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Games with Bilateral Contracts on Side
Payments*

Akira Yamadaf
Graduate School of Economics, Hitotsubashi University

Abstract

We analyze two-stage games where players may make binding offers
of schemes for side payment acceptance (or rejection) as well as those
for side payments before choosing actions. We find that any set of
efficient actions is played on an equilibrium path of the two-stage game
when such bilateral contracts on side payments are interdependent.

1 Introduction

Coase (1960) put forth an idea that if property rights are well-defined, and
bargaining is costless, then rational agents playing a game with externalities
should contract to come to an efficient point. Coase (1960) was not explicit
about the type of agreements between agents that are necessary as a form
of bargaining to reach efficiency, but the idea has been widely accepted by
economists.!

Contrary to the widespread belief in the idea, Jackson and Wilkie (2000)
pointed out that side contracting does not always lead to efficiency even
when there are no transactions costs, complete information, and binding
contracts. They studied games where agents may make binding offers of

*This is a preliminary version and the final form may be published elsewhere.
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1Much of the recent contracting literature has focused on imperfections related to costs
of contracting, asymmetric information, limited enforcement of contracts, and so forth.
Anderlini and Felli (2001) provide a discussion on the relationship of that literature to
failures of the Coase theorem.



strategy-contingent side payments before choosing actions, and found that
if there are only two agents, the agents are not always able to come to an
agreement that supports an efficient strategy profile as an equilibrium point
of the game. What kind of contracts will agents need to reach efficiency
generally?

According to Jackson and Wilkie (2000), if there are three or more players,
each efficient strategy profile is played on an equilibrium path in the game
with side payments. However, Jackson and Wilkie (2000) only focused on
voluntarily offered side payments and assumed that such side payments would
always be accepted by transferees. This assumption might be thought of
as arbitrary since voluntarily offered side payments could be invalidated by
spontaneous rejection to receive them. Moreover, the results of Jackson and
Wilkie (2000) depended upon another assumption as well that there is no
budget constraint with players’ transfer. Thus the question proposed above
seems to remain unanswered at all. What kind of bilateral contracts would
lead to efficiency even when agents face budget constraint with their transfer,
no matter what number of players there are? This is the question we address
in this paper.

We are to analyze two-stage games where players may make binding offers
of schemes for side payment acceptance (or rejection) as well as those for side

payments before choosing actions. A side payment from a player, say 1, to

another, say 2, is implemented if and only if 1 offers the payment and 2
accepts it. If 2 rejects, then 1’s offer is not in effect, and the payoff for the
transfer remains with 1. We will see that every efficient strategy profile is
played on an equilibrium path of the two-stage game, no matter what number
of players there are, when the bilateral side contracts (transfer and receipt
schemes) are somehow interdependent. Moreover, we will reach a similar
result even when equilibrium contracts are required to meet agents’ budget
constraint with their transfer.

In what follows, we explain the timing of the two-stage game and present
the model of the underlying game (the second-stage game) in Section 2. We
present several models of bilateral side contracts and show the corresponding
results in Sections 3-5. Some concluding remarks appear in Section 6.

2 The Underlying Game

We consider two-stage games played as follows.
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Stage 1: Each player announces a transfer function profile (transfer scheme)
and a receipt function profile (transfer acceptance/rejection scheme), each of
which is assumed to be binding.

Stage 2: Each player chooses an action.

The players are given by a set N = {1,...,n}. A player s finite pure
strategy space in the second stage game is denoted by X;, with X = x;X;.
Let A (X;) denote the set of mixed strategies for ¢, and let A = x;A (X;).
We denote by z;, z, i, and p generic elements of X;, X, A(X;), and A
respectively. For simplicity, we sometimes use z; and = to denote p; and
 respectively that place probability one on z; and z. A player i’s payoffs
in the second stage game are given by a von Neumann-Morgenstern utility
function v; : X = R.

3 Contracts without Interdependence

3.1 Model

Let us consider the case when the contracts (the promises in the first stage)
are not interdependent. In this case each agent’s transfer scheme does not
depend on any other’s transfer nor receipt scheme and each agent’s receipt
scheme does not depend on any other’s transfer nor receipt scheme.

A transfer function profile announced by player ¢ in the first stage is de-
noted by ; = (ti1, .. ., tii—1)s tii+1)s - - -» tin), Where t;; : X — R, represents
i’s promises to j as a function of actions chosen in the second stage. Let T
be the set of all possible t;;. Let t = (t1,...,tn). A transfer function profile
ti = (ti, ..., tii-1), ti(i41), - - - tin) amnounced by player i meets his budget
constraint if ), ti; (z) < max {0, v; (z)} for all z. A profile t = (t1,...,n)
of transfer function profiles is called feasible if every t; meets i’s budget con-
straint.

