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ON THE GAUSS HYPERGEOMETRIC
SERIES WITH ROOTS OUTSIDE THE
UNIT DISK

BB S [Takano Katsuo]  RIRAFHFEE
iR %= [Okazaki Hiromitsu] RBA K2 E F8

1. INTRODUCTION

It is known in [9] that the normed conjugate product of gamma functions
2 1

such as

— 1

w52, (1 + 22 /n?)’ (1)
is an infinitely divisible density. In the process in showing the infinite divisi-
bility of the probability distribution with density (1) a family of polynomials
with roots outside the unit disk appeared. From the infinite divisibility of
the above probability distribution and from numerical analysis of roots of the
terminating hypergeometric series we conjectured that the following density
function consisting of normed conjugate product of gamma functions is an
‘infinitely divisible density.

;1"(1 —1z)I'(1 +iz) =

I'(m+iz) , c

T | Emr e fmrn M @
(cf. [1. 6.1.25]) In this case the Gauss hypergeometric series appears in
general form and it is much more complicated than the case m = 1. We are
necessary to study the location of roots of the Gauss hypergeometric series
in showing the infinite divisibility of the probability distribution with density
(2). In this paper we will show that many Gauss hypergeometric series have
roots outside the unit disk.




2. ON THE GAUSS HYPERGEOMETRIC
SERIES

In what follows, suppose taht a; = m, az =m+1,...,a, =m+n—1 and
consider the following density function instead of (2),
c

T (2l 3
f (:I:) ( 3}2 + a2) ( )

where c is a normalized constant to be satisfied by the following

[_:f(a:)dz =1

The probability density function f(z) is an approximation of the above right
hand side of (2) in the sense of weak limit. Let us consider a characteristic
function of the density fucntion (3). It holds that

o0 ) c
o(t) = / e — dz

n . _
= my, exp(= a,lt|) , —00 < t < 00. (4)
=1 Iy (- a? + af)
If we set £ = exp(—|t|) then we obtain a polynomial such as the following
form,

%
#(t) = mc ' <z<l
2—2 a; Ty g (— a? +af)’ ’
and we have a complex polynomial,
aj—m

Po1(2) = (-1)" a1 (—ap + af) E (5)

10l i(—af +a 7

We will use the symbol g,(2) in place of P,(z). They are concretely as follows.
go(2) =1 (6)

n(e) =1+ 00, 1)
(-2)em) | ()(Dem)@n+1)2

om+3 - (2m+3)(2m+4) 2 (®)

g2(2) =1+

_ o, 9em) | (=8)(=2)@m)@2m +1) 2
8@ = I Tt  amr9em ) 2
(=3)(=2)(-1)(2m)(2m + 1)(2m +2) 2° ()
@m+4)@2m+5)2m+6) 3

+
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L (emem) (C)(ent DEm)En 1) 2
g"(z)“1+2m+n+1z 2m+n+1)2m+n+2) 2!
(=n)(=n+1)(=n + 2)(2m)(2m + 1)(2m + 2) 2
@m+n+1)2m+n+2)2m+n+3) 3
(-n)(—n+1)---(—n+k-1)2Cm)2m+ 1)(2m +2)---2m+ k- 1)

+ 2m+n+1)2m+n+2)2m+n+3).--(2m+n+k)

N (n)(=n+1)---(=2)(-1)(@m)(2m + 1)(2m + 2)--- (2m + n — 1) 2"
, 2m+n+1)2m+n+2)2m+n+3).--(2m + 2n) n!

= oF1(2m,—n;2m +n+1;2) (10)

Two trigonometirc sums are coming from the polynomials g,(z). Consider
the unit circle C: z=¢% (0< 0 < 2r) and

gn(€®) = 2Fi(2m,—n;2m +n+1;¢%). (11)

It is often convenient for us to treat the polynomial z™g,(2) in place of g,(2).
Let us set

u(m, n; 8) = Re €™ g, (e*), (12)
v(m,n;0) = Im e™? g, (e*). (13)
We have
(=n)(2m)

-9) =
w(m,n; 6) = cosml + 2m_l_n+1co:s('m—i-l)e

(=n)(—n + 1)(2m)(2m + 1) cos(m + 2)8
Cm+n+1)2m+n+2) = 2
(=n)(=n + 1)(—n + 2)(2m)(2m + 1)(2m + 2) cos(m + 3)6
(2m+n+1)2m+n+2)(2m +n+3) 3!
(=n)(=n+1)--- (—n+ k- 1)(2m)(2m + 1)2m +2)--- 2m+ k — 1)
2m+n+1)2m+n+2)2m+n+3)---Cm+n+k)
cos(m + k)@
k!

