<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE FEKETE-SZEGO PROBLEM FOR STRONGLY α-LOGARITHMIC QUASICONVEX FUNCTIONS (Study on Differential Operators and Integral Operators in Univalent Function Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cho, Nak Eun; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1341: 1-11</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43468</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
ON THE FEKETE-SZEGÖ PROBLEM FOR STRONGLY
α-LOGARITHMIC QUASICONVEX FUNCTIONS

NAK EUN CHO AND SHIGEYOSHI OWA

ABSTRACT. The purpose of the present paper is to introduce the classes $\mathcal{M}^{\alpha}(\beta)$ and $Q^{\alpha}(\beta)$, respectively, of normalized strongly α-logarithmic convex and quasiconvex functions of order β in the open unit disk and to obtain sharp Fekete-Szegö inequalities for functions belonging to the classes be the class $\mathcal{M}^{\alpha}(\beta)$ and $Q^{\alpha}(\beta)$.

1. Introduction

Let S denote the class of analytic functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$ (1.1)

which are univalent in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. A classical theorem of Fekete and Szegö [8] states that for $f \in S$ given by (1.1),

$$|a_3 - \mu a_2^2| \leq \begin{cases}
3 - 4\mu & \text{if } \mu \leq 0, \\
1 + 2e^{-2\mu/(1-\mu)} & \text{if } 0 \leq \mu \leq 1, \\
4\mu - 3 & \text{if } \mu \geq 1.
\end{cases}$$

This inequality is sharp in the sense that for each μ there exists a function in S such that equality holds. Recently, Pfluger [17,18] has considered the problem when μ is complex. In the case of C, S^* and K, the subclasses of convex, starlike and close-to-convex functions, respectively, the above inequality can be improved [10,11]. Also, Darus and Thomas [5] studied the class \mathcal{M}^{α} of α-logarithmic convex functions and they also have solved the Fekete-Szegö problem for the class \mathcal{M}^{α}. Furthermore, London [14] have extended the results of Abdel-Gawad and Thomas [1], Keogh and

1991 Mathematics Subject Classification: 30C45.

Key words and phrases. Fekete-Szegö problem, strongly α-logarithmic convex, quasiconvex, strongly α-logarithmic quasiconvex.

Typeset by AMS-TeX
N. E. Cho and S. Owa

Merkes [10] and Koepf [11,12] to the class $\mathcal{K}(\beta)$ of strongly close-to-convex functions of order β. Now we introduce new classes which incorporate well-known classes of univalent functions.

Definition 1.1. A function $f \in S$ given by (1.1) is said to be strongly logarithmic α-convex of order β if

$$\left| \arg \left\{ \left(\frac{zf'(z)}{f(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{f(z)} \right)^{\alpha} \right\} \right| \leq \frac{\pi}{2\beta} \quad (\alpha \geq 0; 0 < \beta \leq 1; z \in \mathcal{U}). \quad (1.2)$$

Denote by $\mathcal{M}^\alpha(\beta)$ the class of strongly α-logarithmic convex functions of order β. The class $\mathcal{M}^\alpha(\beta)$ was introduced by Chiang [4]. In particular, the classes $\mathcal{M}^\alpha(1) = \mathcal{M}^\alpha$ and $\mathcal{M}^0(\beta)$ have been extensively studied by Lewandowski, Miller and Zlotkiewiez [13] and Braman and Kirwan [2] (also, see [7,20]), respectively.

Definition 1.2. A function $f \in S$ given by (1.1) is said to be α-logarithmic quasiconvex of order β if there exists a function $g \in \mathcal{C}$ such that

$$\left| \arg \left\{ \left(\frac{f'(z)}{g'(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{g(z)} \right)^{\alpha} \right\} \right| \leq \frac{\pi}{2\beta} \quad (\alpha, \beta \geq 0; z \in \mathcal{U}). \quad (1.3)$$

We denote by $Q^\alpha(\beta)$ the class of strongly α-logarithmic quasiconvex functions of order β. Clearly, $Q^0(1)$ and $Q^1(1)$ are the classes of close-to-convex functions and quasiconvex functions introduced by Kaplan [9] and Noor [15] (also, see [16]), respectively. Also we note that $Q^0(\beta) = \mathcal{K}(\beta)$.