A receipt function profile announced by player ¢ in the first stage is de-
noted by r; = (i1, ..., Ti@=1), Titi+1)s - - - »Tin), Where 135 : X — {0,1} repre-
sents i’s acceptance (1) or rejection (0) of transfer from j as a function of
actions chosen in the second stage. Let 7 = (ry,...,7p).

Given a profile ¢ of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play z in the second stage game,
the payoff U; to player i becomes
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Ui (z,t,m) = v; (z) + ; (rij (x) s (2) — 75 (z) 35 (2))-

Given a profile ¢ of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play p in the second stage game,
the expected payoff EU; to player ¢ becomes

EU; (u,t,7) =§ X kpk (i) ('Ui (z) + §. (rij (%) tji (2) — 75 (%) Lig (w)))-

Let EU; (1) =32 *ktix (k) vi ().

z

Let NE (t,r) denote the set of (mixed) Nash equilibria of the second stage
game given (¢,r) in the first stage. Let NE represent the set of (mixed)
Nash equilibria of the underlying game (the second stage game without side
contracts).

A strategy profile i € A of the second stage game together with a vector
% € R™ of payoffs such that ), @; = >, EU; (k) is supportable if there exists
a subgame perfect equilibrium of the two stage game where some ¢ and some
r are announced in the first stage and u is played in the second stage on the
equilibrium path, and EU; (u,t,7) = %;.

A strategy profile 4 € A of the second stage game together with a vector
T € R" of payoffs such that >, %; = 3, EU; (1) is feasibly supportable if
there exists a subgame perfect equilibrium of the two stage game where some
feasible t and some 7 are announced in the first stage and u is played in the
second stage on the equilibrium path, and EU; (4, t,7) = G;.

3.2 Analysis

There exists a case when some set of efficient actions maximizing the total
payoff is not supportable with any payoff distribution even if there exists a
pure equilibrium of the underlying game.

Observation 1. There is a case where some (Z,u) such that ), % =
YU (Z) and Yo, vi (T) = 3, vi(z) for all z is not supportable even if there
exists ;x for all © such that ;x € NE and v; (;x) < ;.

Proof of Observation 1. Consider a two-player game of prisoners’ dilemma.
The payoffs are represented as follows.
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C N
c 2,2 -1,4
N 4,-1 0,0

Let 1 and 2 denote the row and the column players respectively. Consider
z,74) = ((C,C), (a,b)) with a + b = 4. It is easy to note >, % = Y, v; (%)
and Y. v; (T) > 3, v; (z) for all z. Moreover, (N,N) € NE and v; (N, N) <
; foreachiifa>0and b > 0.

Suppose (Z,7) = ((C,C),(a,b)) is supportable. Then, there exists a
subgame perfect equilibrium of the two stage game where some ¢ and some
r are announced in the first stage and 7 is played in the second stage on the
equilibrium path, and EU; (Z,t,7) = ;. Suppose a < b or a < 2. Since
T € NE(¢,r), r21 (N,C) = 1. Therefore, if 1 announces %; and 7; instead

of t; and r; such that to (z) = (1)'5 t)ftlmle?w(ii\;, C)

all z, then NE ((t1,t2), (F1,m2)) = {(V,C)} and his payoff after transfer
amounts to 2.5, which is greater than %;. This contradicts the assertion
(z,%) = ((C, C), (a, b)) is supportable. Even for the case when a > b, another
contradiction will be similarly reached. B

and 7y (z) = 0 for

4 Interdependent Contracts

4.1 Model

Next, let us consider the case when the contracts are interdependent. In this
case each agent’s transfer scheme (indirectly) depends on the others’ receipt
schemes and each agent’s receipt scheme depends on the others’ transfer
schemes.

A transfer function profile announced by player ¢ in the first stage is
denoted by t; = (tﬂ, v ,ti(i—l); t,'(,'+1), . ,tin), where tij X xXZ— R+ with
Z = {0, 1} represents #’s promises to j as a function of actions chosen in the
second stage and indicators 0 and 1. Indicator 0 means that according to
the transfer and receipt schemes announced in the first stage, a player rejects
transfer from some other. Indicator 1 means that according to the transfer
and receipt schemes announced in the first stage, every player accepts transfer
from any other.
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Note that if ¢;; (z,z) = 27;; (z) for some 7;; : X — Ry, then the transfer
scheme becomes degenerate, or t;; (z,z) = 0 for all z, unless every player
accepts transfer from the others. That is, when players are expected to
promise acceptance to each other, such transfer function can be sensitive to
a player’s deviation on the receipt scheme.

