<table>
<thead>
<tr>
<th>Title</th>
<th>PROPERTIES OF CERTAIN INTEGRAL OPERATOR (Study on Differential Operators and Integral Operators in Univalent Function Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Jin-Lin; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1341: 45-51</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43471</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
PROPERTIES OF CERTAIN INTEGRAL OPERATOR

JIN-LIN LIU
Department of Mathematics,
Yangzhou University,
Yangzhou 225002, Jiangsu,
People's Republic of China
E-Mail: jlliucn@yahoo.com.cn

and

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-Mail: owa@math.kindai.ac.jp

Abstract

Let $A(p)$ denote the class of functions $f(z)$ which are analytic and p-valent in the unit disk U. A new subclass $\Omega(\alpha, \beta; \gamma)$ of $A(p)$ consisting of analytic and p-valent functions $f(z)$ associated with the certain integral operator Q_β^α which is the generalization of the integral operator studied by I.B.Jung, Y.C.Kim and H.M.Srivastava (J. Math. Anal. Appl. 248(2000), 475-481) is introduced. Some interesting properties of the operator Q_β^α for functions $f(z)$ belonging to $A(p)$ are investigated.

Key Words and phrases: Integral operator, extreme point, multivalent.

2000 Mathematics Subject Classification: Primary 30C45.
1. Introduction.

Let $A(p)$ denote the class of functions of the form

$$f(z) = z^p + \sum_{n=1}^\infty a_{p+n}z^{p+n} \quad (p \in \mathbb{N} = \{1, 2, 3, \cdots \})$$

which are analytic and p-valent in the unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Let $S_p^*(\gamma)$ denote the class of functions $f(z)$ of the form (1.1) which satisfy the condition

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > p\gamma$$

for $0 \leq \gamma < 1$ and $z \in U$. A function in $S_p^*(\gamma)$ is called p-valent starlike of order γ in U.

Recently, Jung, Kim and Srivastava [3] introduced the following integral operator:

$$Q_{\beta}^\alpha f(z) = \left(\begin{array}{c} \alpha + \beta \\ \beta \end{array} \right) \frac{\alpha}{z^\beta} \int_0^z (1 - \frac{t}{z})^{\alpha-1} t^{\beta-1} f(t) dt$$

$$= \sum_{n=2}^\infty \frac{\Gamma(\beta + n)\Gamma(\alpha + \beta + 1)}{\Gamma(\beta + \alpha + n)\Gamma(\beta + 1)} a_n z^n.$$ (1.2)

They also showed that

$$Q_{\beta}^\alpha f(z) = z^p + \sum_{n=1}^\infty \frac{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)}{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)} a_{p+n}z^{p+n}.$$ (1.3)

It follows from (1.3) that one can define the operator Q_{β}^α for $\alpha \geq 0$ and $\beta > -1$. Some interesting subclasses of analytic function, associated with the operator Q_{β}^α, have been considered recently by Jung et al.[3], Aouf et al.[1], Li[5], Liu[6] and others.

Motivated by Jung, Kim and Srivastava’s work [3], we now consider a linear operator $Q_{\beta}^\alpha : A(p) \to A(p)$ as following:

$$Q_{\beta}^\alpha f(z) = \left(\begin{array}{c} p + \alpha + \beta - 1 \\ p + \beta - 1 \end{array} \right) \frac{\alpha}{z^\beta} \int_0^z \left(1 - \frac{t}{z} \right)^{\alpha-1} t^{\beta-1} f(t) dt$$

$$= \sum_{n=1}^\infty \frac{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)}{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)} a_{p+n}z^{p+n}.$$ (1.3)

We note that
(\alpha \geq 0, \beta > -1; f \in A(p)). \tag{1.4}

It is easily verified from the definition (1.4) that

\[z(Q_\beta^\alpha f(z))' = (\alpha + \beta + p - 1)Q_\beta^{\alpha-1}f(z) - (\alpha + \beta - 1)Q_\beta^\alpha f(z). \tag{1.5} \]

When \(p = 1 \), the identity (1.5) is given in [3]. One can easily see that the operator \(Q_\beta^\alpha \) has an inverse operator \(Q_{\beta+\alpha}^{-\alpha} \) and \(Q_\beta^0 \) is an unit operator.

A function \(f(z) \in A(p) \) is said to be in the class \(\Omega(\alpha, \beta; \gamma) \) if it satisfies the condition

\[\frac{z(Q_\beta^\alpha f(z))}{Q_\beta^\alpha f(z)} + \frac{pz^p}{1-z^p} < \frac{p+p(1-2\gamma)z}{1-z} \tag{1.6} \]

for all \(z \in U \) and \(0 \leq \gamma < 1 \).

In this paper, we shall show the extreme points of the closed convex hull of the class \(\Omega(\alpha, \beta; \gamma) \). It is then used to determine the coefficient bounds.