In the present paper, we derive sharp Fekete-Szegö inequalities for functions belonging to the classes $\mathcal{M}^\alpha(\beta)$ and $Q^\alpha(\beta)$, which imply the results obtained by Abdel-Gawad and Thomas [1], Darus and Thomas [5], Keogh and Merkes [10], Koepf [11,12], and London [14].

2. Results

To prove our main results, we need the following

Lemma 2.1. Let p be analytic in \mathcal{U} and satisfy $\text{Re} \{p(z)\} > 0$ for $z \in \mathcal{U}$, with $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$. Then

$$|p_n| \leq 2 \quad (n \geq 1) \quad (2.1)$$

and

$$\left| p_2 - \frac{p_1^2}{2} \right| \leq 2 - \frac{|p_1|^2}{2}. \quad (2.2)$$
The inequality (2.1) was first proved by Carathéodory [3] (also, see Duren [6, p. 41]) and the inequality (2.2) can be found in [19, p.166].

With the help of Lemma 2.1, we now derive

Theorem 2.1. Let \(f \in \mathcal{M}^\alpha(\beta) \) and be given by (1.1). Then for complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{\beta}{1 + 2\alpha} \max \left\{ 1, \frac{|3(1 + 3\alpha) - 4\mu(1 + 2\alpha)|\beta}{(1 + \alpha)^2} \right\}.
\]

For each \(\mu \), there is a function in \(\mathcal{M}^\alpha(\beta) \) such that equality holds.

Proof. From (1.2), we can write

\[
\left(\frac{zf'(z)}{f(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{f(z)} \right)^\alpha = p^\beta(z),
\]

where \(p \) is given by Lemma 2.1. Equating coefficients, we obtain

\[
a_2 = \frac{\beta}{1 + \alpha} p_1 \tag{2.3}
\]

and

\[
a_3 = \frac{1}{4(1 + 2\alpha)} \left(\beta(\beta - 1)p_1^2 + 2\beta p_2 - (\alpha^2 - 7\alpha - 2) \left(\frac{\beta p_1}{1 + \alpha} \right)^2 \right).
\]

Then we have

\[
a_3 - \mu a_2^2 = \frac{\beta}{2(1 + 2\alpha)} \left(p_2 - \frac{p_1^2}{2} \right) + \frac{(3 + 9\alpha - 4\mu(1 + 2\alpha))\beta^2 p_1^2}{4(1 + 2\alpha)(1 + \alpha)^2}. \tag{2.4}
\]

Hence (2.4) and Lemma 2.1 give

\[
|a_3 - \mu a_2^2| \leq \frac{\beta}{2(1 + 2\alpha)} \left(2 - \frac{|p_1|^2}{2} \right) + \frac{|3 + 9\alpha - 4\mu(1 + 2\alpha)|\beta^2 |p_1|^2}{4(1 + 2\alpha)(1 + \alpha)^2}
\]

\[
\leq \frac{\beta}{1 + 2\alpha} \max \left\{ 1, \frac{|3 + 9\alpha - 4\mu(1 + 2\alpha)|\beta^2}{(1 + \alpha)^2} \right\} |p_1|^2
\]

Therefore, by using \(|p_1| \leq 2 \), we have

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{\beta}{1 + 2\alpha}, & \text{if } k(\alpha) \leq \frac{(1 + \alpha)^2}{\beta}, \\
\frac{|3 + 9\alpha - 4\mu(1 + 2\alpha)|\beta^2}{(1 + 2\alpha)(1 + \alpha)^2}, & \text{if } k(\alpha) \geq \frac{(1 + \alpha)^2}{\beta},
\end{array} \right.
\]
where
\[k(\alpha) = |3(1 + 3\alpha) - 4\mu(1 + 2\alpha)|. \]

