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Regular non-additive measure and Choquet integral
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1 Introduction

The Choquet integral with respect to a non-additive measure proposed by Murofushi
and Sugeno [6] is a basic tool for multicriteria decision making, image processing and
recognition [4, 5]. Most of these applications are restricted on a finite set, and we need
the theory which can also treat an infinite set.

Generally, considering an infinite set, if nothing is assumed, it is too general and is
sometimes inconvenient. Then we assume the universal set X to be a locally compact
Hausdorff space, whose example is the set R of the real number.

Narukawa et al. [9, 10, 11] propose the notion of a regular non-additive measure,
that is a extension of classical regular measure, and show the usefulness in the point of
representation of some functional.

In this paper, new results about the outer regular non-additive measure and the regular
non-additive measure are introduced.

Basic properties of the non-additive measure and the Choquet integral are shown in
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In section 3, we define an outer regular non-additive measure and show its properties.
We have one of the monotone convergence theorem.

In section 4, we define a regular non-additive measure, and show its properties. In this
section, we show the assumption of the result in [9] can be reduced. We also show that the
Choquet integral of any measurable function can be approximated by the Choquet integral
of continuous function with compact support if the non-additive measure is regular. This

is the main theorem in this paper.

2 Preliminaries

In this section, we define a non-additive measure and the Choquet integral, and show
their basic properties.
Throughout this paper, we assume that X is a locally compact Hausdorff space, B is

the class of Borel sets, C is the class of compact sets, and O is the class of open sets. .

Definition 2.1. [13] A non-additive measure u is an extended real valued set function,
4 : B — BT with the following properties; (1) u(0) = 0, (2) u(A) < u(B) whenever
A C B, A, B € B, where R* = [0, 0] is the set of extended nonnegative real numbers.

When u(X) < oo, we define the conjugate uc of p by p(A) = u(X) — u(AC) for
AeB.

The class of measurable functions is denoted by M and the class of non-negative

measurable functions is denoted by M ™.

Definition 2.2. [1, 6] Let u be a non-additive measure on (X, B).

(1) The Choquet integral of f € M+ with respect to p is defined by

© [ sau= [ wiirsar,
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where pg(r) = p({zl|f(z) 2 r}).

(2) Suppose p(X) < oo. The Choquet integral of f € M with respect to u is defined

by
©) [ 1au=© [ tau-(c) [ r-aw,

where f* = fVv 0 and f~ = —(f A0). When the right hand side is co — oo, the

Choquet integral is not defined.
L{ (1) denotes the class of nonnegative Choquet integrable functions. That is,
LHw = {f1f € M*,(0) [ fau< oo},

Definition 2.3. [3] Let f,g € M. We say that f and g are comonotonic if f(z) <
f(z') = g(z) < g(z’) for z,2' € X.

f ~ g denotes that f and g are comonotonic.

The Choquet integral of f € M with respect to a non-additive measure have the next

basic properties.

Theorem 2.4. (2, 7] Let f,g€ M.
W) Iff<yg, then
© [tdu < © [ gau
(2) Ifa is a nonnegative real number, then
© [ofdu = a(0) [ 1dp
(3) If f ~ g, then

© [(r+9)du=(©) [ £du+(©) [ gau
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The class of continuous functions with compact support is denoted by K and the class
of non-negative continuous functions with compact support is denoted by K.

Next, we define upper and lower semi-continuity of functions.

Definition 2.5. We say that the function f : X — R is upper semi-continuous if
{z|f > a} is closed for all a € R, and the function f : X —> R is lower semi-continuous

if {z|f > a} is open for all a€R.

The class of non-negative upper semi-continuous functions with compact support is
denoted by USCC* and the class of non-negative lower semi-continuous functions is

denoted by LSC*. We define some property for continuity of non-additive measures.

Definition 2.6. Let y be a non-additive measure on the measurable space (X, B).

