Ai(X,Y) + A3(X,Y) + Clgu| (K, L,2MCk) < 1

In the case P,"”, P,"" # 0 and (p,0) € SNSNS NS

(4.21) {A(X,Y) + Ay(X,Y)}e + |[lgoll1365 + —lgl(K L,MCe) <
and
(4.22) A1(X,Y) + Ay(X,Y) + Clgu|(K, L,2MCE) < 1.

In the case P\, P,"" # 0 and (p,0) € SNSN S NS"
o 1
(4.23) {A4(X,Y) + AX,V)}e + llgoll €7 + 15191(K, L,MCe) < e

and (4.22).

We can take such X and Y by the fact go(0,0) = 0 and the expressions of A;(X,Y),

In the case Pl”” 0 we see that if U € GiH(X,Y) and |||U|||{p’°} < g, then
TU € G¥°H(X,Y) and |||TU|||%¢} < e by (4.4), (4.7), (4.13) and (4.17). Hence T is
well-defined as a mapping from Gé""’} (X,Y;e) to itself. Moreover by (4.4), (4.7), (4.14)
and (4.18), we see that T : GI*7}(X,Y;€) — G} (X,Y;¢) is a contraction mapping.
Similarly in other cases we can prove that T : G — G is well-defined and that it is a
contraction mapping.

Therefore there exists a unique U(z,y) € G which satisfies TU (z,y) = Ulz,y).
Lemma 3.1 implies U(z,y) € G1»?}. Hence u(z,y) = A~'U(z,y) also belongs to Glec},
and it is easy to see that this u(z,y) is a solution of (2 3). Since we admit the unique
existence of the formal solution, the proof is completed. |
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5 Unique Existence of Formal Solution.

Here we shall prove the unique existence of the formal solution for the equation (2.3).
Let us define the vector space H(z,y;!) which consists of homogeneous polynomials
of degree [ as follows:

H(z,y;1) = (the vector space spanned by {z°¥?; (a,8) € N?, a+ 8 =1}).

By A(z*y?) = {\a — £.(0,0,0)}z°y? and the condition (2.2), the following lemma is
obvious.

Lemma 5.1 For alll > 0 the linear operator
A: H(z,y;1) — H(z,y;1)
is bijective.

Now in order to solve the equation (2.3) we set

U(Z,y) =Zul($,y), gO(z)y) =Zgﬂl($’y),
=1 =1

where u(x,y), go(z,y) € H(z,y;1). Then we have the following recursion formula for
{w(z, y)}i2::

Aui(z,y) = gulz,y),
Auz(z,y) = goa(z,y)
+ (homogeneous part of degree 2 of @ u1(z,y) + 9(z, vy, u1(2,9))),
Aus(z,y) = gos(z,y) + (homogeneous part of degree 3 of
Q1 (ur(z, ) + us(z, 9)) + 9(z, 9, us(2, y) + u2(2, ))),
Au(z,y) = gu(z,y)

+ (homogeneous part of degree I of
Ql(U1(.’L',y) +et ul—l(x’y)) + g(m’y'p ul(x)y) pali ul—l(z’y))r))
where Q; = A — P,.

Therefore by Lemma 5.1 we can obtain {w(z,y)}2, inductively and uniquely. This
completes the proof of the unique solvability for the equation (2.3).
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