Equality is attained for functions in \(\mathcal{M}^\alpha(\beta) \), respectively, given by
\[\left(\frac{zf'(z)}{f(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{f'(z)} \right)^\alpha = \left(\frac{1+z^2}{1-z^2} \right)^\beta \] (2.5)
and
\[\left(\frac{zf'(z)}{f(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{f'(z)} \right)^\alpha = \left(\frac{1+z}{1-z} \right)^\beta \] (2.6)

Remark 2.1. It follows at once from (2.3) that \(|a_2| \leq 2\beta/(1+\alpha) \) and Theorem 2.1 gives
\[|a_3| \leq \begin{cases} \frac{\beta}{1+2\alpha}, & \text{if } (1+\alpha)^2 \geq 3(1+3\alpha)\beta, \\ \frac{3(1+3\alpha)\beta^2}{(1+2\alpha)(1+\alpha)^2}, & \text{if } (1+\alpha)^2 \leq 3(1+3\alpha)\beta, \end{cases} \]
The inequality for \(|a_2| \) is sharp when \(f \) is defined by (2.6) and the inequalities for \(|a_3| \) are sharp when \(f \) is defined by (2.5) and (2.6), respectively.

Next, we consider the real number \(\mu \) as follows.

Theorem 2.2. Let \(f \in \mathcal{M}^\alpha(\beta) \) and be given by (1.1). Then for real number \(\mu \),
\[|a_3 - \mu a_2^2| \leq \frac{3(1+3\alpha)-4(1+2\alpha)\mu}{(1+2\alpha)(1+\alpha)^2} \]
\[\leq \frac{3(1+3\alpha)-4(1+2\alpha)\mu}{(1+2\alpha)(1+\alpha)^2} \]
\[\leq \frac{3(1+3\alpha)-4(1+2\alpha)\mu}{(1+2\alpha)(1+\alpha)^2} \]

For each \(\mu \), there is a function in \(C^\alpha(\beta) \) such that equality holds in all cases.

Proof. We consider two cases. At first, we suppose that \(\mu \leq 3(1+3\alpha)/(4(1+2\alpha)) \).

Then (2.3) and Lemma 2.1 give
\[|a_3 - \mu a_2^2| \leq \frac{\beta}{2(1+2\alpha)} \left(2 - \frac{|p_1|^2}{2} \right) + \frac{3(9\alpha - 4\mu(1+2\alpha))\beta^2|p_1|^2}{4(1+2\alpha)(1+\alpha)^2} \]
\[\leq \frac{\beta}{1+2\alpha} + \frac{((3+9\alpha - 4\mu(1+2\alpha))\beta^2 - (1+\alpha)^2\beta)|p_1|^2}{4(1+2\alpha)(1+\alpha)^2}. \]
So, by using the fact that \(|p_1| \leq 2 \), we obtain
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{(3+3\alpha)(1+2\alpha)\beta^2}{(1+2\alpha)(1+\alpha)^2}, & \text{if } \mu \leq \frac{3(1+3\alpha)(1+\alpha)^2}{4(1+2\alpha)}, \\
\frac{\beta}{1+2\alpha}, & \text{if } \frac{3(1+3\alpha)(1+\alpha)^2}{4(1+2\alpha)} \leq \mu \leq \frac{3(1+3\alpha)}{4(1+2\alpha)}.
\end{cases}
\]

Equality is attained by choosing \(p_1 = p_2 = 2 \) and \(p_1 = 0, p_2 = 2 \), respectively, in (2.3).