(—n)(-—n +1)---(=2)(-1)2m)(2m + 1)(2m + 2)--- (2m +n — 1)
2m+n+1)2m+n+2)(2m+n+3). .- (2m+ 2n)
cos(m + n)é
nl

(14)
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v(m,n;8) = sinmb + %sin(m +1)8

(—n)(—n + 1)(2m)(2m + 1) sin(m + 2)0

+ (2m+n+1)(2m+n+2) 2!
+ (=n)(=n + 1)(—n + 2)(2m)(2m + 1)(2m + 2) sin(m + 3)8 4o
2m+n+1)2m+n+2)(2m+n+3) 3!
+ (-n)(-n+1)---(-n+k-1)2m)2m +1)(2m +2).--2m+ k- 1)
@2m+n+1)2m+n+2)(2m+n+3)---(2m+n+k)
sin(m + k)6
k!
+ .-
+ (—n)(—n+1) - (=2)(-1)(2m)2m + 1)(2m + 2) - - - (2m + n — 1)
2m+n+1)Cm+n+2)(2m+n+3)---(2m + 2n)
sm(m;b ;i— n)f . (15)

It can be shown that u(m,n;8) and v(m,n;d) do not always make a Jordan
curve when 8 runs through the interval [—7/2,7/2]. See the figures after a
conjecture in the last section.

3. THE HYPERGEOMETRIC SERIES HAS
NOT ROOTS ON THE UNIT CIRCLE

It is known in [1] that the Gauss hypergeometric series is a solution of
a differential equation. That is, g,(2) satisfies the hypergeometric equation.

d? d
z(1 - z)E?gn(z) +(c—(a+b+ l)z)E;gn(z) — abgn(z) =0. (16)

In the above equation we assume a = 2m, b= —n and c =2m +n+ 1. We
are possibly able to make use of a property of two independent solutios of
the second order differential equations and obtain the following

Theorem 1. If 2 < m and 2 < n < 10 the Gauss hypergeometric series
gn(2) has not roots on the unit circle.

Proof. If 2™g,(z) has not roots on the unit circle then gn(2) has not roots
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on the unit circle. In order to show that 2™g,(2) has not roots on the unit
circle we will show that the following relation

7(0) = u(m,n; 0)v'(m,n; 8) — u'(m,n; 6)u(m,n; 8) = c(m,n)(1 — cos§)™!
(17)
holds, where c(m,n) is positive constant not depending on the variable 4.
If and only if 6y = 0, 27 then r(fp) = 0. But we have coskmfy = 1= z
and u(m,n;6p) = const - #(0) > 0 and so v'(m,n;6p) = 0 and we obtain an
identity : ’

s (CM)@m)(m + 1) (—n)(—n + 1)(2m)(2m + 1) (m + 2)
2m+n+1 2m+n+1)2m+n+2) 2
(=n)(=n+1)(-n + 2)(2m)(2m + 1)(2m + 2) (m + 3) N
(2m+n+1)(2m+n+2)2m +n + 3) 3!
(=n)(=n+1)- - (=n+k-1)(2m)2m+1)2m +2)--- 2m + k — 1)
@Cm+n+1)2m+n+2)2m+n+3)...2m+n+k)
(m+k) :
_..______k! + ...
(=n)(-n+1)---(=2)(-1)(2m)(2m + 1)(2m +2) .-+ (2m +n — 1)
@2m+n+1)2m+n+2)2m+n+3)---(2m + 2n)
(m; ") _o | (18)
for n =2,...,10.
The case of n = 2 : We have

+

+

u(m,2;0) = cosmb + (;—:%)(f—?) cos(m + 1)
(=2)(—1)(2m)(2m + 1) cos(m + 2)8

Y T emt3Em+ 9 3 (19)

and

) = & (=2)2m)
v(m,2;0) = sinmé + M3 sin(m + 1)
(=2)(—-1)(2m)(2m + 1) sin(m + 2)0'

@m+32m+4) 2

(20)
We see that

1‘(0) = Re{e—imogz(ef“)%%{e‘mogz(ew)}} | (21)
=2em) o (2)(=1)(2m)(2m + 1) cos20)

0
am+3 0T (2m + 3)(2m + 4) 2!

= {1+
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{ + 2)@m) ———=(m+1)cosf

2m+3
o ?;;iﬁgi?;i,??;;”<m+z>ﬁ’;?f}
R N s T U
{<———’i—l ‘?;f,:ﬁéi’z;’fr;; G

For simplicity, set y = cos# and substitute the following idenstities, cos26 =
2y> — 1 and sin26 =sinf - (2y), in the last memeber of (22). Then we see
that

3 2(2m)  2.1(2m)(2m + 1)(252 — 1)
r®) = {1- om+3° (2m+3)(2m+4)2' }
. { _2(2m)(m+1) | 2-1(2m)(2m + 1)(m + 2)(2° - 1)}
T T m+3 Y (2m + 3)(2m + 4)2
anf 22m)  2.1(2m)(2m + 1)(2y)
-yt T Bt s em 42 }
_ {_2(2m)(m +1)  2-1(2m)(@m + 1)(m + 2)(2y)}
2m + 3 2m + 3)(2m + 4)2!
_ 2(2m)(2m +1)(2m + 2) 9
N (2m + 3)(2m + 4) (1-) (23)

and we obtain (17) for the case n = 2.
The case of n = 3 : We have

u(m, 3;0) = cosmb + %—2 cos(m + 1)0

(—3)(—2)(2m)(2m + 1) cos(m + 2)6
(2m + 4)(2m + 5) 2!
(—3)(—2)(-1)(2m)(2m + 1)(2m + 2) cos(m + 3)8
(2m +5)(2m + 6)(2m + 7) 3!