4 is said to be o-continuous from below if
0a10 = u(0a) 1 u(O)

where n =1,2,3,... and both O, and O are open sets. y is said to be c-continuous from

above if
Cnd C = u(Cr) 1 p(C)

where n = 1,2,3,... and both C,, and C are compact sets.

3 Outer regular non-additive measures

First, we define the outer regular non-additive measures, and show their properties.

Definition 3.1. Let x be a non-additive measure on measurable space (X, B). pu is said

to be outer regular if

w(B) = inf{u(0)|0 € 0,0 D B}
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for all B € B.
The next proposition is shown in [9].

Proposition 3.2. Let u be an outer regular non-additive measure. u 1s c-continuous

from above.

Let f, e USCC* forn=1,2,3,--- and f, | f. Since

({zlfal2) 2 a} = {zlf(z) > a},

n=1

we have the next theorem from Proposition 3.2.

Theorem 3.3. Let p be an outer regular non-additive measure. Suppose that f, €

USCCY forn=1,2,3,--- and f, | f. Then we have
1im (©) [ fudu=(0) [ sa
Let C € C. It follows from Definition 3.1 that
u(C) = inf{u(C)|C C 0,0 € 0}.

Suppose that C C O. Since X is locally compact Hausdorff space, there exists an open

set U such that its closure cl(U) is compact, satisfying
ccUucdU)co.
Applying Urysohn’s lemma, there exists f € K+ such that

1 ifzeC
f(z) =
0 ifz¢&cl(U).
Therefore we have the next theorem.

Theorem 3.4. Let u be an outer regular non-additive measure and C be a compact set.

Then we have

u(C) =inf{(0) [ faulic < 1.f € K*}.
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4 Regular non-additive measures

We define the regular non-additive measure by adding a condition to the outer regular

non-additive measure.

Definition 4.1. Let u be an outer reqular non-additive measure. u is said to be regular,

if for all O € O
u(0) = sup{u(C)|C € C,C C O}.
The next proposition is obvious from the definition.
Proposition 4.2. Let p be a regular non-additive measure. p is o-continuous from below.

The next monotone convergence theorem follows immediately from Proposition 4.2.

Theorem 4.3. Let i be a regular non-additive measure. Suppose that f, € LSC* for

n=12,3,--- and f, T f. Then we have
1 (©) [ fadu=(©) [ fan
Applying Theorem 3.4 and Theorem 4.3, we have the next theorem.

Theorem 4.4. [9] Let u; and py be regular non-additive measures. If

© [ tam = © [ fau
for all f € K*, then p1(A) = ps(A) for all A € B.

This theorem means that any two regular non-additive measures which assign the
same Choquet integral to each f € K+ are necessary identical.
In [9], we proved this theorem under the assumption of X to be separable. Using

Theorem 3.4, we can prove this theorem without this assumption.



In the case of regular non-additive measure, the Choquet integral of any measurable
function can be approximated by the Choquet integral of continuous function with com-
pact support. In the following, we state this fact.

The next lemma, follows from the definition of the regular non-additive measure.

Lemma 4.5. Let u be a regqular non-additive measure on (X, B). For every M € B such

that u(M) < oo and for every € > 0, there exist f € K+ such that

u(0) = ©) [ feul <

Applying Lemma 4.5, Urysohn’s lemma and comonotonic additivity of Choquet inte-

gral, we have the next lemma.

Lemma 4.6. Let i be a regular non-additive measure on (X, B), My, My, € B such that
M, C M, and pu(Ms) < 0o and f := a1lp, + a2lp,, a1 > 0,a2 > 0. For every € > 0, there

erist g € K+ such that

©) [ fau=(C) [ adui <

Applying Lemma 4.6, we have the next approximation theorem. This is the main

theorem in this paper.

Theorem 4.7. Let p be a reqular non-additive measure on (X, B). For every € > 0 and

f € LT (), there exists g € K+ such that

|(C)/fdu—(0)/gdu| < e.
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