Next, we suppose that \(\mu \geq \frac{3(1+3\alpha)}{(4(1+2\alpha))} \). In this case, it follows again from (2.3) and Lemma 2.1 that

\[
|a_3 - \mu a_2^2| \leq \frac{\beta}{2(1+2\alpha)} \left(2 - \frac{|p_1|^2}{2} \right) + \frac{(4\mu(1+2\alpha) - (3+9\alpha))\beta^2|p_1|^2}{4(1+2\alpha)(1+\alpha)^2}
\leq \frac{\beta}{1+2\alpha} + \frac{((4\mu(1+2\alpha) - (3+9\alpha))\beta^2 - \beta(1+\alpha)^2)|p_1|^2}{4(1+2\alpha)(1+\alpha)^2},
\]

and so, as in the first case, we have

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{\beta}{1+2\alpha}, & \text{if } \frac{3(1+3\alpha)}{4(1+2\alpha)} \leq \mu \leq \frac{3(1+3\alpha)(1+\alpha)^2}{4(1+2\alpha)} \\
\frac{(4(1+2\alpha)\mu-3(1+3\alpha))\beta^2}{(1+2\alpha)(1+\alpha)^2}, & \text{if } \mu \geq \frac{3(1+3\alpha)(1+\alpha)^2}{4(1+2\alpha)}.
\end{cases}
\]

The results are sharp by choosing \(p_1 = 0, p_2 = 2 \) and \(p_1 = 2i, p_2 = -2 \), respectively, in (2.3).

Remark 2.2. If we take \(\beta = 1 \) in Theorem 2.1 and Theorem 2.2, then we obtain the results by Darus and Thomas [5].

Finally, we prove

Theorem 2.3. Let \(f \in Q^\alpha(\beta) \) and be given by (1.1). Then for \(\alpha \geq 0 \) and \(\beta \geq 0 \), we have

\[
3(2\alpha+1)|a_3 - \mu a_2^2| \leq \begin{cases}
1 + \frac{(1+\beta)^2(2(3\alpha+1)-3(2\alpha+1)\mu)}{(2\alpha+1)^2}, & \text{if } \mu \leq \frac{2(3\alpha+1)}{3(2\alpha+1)(1+\beta)}, \\
1 + 2\beta + \frac{2(3(2\alpha+1)-3(2\alpha+1)\mu)}{(2\alpha+1)^2 - \beta(2(3\alpha+1)-3(2\alpha+1)\mu)}, & \text{if } \frac{2(3\alpha+1)}{3(2\alpha+1)(1+\beta)} \leq \mu \leq \frac{2(3\alpha+1)}{3(2\alpha+1)}, \\
1 + 2\beta, & \text{if } \frac{2(3\alpha+1)}{3(2\alpha+1)} \leq \mu \leq \frac{2(2\alpha+1)^2 + 2(3\alpha+1)(1+\beta)}{3(2\alpha+1)(1+\beta)}, \\
-1 + \frac{(1+\beta)^2(2(3\alpha+1)-2(3\alpha+1)\mu)}{(2\alpha+1)^2}, & \text{if } \mu \geq \frac{2(2\alpha+1)^2 + 2(3\alpha+1)(1+\beta)}{3(2\alpha+1)(1+\beta)}.
\end{cases}
\]

For each \(\mu \), there is a function in \(Q^\alpha(\beta) \) such that equality holds in all cases.
N. E. CHO AND S. OWA

Proof. Let \(f \in Q^\alpha(\beta) \). Then it follows from (1.2) that we may write

\[
\left(\frac{f'(z)}{g'(z)} \right)^{1-\alpha} \left(\frac{(zf'(z))'}{g'(z)} \right)^\alpha = p^\beta(z),
\]

(2.7)

where \(g \) is convex and \(p \) has positive real part. Let \(g(z) = z + b_2 z^2 + b_3 z^3 + \cdots \) and let \(p \) be given in the Lemma above. Then by comparing the coefficients of both sides of (2.7), we obtain

\[2(\alpha + 1)a_2 = \beta p_1 + 2b_2 \]

and

\[
3(2\alpha + 1)a_3 = 3b_3 + \frac{2\alpha(1-\alpha)}{(\alpha + 1)^2} b_2^2 + \beta \left(p_2 - \frac{1}{2} p_1^2 \right) + \frac{\beta^2(3\alpha + 1)}{2(\alpha + 1)^2} p_1^2 + \frac{2\beta(3\alpha + 1)}{(\alpha + 1)^2} p_1 b_2.
\]