+ (24)

and

v(m, 3;6) = sinmf + (—%)(f—z)—sin(m +1)8

(=3)(—2)(2m)(2m + 1) sin(m + 2)6
(2m + 4)(2m + 5) 2!
N (=3)(—2)(-1)(2m)(2m + 1)(2m + 2) sin(m + 3)8
(2m + 4)(2m + 5)(2m + 6) 3!

(25)
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We see that

r(0) = Rel{e™™gy(e )12 (6™ g(c )} } (2)
(-3)(2m (—3)(—2)(2m)(2m + 1) cos 26
= {1+ om+d 0t T omidemin 2
(=3)(—2)(-1)(2m)(2m + 1)(2m + 2) cos 30
(2m +5)(2m + 6)(2m + 7) 3!
. {m+ %%_%—TZ—)(m+ 1) cosf
((DEmEn 1) o o2
@m + 4)(2m + 5) 2
(=3)(=2)(=1)(2m)(2m + 1)(2m + 2) (m +3)%53¢
(2m+5)(2m + 6)(2m + 7) 3!
+ {%ﬁ—?—(m + 1) siné
(-3)(-2)(2m)(2m + 1) (m 2)sin 20
(2m + 4)(2m + 5) 2
(—=3)(—2)(-1)(2m)(2m + 1)(2m + 2) (m 3)§i_n§€
- (2m+5)(2m +6)(2m +7) 3!
. {(—3)(2m) sind + (—3)(—2)(2m)(2m + 1) sin 26
2m + 4 (2m +4)(2m + 5) 2!
(=3)(=2)(=1)(2m)(2m + 1)(2m + 2) sin 39
(2m + 5)(2m + 6)(2m + 7) 3!

+

(27)

Substituting the following idenstities, cos 28 = 2y*> — 1, cos 30 =413 — 3y and
sin 20 = sin - (2y), sin36 = sin 6 (4y% — 1) in the last memeber of (27), then

we see that

_ 32m)  3.22m)(2m+1)(2y% - 1)
@) = {1- 2m + 4 (2m + 4)(2m + 5)2!
_32m)(2m 4 1)(2m + 2) (49 — 3y)}
(2m + 4)(2m + 5)(2m + 6)3!
. {m _3(2m)(m +1) + 3:-2(2m)(2m + 1)(m + 2)(2y% — 1)
2m+4 (2m + 4)(2m + 5)2!
_3l(2m)(2m + 1)(2m + 2)(m + 3)(m + 3)(4y® — 3y)}
(2m + 4)(2m + 5)(2m + 6)3!
_3(2m) | 3-2(2m)(2m + 1)(2y)
2m+4  (2m +4)(2m 4+ 5)2!

+ (1-9%)
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31(2m)(2m + 1)(2m + 2)(4y> — 1) }

(2m + 4)(2m + 5)(2m + 6)3!
{_3(2m)(m +1)  3-202m)(2m + 1)(m + 2)(2y)
2m+4 (2m + 4)(2m + 5)2!

31(2m)(2m + 1)(2m + 2)(m + 3)(m + 3){4y* — 1}}
(2m + 4)(2m + 5)(2m + 6)3!
2%(2m)(2m + 1)(2m + 2)(2m + 3)
G T D@ r5omi e LY (28)

and we obtain (17) for the case n = 3. Repeating this method for the cases
n =4,5,6,...,10 we obtain the assertion of theorem. g.e.d.

4. THE HYPERGEOMETRIC SERIES HAS
ROOTS OUTSIDE THE UNIT DISK

If m = 1 it is known in [8] that the roots of gn(z) appears outside the

closed unit disk. If n = 1 the root of g,(z) is zy = m+1/m and if n = 2 the
two roots of go(z) are '

m+1(m+2 . 3(m+2))’ 2 = m+1(m+2_. 3(m+2))

21:2m+1 m+1 m T 2m+1\m+1 m

for all m € N. These roots are outside the unit disk. We obtain the following
computational result.

Conjecture: If2 < m < 20 and 3 < n < 17 the Gauss hypergeometric
series gn(2) has roots outside the closed unit disk.

By the following graphs which were drawn with the computer, we are able
to conclude that this conjecture is true. If the value of g,(2) is most near 0,
then z is a point on the unit circle since it can be seen from the curve that
the origin is outside the range of the hypergeometric series with the domain
of the unit disk and g,(2) is not equal to 0.
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