Let T be the set of all possible t;;. Let t = (¢1,...,ts). A transfer function
profile t; = (ti1,...,tii-1), tii+1)s - - - tin) amnounced by player ¢ meets his
budget constraint if 3. ;¢ (2,2) < max {0, (z)} for all  and all z. A
profile t = (t1,...,t,) of transfer function profiles is called feasible if every ;
meets i’s budget constraint.

A receipt function profile announced by player i in the first stage is de-
noted by Ty = ('ril, e TiG=1)s Ti(i41)s - -+ » r,-,,), where Tij - (Tn_l)n — {0, 1}
represents i’s acceptance (1) or rejection (0) of transfer from j as a func-
tion of profiles of transfer function profiles announced in the first stage. Let
r=(T1,...,Tn).

Given a profile t of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play z in the second stage game,
the payoff U; to player i becomes

Ui(z,t,7) = v; (z) + ,2#, (rij (&) tsi (z,a (¢, 7)) — 5 (B) tij (z, 0 (¢, 7))

where a (t,'l‘) = Xij,i#iTij (t)

Given a profile ¢t of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play u in the second stage game,
the expected payoff EU; to player ¢ becomes

EUi (/J'> ta 7") =
2 Xkt (25) (v,- (z)+ 2 (s O tis (=, 8 ) — 1 () i (2,0, T))))

where a (t,7) = X; ;27 (t). Let BU; () =Y Xxpr (Tx) vi ()

The definitions of NE (t,7), NE, support;bility, and feasible supportabil-
ity are literally the same as those for the contracts without interdependence
(Section 3).
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4.2 Analysis

Any set of efficient actions maximizing the total payoff is supportable with
some payoff distribution.

Proposition 1. (Z,%) such that >, % = Y, v (T) is supportable if there
erists ;pu for all i such that ;u € NE and EU; (;u) < ;.

Proof of Proposition 1. Suppose for (Z,7) with > ,%; = Y, vi (T), there
exists ;u for all ¢ such that ;u € NE and EU; (;p) < .

Let 7;; : X — Ry be such that 7;(z) = O for all z # 7, and U; =
v (T) + Z (TJ, ) — 7:j (Z)) where 75 (Z) > 0 for some j implies 75; (%) =

for all j. Let t and 7 be as follows.

maX{O,v.-(:t)+ Z_(Tji(w)—ﬂj(m))—-ﬁi}
Z | Tij ((L‘) + ha

n—1

f,‘j (93, Z) = ifz = (.'L'_.,', 57—1')

0 otherwise
_ 1 ift=t
i () ={ |

0 otherwise

Consider the following strategy profile (i, ¢, 7).
1) @t r) = (7);
(2) if (t,7) = (£, (F=i,73)) for some i, where

73 (7) —lforalljaéz then u = T;
(2-1) if (¢,7) = ((-i, %), r_,,r.)) for some 4, where

t;: # % or 7 # T; such that 7 (£) = 0 for some 7, then p =; p;
(2-2) otherwise p € NE (t,r).

Note first that for all i, T € NE (£, (F-;,73)) and U; (T,%, (F-i, 7)) =W if
i (f) = 1 for all j # .

Suppose (t,7) = ((_ _i8i), (r._,,r,)) for some i, where #; £ &;. Hu=J =
(it4-j,i;) for some j, then when j # 1

EU; (p,t,7)
=2 Xl (zx) ( i (z)+ Z (rsn (£) taj (2, (£,7)) — iy (£) ta (2,0 (2, r))))
v (m)+ Z (rsx (t) tej (z, @ (2,7)) — a5 (B) £ (2,0 (2,7))) )

=zz: ol (2] ( f;(é;:’:?t) tij (z,a(t,7)) — 13 (t) tsi (2,0 (8, 7)))



22;, Xwbi (zk) | v; (z) + k}_l:c#_ (0:0-0-0)+(0-ti; (z,a(t, 7)) —7is (2) 0))
=§ Xkl (z) vj (2) = EU; (B) < EU; (i),

and when j =1

EU.,; ([.l,, t, 'I‘)

=§ Xty (z) | vi (z) + é (rax (8) tei (7,0 (£, 7)) — o () tie (2, 0 (2, 7'))))

=3, il (zx) | vi () + gé: (ra () -0 =0 tix (z,a(t, T))))
=Zz: Xty (zk) vi (x) = EU; (i) < EU; (i) < .