So, with

\[x = \frac{2(3\alpha + 1) - 3(2\alpha + 1)\mu}{(\alpha + 1)^2}, \]

we have

\[
3(2\alpha + 1)(a_3 - \mu a_2^2) = 3 \left(b_3 + \frac{1}{3}(x - 2)b_2^2 \right) + \beta \left(p_2 + \frac{1}{4}(\beta x - 2)p_1^2 \right) + \beta x p_1 b_2.
\]

(2.8)

Since rotations of \(f \) also belong to \(Q^\alpha(\beta) \), without loss of generality, we may assume that \(a_3 - \mu a_2^2 \) is positive. Thus we now estimate \(\Re(a_3 - \mu a_2^2) \).

Since \(g \in C \), there exists \(h(z) = 1 + k_1 z + k_2 z^2 + \cdots \) \((|z| < 1)\) with positive real part, such that \(g'(z) + zg''(z) = g'(z)h(z) \). Hence, by equating coefficients, we get that \(b_2 = k_1/2 \) and \(b_3 = (k_2 + k_1^2)/6 \). So, by Lemma 2.1,

\[
3\Re\left(b_3 + \frac{1}{3}(x - 2)b_2^2 \right) = \frac{1}{2} \Re \left(k_2 - \frac{1}{2} k_1^2 \right) + \frac{1}{4}(x + 1)\Re k_1^2 \leq 1 - \rho^2 + (x + 1)\rho^2 \cos 2\phi,
\]

(2.9)

where \(b_2 = k_1/2 = \rho e^{i\phi} \) for some \(\rho \) \((0 \leq \rho \leq 1)\). We also have
THE FEKETE-SZEGŐ PROBLEM

\[
\beta \text{Re} \left(p_2 + \frac{1}{4}(\beta x - 2)p_1^2 \right) = \beta \text{Re} \left(p_2 - \frac{1}{2}p_1^2 \right) + \frac{1}{4} \beta^2 x \text{Re} p_1^2 \leq 2\beta(1 - r^2) + \beta^2 x r^2 \cos 2\theta,
\]

(2.10)

where \(p_1 = 2re^{i\theta} \) for some \(r \) \((0 \leq r \leq 1)\). From (2.8-10), we obtain

\[
3\text{Re}(2\alpha + 1)(a_3 - \mu a_2) \leq 1 - \rho^2 + (x + 1)\rho^2 \cos 2\phi + 2\beta(1 - r^2) + \beta^2 x r^2 \cos 2\theta + 2\beta x r \rho \cos(\theta + \phi),
\]

(2.11)

and we now proceed to maximize the right-hand of (2.11). This function will be denoted by \(\psi(x) \) whenever all the parameters except \(x \) are held constant.

We consider first the case

\[
\frac{2\alpha(1 - \alpha) + 2\beta(3\alpha + 1)}{3(2\alpha + 1)(1 + \beta)} \leq \mu \leq \frac{2(3\alpha + 1)}{3(2\alpha + 1)},
\]

so that \(0 \leq x \leq 2/(1 + \beta) \). Since the expression \(-2t^2 + t^2 \beta x \cos 2\theta + 2xt\) is the largest when \(t = x/(2 - \beta x \cos 2\theta) \), we have

\[
-2t^2 + t^2 \beta x \cos 2\theta + 2xt \leq \frac{x^2}{2 - \beta x \cos 2\theta} \leq \frac{x^2}{2 - \beta x}.
\]