In the sequel, we denote the closed convex hull of a class \(H \) by \(coH \). Also, let \(E(coH) \) denote the set of all extreme points of \(H \).

2. Main Results.

In order to derive our main results, we shall need the following lemmas.

Lemma 1 ([4]). \(E(coS_p^*(\alpha)) \) consists of the functions given by

\[\frac{z^p}{(1-xz)^{2p(1-\gamma)}} = z^p + \sum_{n=1}^{\infty} \frac{(2p-2p\gamma)_n}{n!} x^n z^{p+n} \quad (z \in U), \tag{2.1} \]

where \((a)_n = a(a+1) \cdots (a+n-1), x \in C \) and \(|x| = 1\).

Lemma 2 ([9]). The function \((1-z)^\rho = e^{\rho \log(1-z)}, \rho \neq 0\), is univalent in \(U \) if and only if \(\rho \) is either in the closed disk \(|\rho - 1| \leq 1\) or in the closed disk \(|\rho + 1| \leq 1\).

Lemma 3 ([7]). Let \(q(z) \) be univalent in \(U \) and let \(\theta(w) \) and \(\phi(w) \) be analytic in a domain \(D \) containing \(q(U) \) with \(\phi(w) \neq 0 \) when \(w \in q(U) \). Set \(Q(z) = zq'(z)\phi(q(z)), h(z) = \theta(q(z)) + Q(z) \) and suppose that

(1) \(Q(z) \) is starlike (univalent) in \(U \);

(2) \(\text{Re} \left\{ \frac{zq'(z)}{Q(z)} \right\} = \text{Re} \left\{ \frac{\theta'(q(z)) + zQ'(z)}{Q(z)} \right\} \geq 0 \quad (z \in U). \)

If \(p(z) \) is analytic in \(U \), with \(p(0) = q(0), p(U) \subset D \) and

\[\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)) = h(z), \tag{2.2} \]

then \(p(z) < q(z) \) and \(q(z) \) is the best dominant.
Theorem 1. A function $f(z) \in A(p)$ is in $\Omega(\alpha, \beta; \gamma)$ if and only if $f(z)$ can be expressed as

$$f(z) = Q_{\beta + \alpha}^{-\alpha} \left\{ z^p (1 - z^p) \exp[-2p(1 - \gamma) \int_X \log(1 - xz) d\mu(x)] \right\},$$ \hfill (2.3)

where μ is a probability measure defined on the unit circle $X = \{x : |x| = 1\}$.

Proof. Let $f(z) \in \Omega(\alpha, \beta; \gamma)$. Then by Herglotz formula [2], we have

$$\frac{z(Q_{\beta}^{\alpha} f(z))'}{Q_{\beta}^{\alpha} f(z)} + \frac{pz^p}{1 - z^p} = p(1 - \gamma) \int_X \frac{1 + xz}{1 - xz} d\mu(x) + p\gamma,$$ \hfill (2.4)

where μ is a probability measure defined on the unit circle $X = \{x : |x| = 1\}$. By means of the identity

$$\frac{d}{dz} \log \frac{Q_{\beta}^{\alpha} f(z)}{z^p (1 - z^p)} = \frac{1}{z} \left[\frac{z(Q_{\beta}^{\alpha} f(z))'}{Q_{\beta}^{\alpha} f(z)} + \frac{pz^p}{1 - z^p} - p \right],$$ \hfill (2.5)

(2.4) yields

$$Q_{\beta}^{\alpha} f(z) = z^p (1 - z^p) \exp[-2p(1 - \gamma) \int_X \log(1 - xz) d\mu(x)].$$ \hfill (2.6)

Thus

$$f(z) = Q_{\beta + \alpha}^{-\alpha} \left\{ z^p (1 - z^p) \exp[-2p(1 - \gamma) \int_X \log(1 - xz) d\mu(x)] \right\}.$$ \hfill (2.7)

Now the proof is complete.

Theorem 2. Let $0 \leq \gamma_1 < \gamma_2 < 1$, then $\Omega(\alpha, \beta; \gamma_2) \subset \Omega(\alpha, \beta; \gamma_1)$.

Proof. We define a linear operator on $\Omega(\alpha, \beta; \gamma)$ as following:

$$T_{\gamma}(f) = \frac{Q_{\beta}^{\alpha} f(z)}{1 - z^p} \quad (z \in U).$$ \hfill (2.7)

Then T_{γ} is a linear homeomorphism from $\Omega(\alpha, \beta; \gamma)$ to $S_p^*(\gamma)$. It is well-known that $S_p^*(\gamma_2) \subset S_p^*(\gamma_1)$ for $0 \leq \gamma_1 < \gamma_2 < 1$. The result follows immediately.