Suppose (t,7) = (£, (F-i,7:)) for some i, where 7; # 7; such that 7; (=0
for some j. If p =i = (ip—;, ;) for some j, then when j # ¢

EUJ‘ ([J, t, 7‘)

=§ Xkl (Tx) | vj (z) + %e: (rik () trj (z,a (2, 7)) — 7o (8) Lk (2,0 (2, 7‘))))
- ( v @)+ Y (rik () te (2,0 (7)) — Tis () Ly (2,0 (2, 7)) )

=3 Xl (k) ket ki

2 + (rji (@) tij (z,a (¢, 7)) — 745 (8) 53 (2, (¢, 7))

=zz: X ki (Tk) (v,- (z)+ k#Z’:#. (1:0—-1-0)+(1:0—ry;(2)-0)

=2 Xl (k) Vs (z) = EU; (i) < EU; (i),

and when j =1¢

EUi (y., t, 7')
=zz: X ety (k) ('Ui (z)+ gﬁ% (rix () tei (2, a (8, 7)) — T () ti (2, @ (t»""))))

= b () (Ui (z) + g (rie(t)-0-1-0)
=§ X kg (k) vi (z) = EU; (B) < EU; (ip) < Wi

Thus, (1)-(2-2) constitutes a subgame perfect equilibrium where (Z,7) is
announced in the first stage and 7 is played in the second on the equilibrium
path, and U; (Z,%,7) =u;. ®

237



Note that t in the proof of Proposition 1 is sure to be feasible when
w; > 0 for all i. That is, any set of efficient actions maximizing the total
payoff is feasibly supportable with some payoff distribution if there exists an
equilibrium of the underlying game in which each player enjoys nonnegative
payoff without side payments.

Proposition 2. (Z,u) such that Y % = Y , v (%) and W > 0 is feasibly
supportable if there exists ;u for all i such that ;u € NE and EU; (;p) < ;.

5 Weakly Interdependent Contracts
5.1 Model

Finally, let us consider the case when the contracts are weakly interdepen-
dent. In this case each agent’s transfer scheme does not depend on any other’s
transfer nor receipt scheme while each agent’s receipt scheme depends on the
others’ transfer schemes.

The definitions of transfer function profiles and their feasibility are the
same as those for the contracts without interdependence (Section 3). The
definitions of receipt function profiles are the same as those for the interde-
pendent contracts (Section 4).

Given a profile ¢ of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play z in the second stage game,
the payoff U; to player i becomes

Ui(z,t,7) = vi (z) + J% (rig (8) s (z) — 733 (8) tij (2))

Given a profile t of transfer function profiles and a profile r of receipt
function profiles in the first stage, and a play u in the second stage game,
the expected payoff EU; to player ¢ becomes

EU; (p,t,7) =§z: Xkt (k) ('Ui (z)+ Eﬁ (ri; () 5 () — 73 () b (iﬂ)))

Let EU,' (u) =Z X kg (:ck) Vi (:B)

z
The definitions of NE (t,r), NE, supportability, and feasible supportabil-
ity are literally the same as those for the contracts without interdependence
(Section 3). :
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5.2 Analysis

When players are two, any set of efficient actions maximizing the total payoff

is supportable with some payoff distribution if there exists a pure equilibrium .

of the underlying game.

Proposition 3. Let n = 2. Then (Z,u) such that  ,T; = ) ,v; (%) and
Yo ui(T) 2 3, v () for all z is supportable if there exists ;x for all i such
that ;z € NE and v; (;x) < %;.

Proof of Proposition 3. Suppose for (Z,%) with Y, % = >, v (T) and
Y Ui (Z) = 3, vi (z) for all z, there exists ;z for all 7 such that ;z € NE and
v; (iz) < U;. Let t and T be as follows.

% (z) = max {0,v; (z) - W} ifz; =73,

t 0 otherwise.

mi(t) = 0 otherwise
Note T € NE (1,7) and U; (Z,1,7) = .

Consider the following strategy profile (g, t,7).

1) (&) = (,7);
(2) if (t,7) = (1, (7;,7:)) and 7 ( ) =1, then 4 =T;
(2-1) if (¢,7) = (¢, (F;,7)) and 7; (T) =0, then p € {‘z (i, T;)} NNE (t,7);
(2-2) if (t,7) = ((fj,t) 75, 7%)), ti # L, and 7 ('J, ;) =0, then p =; z;
(2-3) if (t,r) = ((E.%),F5L7), & # &, and 7 (3, t;) = 1, then p €
{iz, iz;,Z)} N NE (t,7);
(2-4) otherwise u € NE (t,r).

Suppose (t,7) = (%, (F;,7)) and 7; () =1 for some i. Then, NE (t T) =
NE (3,7). Hence T € NE (t,r), and U; (%,t,r) = U; (Z,,F) = % in the
subgame (2).