Thus

\[
\psi(x) \leq x + 1 + \beta \left(2 + \frac{x^2}{2 - \beta x} \right) = 1 + 2\beta + \frac{2\{2(3\alpha + 1) - 3(2\alpha + 1)\mu\}}{2(\alpha + 1)^2 - \beta\{2(3\alpha + 1) - 3(2\alpha + 1)\mu\}}
\]

and with (2.11) this establishes the second inequality in the theorem. Equality occurs only if

\[
p_1 = \frac{2x}{2 - \beta x} = \frac{2\{2(3\alpha + 1) - 3(2\alpha + 1)\mu\}}{2(\alpha + 1)^2 - \beta\{2(3\alpha + 1) - 3(2\alpha + 1)\mu\}}, \quad p_2 = 2, \quad b_2 = b_3 = 1,
\]

and the corresponding function \(f \) is defined by

\[
(f'(z))^{1-\alpha}((zf'(z))')^{\alpha} = \frac{1}{(1-z)^{\lambda}} \left(\frac{1+z}{1-z} + (1-\lambda) \frac{1-z}{1+z} \right)^{\beta},
\]
\[\lambda = \frac{2(\alpha + 1)^2 + (1 - \beta)(2(3\alpha + 1) - 3(2\alpha + 1)\mu)}{4(\alpha + 1)^2 - 2\beta(2(3\alpha + 1) - 3(2\alpha + 1)\mu)}. \]

We now prove the first inequality. Let
\[\mu \leq \frac{2\alpha(1 - \alpha) + 2\beta(3\alpha + 1)}{3(2\alpha + 1)(1 + \beta)}, \]
so that \(x \geq 2/(1 + \beta) \). With \(x_0 = 2/(1 + \beta) \), we have
\[\psi(x) = \psi(x_0) + (x - x_0)(\rho^2 \cos 2\phi + \beta^2 r^2 \cos 2\theta + 2\beta \rho r \cos(\theta + \phi)) \leq \psi(x_0) + (x - x_0)(1 + \beta)^2 \leq 1 + \frac{(1 + \beta)^2\{2(3\alpha + 1) - 3(2\alpha + 1)\mu\}}{(\alpha + 1)^2} \]
as required. Equality occurs only if \(p_1 = p_2 = 2, \ b_2 = b_3 = 1 \), and the corresponding function \(f \) is defined by
\[(f'(z))^{1-\alpha}((zf'(z))')^\alpha = \frac{1}{(1-z)^2}(\frac{1+z}{1-z})^\beta. \]

Let \(x_1 = -2/(1 + \beta) \). We shall find that \(\psi(x_1) = 1 + 2\beta \), and the remaining inequalities follow easily from this one. By an argument similar to the one above, we obtain
\[\psi(x) \leq \psi(x_1) + |x - x_1|(1 + \beta)^2 \leq -1 + \frac{(1 + \beta)^2\{3(2\alpha + 1)\mu - 2(3\alpha + 1)\}}{(\alpha + 1)^2}. \]
if \(x \leq x_1 \), that is,
\[\mu \geq \frac{2(\alpha + 1)^2 + 2(3\alpha + 1)(1 + \beta)}{3(2\alpha + 1)(1 + \beta)}. \]
Equality occurs only if \(p_1 = 2i, \ b_2 = i, \ p_2 = -2, \ b_3 = -1 \), and the corresponding function \(f \) is defined by
\[(f'(z))^{1-\alpha}((zf'(z))')^\alpha = \frac{1}{(1-iz)^2}(\frac{1+iz}{1-iz})^\beta. \]
Also, for \(0 \leq \lambda \leq 1 \), we note that
\[\psi(\lambda x_1) = \lambda \psi(x_1) + (1 - \lambda)\psi(0) \leq \lambda(1 + 2\beta) + (1 - \lambda)(1 + 2\beta) = 1 + 2\beta, \]

so \(\psi(x) \leq 1 + 2\beta \) for \(x_1 \leq x \leq 0 \), that is,

\[\frac{2(3\alpha + 1)}{3(2\alpha + 1)} \leq \mu \leq \frac{2(\alpha + 1)^2 + 2(3\alpha + 1)(1 + \beta)}{3(2\alpha + 1)(1 + \beta)}. \]