Theorem 3. (i) The extreme points of $co\Omega(\alpha, \beta; \gamma)$ are given by the functions

$$f_x(z) = Q_{\beta + \alpha}^{-\alpha} \left\{ \frac{z^p(1 - z^p)}{(1 - xz)^{2p(1 - \gamma)}} \right\}$$ \hfill (2.8)

$$\quad (x \in C, |x| = 1; z \in U).$$
\[(i) \quad \Omega(\alpha, \beta; \gamma) = \{ f : f(z) = \int_X f_x(z) d\mu(x) \}, \tag{2.9} \]

where \(\mu \) varies over the probability measures defined on the unit circle \(X \).

Proof. Since \(T_\gamma \) defined by (2.7) is a linear homeomorphism from \(\Omega(\alpha, \beta; \gamma) \) to \(S_p^*(\gamma) \), it preserves extreme points. By making use of Lemma 1, the results follow at once. According to Theorem 3 and Lemma 1, we have the following corollaries.

Corollary 1. Let \(f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \in \Omega(\alpha, \beta; \gamma) \). Then

\[
|a_{p+n}| \leq \left\{ \begin{array}{ll}
(2p - 2p\gamma) \frac{\prod_{k=1}^{n} (2p - 2p\gamma + n - k) - \prod_{k=1}^{n} (n - p + k)}{n!} \frac{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)}{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)}, & 1 \leq n < p, \\
(2p - 2p\gamma) \frac{\prod_{k=1}^{n} (2p - 2p\gamma + n - k)}{n!} \frac{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)}{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)}, & n \geq p.
\end{array} \right.
\]

The result is sharp.

Corollary 2. Let \(f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \in \Omega(\alpha, \beta; \gamma) \). Then for \(|z| = r < 1 \).

\[
|f(z)| \leq r^p + \sum_{n=1}^{p-1} \frac{(2p - 2p\gamma) \prod_{k=1}^{p} (2p - 2p\gamma + n - k) - \prod_{k=1}^{p} (n - p + k)}{n!} \frac{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)}{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)} r^{p+n} + \sum_{n=p}^{\infty} \frac{(2p - 2p\gamma) \prod_{k=1}^{n} (2p - 2p\gamma + n - k - p) - \prod_{k=1}^{n} (n - p + k)}{n!} \frac{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)}{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)} r^{p+n}.
\]

The result is sharp.

Theorem 4. Let \(f(z) \in \Omega(\alpha, \beta; \gamma) \). Let \(\rho \) be a complex number with \(\rho \neq 0 \) and satisfy either \(|2p\rho(1 - \gamma) + 1| \leq 1 \) or \(|2p\rho(1 - \gamma) - 1| \leq 1 \). Then

\[
\left(\frac{Q^\rho f(z)}{z^p(1 - z^p)} \right)^\rho < \frac{1}{(1 - z)^{2p\rho(1 - \gamma)}} = q(z) \quad (z \in U), \tag{2.10}
\]

where \(q(z) \) is the best dominant.

Proof. Let

\[
p(z) = \left(\frac{Q^\rho f(z)}{z^p(1 - z^p)} \right)^\rho, \tag{2.11}
\]

then \(p(z) \) in analytic is \(U \) with \(p(0) = 1 \). Differentiating (2.11) logarithmically we have

\[
\frac{zp'(z)}{p(z)} = \rho \left(\frac{z(Q^\rho f(z))'}{Q^\rho f(z)} + \frac{pz^p}{1 - z^p} - p \right). \tag{2.12}
\]
Since $f(z) \in \Omega(\alpha, \beta; \gamma)$, (2.12) is equivalent to
\[
p + \frac{zp'(z)}{\rho p(z)} < \frac{p + p(1 - 2\gamma)z}{1 - z} = h(z).
\] (2.13)

If we take
\[
q(z) = \frac{1}{(1 - z)^{2p\rho(1-\gamma)}}, \theta(w) = p \quad \text{and} \quad \phi(w) = \frac{1}{\rho w},
\] (2.14)

then $q(z)$ is univalent by the condition of the theorem and Lemma 2. It is easy to show that $q(z), \theta(w)$ and $\phi(w)$ satisfy the conditions of Lemma 3. Since
\[
Q(z) = zq'(z)\phi(q(z)) = \frac{2p(1 - \gamma)z}{1 - z}
\] (2.15)
is univalent starlike in U and
\[
h(z) = \theta(q(z)) + Q(z) = \frac{p + p(1 - 2\gamma)z}{1 - z},
\] (2.16)

it may be readily checked that the conditions (1) and (2) of Lemma 3 are satisfied. Thus the result follows from (2.13) immediately.

Acknowledgement

The research is partly supported by Jiangsu Gaoxiao Natural Science Foundation (01KJB110009).

References