Suppose (t,7) = (£, (7;,7:)) and 7; (f) = 0 for some 3. If p = z = (;2:,%;),
then
Ui (z,t,7) = vj (z) + (75 (}) & (z) - 72 () %5 (2))
=v; (z) + (£ (z) — 0)

vj (z) + max {0, v; (z) — @} if z; =F;
v; (z) otherwise
while if p = z = (;z;,T;), then

U,' (.’E, t, 'I') =Y ((L‘) + (ﬂ (Z) fj (IL') - Fj (Z) Z,- ((12))
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= v (z) + (0 — % (z))
v; (z) — max {0,v; (z) — W} ifz; =T7;
v; (x) otherwise
<y (III) <y (,.’L‘) ’
Hence, if iz ¢ NE (t,r), then U; ((iz:,T;) , t,7) > U; ((imi, %5) , ¢, 7) for all z;,
and ¢; (,-a:,-,fj) > 0, which implies U; ((.-a:;,ﬁj) , by 1‘) = 2 U; ((:L‘,','fj) , L 1')
for all z;. That is, if ;x ¢ NE(t,r), then (;2:,%Z;) € NE(t,r). Thus,
{iz, (iz;,T;)} N NE (t,r) # 0, and for all z;,

YT <wvi(iz) <TG if 4 (imi,z5) =0
[]1 ((131, x]) ’t; 7') { = if 'fi (izia w]) >0
in the subgame (2-1).

Suppose (t,T) = ((ija) v(Tjaﬂ))’ 2\1 75 zi’ and ?t (ZJ:%:) = 0. Then:

NE (t,r) = NE since 7; (;,£;) = 0 as well. Hence ;z € NE(t,r), and
U; (iz,t,7) = v; (;z) < U; in the subgame (2-2).

Suppose (t,r) = ((Z,-,E) , (7 7)), i # i, and 7 E,6) =1 Hp=z=
(ifl:j,.”i,'), then

U,' (.’Z:, t, 7’) =-_‘U,' (113) + (ﬁ (EJ,%:) f,- (:D) - "fj (Z_,,a) Z; (a:))
= Y (27) + (tj (Z) - 0)
_ (] (IE) + max {0, Vj (.’L‘) - ﬁj} ifz;, =7
T w(z) otherwise
while if 4 = z = (;z;,Z;), then
Uj (.’L‘,t, 1‘) = Yj (_:1:) + (Fj (f,-,t,-) t,‘ (1.') - "I'\, (Zj,t,;) Zj (.’E))
= v; (2) + (0% (2))
< v (2) < v; (s@).
Hence, if ;x ¢ NE (t,r), then U; ((;z;,%:) , t,7) = Ui ((iz4, 2:) , ¢, 7) for all z;,
and f,- (,-:v,-,':i:',-) > 0, which implies Uj ((,‘.’L‘j,f{) , 7‘) = ﬂj > UJ' ((:L‘j,-fi) , by 7‘)
for all z;. That is, if ;z ¢ NE(t,r), then (izj, %) € NE(t,r). Thus,
{,‘SB, (.-:c,-,:'z:',-)} NNE (t, 1‘) 7é w, and for all Zs,

(s < (@) ST i Y (g, 3) =0
Ut ((tz_‘l’xt)xt)r){ <7 lffj (ixj1$1') >0
in the subgame (2-3).

Thus, (1)-(2-4) constitutes a subgame perfect equilibrium where feasible

T and 7 are announced in the first stage and 7 is played in the second stage
on the equilibrium path, and U; (z,%,7) =5;. B
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Note that t in the proof of Proposition 3 is sure to be feasible when u; > 0
for all 7. That is, when players are two, any set of efficient actions maximizing
the total payoff is feasibly supportable with some payoff distribution if there
exists a pure equilibrium of the underlying game in which each player enjoys
nonnegative payoff without side payments.

Proposition 4. Let n = 2. Then (%,%) such that 3 ;% =Y ;v (Z), % > 0,
and Y, v (T) > Y ,vi(z) for all = is feasibly supportable if there exists ;z
for all i such that ;x € NE and v; (;x) < U;.

6 Concluding Remarks

We found that there is a class of (feasible) side contracts which may induce
efficient equilibrium play in two-player games as well as in three-or-more-
player games (Propositions 1 and 2). What to do next is to see whether
the contracts proposed here are the simplest ones in the class. In fact there
exist simpler (feasible) side contracts for two-player games (Propositions 3

and 4). We will find out whether three-or-more-player games also have such
alternatives.
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