Equality occurs only if \(p_1 = b_2 = 0, \ p_2 = 2, \ b_3 = 1/3 \), and the corresponding function \(f \) is defined by

\[(f'(z))^{1-\alpha}((zf'(z))')^\alpha = \frac{1}{1-z^2} \left(\frac{1+z^2}{1-z^2} \right)^{\beta} = \frac{(1+z^2)^{\beta}}{(1-z^2)^{1+\beta}}. \]

We now show that \(\psi(x_1) \leq 1 + 2\beta \). Since

\[(-2 + \beta x_1 \cos 2\theta)t^2 + 2x_1 t \rho \cos(\theta + \phi) \]
\[= (-2 + \beta x_1 \cos 2\theta) \left\{ t + \frac{x_1 \rho \cos(\theta + \phi)}{-2 + \beta x_1 \cos 2\theta} \right\}^2 + \frac{x_1^2 \rho^2 \cos^2(\theta + \phi)}{2 - \beta x_1 \cos 2\theta} \]

for all real \(t \) and

\[2 - \beta x_1 \cos 2\theta = 2 + \frac{2\beta}{1 + \beta} \cos 2\theta \geq 2 - \frac{2\beta}{1 + \beta} \geq 0, \]

we have

\[\psi(x_1) - (1 + 2\beta) \leq \rho^2 \left(-1 + (x_1 + 1) \cos 2\phi + \frac{\beta x_1^2(1 + \cos 2(\theta + \phi))}{2(2 - \beta x_1 \cos 2\theta)} \right). \]

Thus we consider the inequality

\[\beta x_1^2(1 + \cos 2(\theta + \phi)) + 2(2 - \beta x_1 \cos 2\theta)(-1 + (x_1 + 1) \cos 2\phi) \leq 0. \]

After some simplifications, this becomes

\[4(\beta^2(\cos 2\phi + 1)(\cos 2\phi - 1) - \beta(1 + \cos 2\theta + \sin 2\theta \sin 2\phi) - 1 - \cos 2\phi) \leq 0, \]

which is true if

\[2\beta^2 \cos^2 \theta \sin^2 \phi + 2\beta \cos \theta \sin \theta \cos \phi \sin \phi + \cos^2 \phi \geq 0. \] (2.12)
Now, for all real t,

$$2t^2 + 2t \sin \theta \cos \phi + \cos^2 \phi \geq 0,$$

so, by taking $t = \beta \cos \theta \sin \phi$, we obtain (2.12). This completes the proof of the theorem.

Remark. Letting $\alpha = 0$ in Theorem 2.3, we have the corresponding result obtained by London [14], which extend the earlier results by several authors [1,5,10-12].

For $\alpha = 1$ in Theorem, we have the following

Corollary 2.1. Let $f \in Q^1(\beta)$ and be given by (1.1). Then for $\beta \geq 0$, we have

$$9 |a_3 - \mu a_2^2| \leq \begin{cases}
1 + \frac{(1+\beta)^2(8-9\mu)}{4} & \text{if } \mu \leq \frac{8\beta}{9(1+\beta)}, \\
1 + 2\beta + \frac{2(8-9\mu)}{8-\beta(8-9\mu)} & \text{if } \frac{8\beta}{9(1+\beta)} \leq \mu \leq \frac{8}{9}, \\
1 + 2\beta & \text{if } \frac{8}{9} \leq \mu \leq \frac{8(2+\beta)}{9(1+\beta)}, \\
-1 + \frac{(1+\beta)^2(9\mu-8)}{4} & \text{if } \mu \geq \frac{8(2+\beta)}{9(1+\beta)}.
\end{cases}$$

For each μ, there is a function in $Q^1(\beta)$ such that equality holds in all cases.

References

nak eun cho, department of applied mathematics, pukyong national university, pusan 608-737, korea (e-mail: necho@pknu.ac.kr)

shigeyoshi owa, department of mathematics, kinki university, higashi-osaka, osaka 577-8502, japan (e-mail: owa@math.kindai.ac.jp)