<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE GAUSS HYPERGEOMETRIC SERIES WITH ROOTS OUTSIDE THE UNIT DISK (Study on Differential Operators and Integral Operators in Univalent Function Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takano, Katsuo; Okazaki, Hiromitsu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1341: 102-111</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43476</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. INTRODUCTION

It is known in [9] that the normed conjugate product of gamma functions such as
\[\frac{2}{\pi} \Gamma(1 - ix)\Gamma(1 + ix) = \frac{2}{\pi} \frac{1}{\prod_{n=1}^{\infty} (1 + x^2/n^2)}, \] (1)
is an infinitely divisible density. In the process in showing the infinite divisibility of the probability distribution with density (1) a family of polynomials with roots outside the unit disk appeared. From the infinite divisibility of the above probability distribution and from numerical analysis of roots of the terminating hypergeometric series we conjectured that the following density function consisting of normed conjugate product of gamma functions is an infinitely divisible density.
\[c \left| \frac{\Gamma(m + ix)}{\Gamma(m)} \right|^2 = \frac{c}{\prod_{n=0}^{\infty} (1 + x^2/(m + n)^2)} \quad (m \in \mathbb{N}) \] (2)
(cf. [1. 6.1.25]) In this case the Gauss hypergeometric series appears in general form and it is much more complicated than the case \(m = 1 \). We are necessary to study the location of roots of the Gauss hypergeometric series in showing the infinite divisibility of the probability distribution with density (2). In this paper we will show that many Gauss hypergeometric series have roots outside the unit disk.
2. ON THE GAUSS HYPERGEOMETRIC SERIES

In what follows, suppose that \(a_1 = m, a_2 = m + 1, \ldots, a_n = m + n - 1 \) and consider the following density function instead of (2),

\[
f(x) = \frac{c}{\prod_{j=1}^{n}(x^2 + a_j^2)}
\]

(3)

where \(c \) is a normalized constant to be satisfied by the following

\[
\int_{-\infty}^{\infty} f(x) dx = 1.
\]

The probability density function \(f(x) \) is an approximation of the above right hand side of (2) in the sense of weak limit. Let us consider a characteristic function of the density function (3). It holds that

\[
\phi(t) = \int_{-\infty}^{\infty} e^{itx} \frac{c}{\prod_{j=1}^{n}(x^2 + a_j^2)} dx = \pi c \sum_{j=1}^{n} \frac{\exp(-a_j|t|)}{a_j \prod_{l=1, l \neq j}^{n}(-a_j^2 + a_l^2)}, -\infty < t < \infty.
\]

(4)

If we set \(x = \exp(-|t|) \) then we obtain a polynomial such as the following form,

\[
\phi(t) = \pi c \sum_{j=1}^{n} \frac{x^{a_j}}{a_j \prod_{l=1, l \neq j}^{n}(-a_j^2 + a_l^2)}, \quad 0 \leq x \leq 1,
\]

and we have a complex polynomial,

\[
P_{n-1}(z) = (-1)^{n-1} a_n \prod_{l=1}^{n-1}(-a_n^2 + a_l^2) \sum_{j=1}^{n} \frac{z^{a_j - m}}{a_j \prod_{l=1, l \neq j}^{n}(-a_j^2 + a_l^2)}.
\]

(5)

We will use the symbol \(g_n(z) \) in place of \(P_n(z) \). They are concretely as follows.

\[
g_0(z) = 1
\]

(6)

\[
g_1(z) = 1 + \frac{(-1)(2m)}{2m + 2} z
\]

(7)

\[
g_2(z) = 1 + \frac{(-2)(2m)}{2m + 3} z + \frac{(-2)(-1)(2m)(2m + 1)}{(2m + 3)(2m + 4)} \frac{z^2}{2!}
\]

(8)

\[
g_3(z) = 1 + \frac{(-3)(2m)}{2m + 4} z + \frac{(-3)(-2)(2m)(2m + 1)}{(2m + 4)(2m + 5)} \frac{z^2}{2!} + \frac{(-3)(-2)(-1)(2m)(2m + 1)(2m + 2)}{(2m + 4)(2m + 5)(2m + 6)} \frac{z^3}{3!}
\]

(9)
\[g_n(z) = 1 + \frac{(-n)(2m)}{2m + n + 1} z + \frac{(-n)(-n + 1)(2m)(2m + 1)}{(2m + n + 1)(2m + n + 2)} \frac{z^2}{2!} + \cdots \]
\[+ \frac{(-n)(-n + 1)(-n + 2)(2m)(2m + 1)(2m + 2)}{(2m + n + 1)(2m + n + 2)(2m + n + 3)} \frac{z^3}{3!} + \cdots \]
\[+ \frac{(-n)(-n + 1) \cdots (-n + k - 1)(2m)(2m + 1)(2m + 2) \cdots (2m + k - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3) \cdots (2m + n + k)} \frac{z^k}{k!} + \cdots \]
\[+ \frac{(-n)(-n + 1) \cdots (-2)(-1)(2m)(2m + 1)(2m + 2) \cdots (2m + n - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3) \cdots (2m + 2n)} \frac{z^n}{n!} \]
\[= 2F_1(2m, -n; 2m + n + 1; z) \]

Two trigonometrical sums are coming from the polynomials \(g_n(z) \). Consider the unit circle \(C: z = e^{i\theta} \) \((0 \leq \theta \leq 2\pi)\) and
\[g_n(e^{i\theta}) = 2F_1(2m, -n; 2m + n + 1; e^{i\theta}). \]

It is often convenient for us to treat the polynomial \(z^m g_n(z) \) in place of \(g_n(z) \). Let us set
\[u(m, n; \theta) = Re e^{im\theta} g_n(e^{i\theta}), \]
\[v(m, n; \theta) = Im e^{im\theta} g_n(e^{i\theta}). \]

We have
\[u(m, n; \theta) = \cos m\theta + \frac{(-n)(2m)}{2m + n + 1} \cos(m + 1)\theta \]
\[+ \frac{(-n)(-n + 1)(2m)(2m + 1)}{(2m + n + 1)(2m + n + 2)} \cos(m + 2)\theta \]
\[+ \frac{(-n)(-n + 1)(-n + 2)(2m)(2m + 1)(2m + 2)}{(2m + n + 1)(2m + n + 2)(2m + n + 3)} \cos(m + 3)\theta \]
\[+ \frac{(-n)(-n + 1) \cdots (-n + k - 1)(2m)(2m + 1)(2m + 2) \cdots (2m + k - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3) \cdots (2m + n + k)} \cos(m + k)\theta \]
\[\frac{k!}{k!} + \cdots \]
\[+ \frac{(-n)(-n + 1) \cdots (-2)(-1)(2m)(2m + 1)(2m + 2) \cdots (2m + n - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3) \cdots (2m + 2n)} \cos(m + n)\theta \]
\[\frac{n!}{n!} \]

\[\text{(14)} \]
\[v(m, n; \theta) = \sin m\theta + \frac{(-n)(2m)}{2m + n + 1} \sin(m + 1)\theta \]
\[+ \frac{(-n)(-n+1)(2m)(2m+1)\sin(m+2)\theta}{(2m+n+1)(2m+n+2)2!} \]
\[+ \frac{(-n)(-n+1)(-n+2)(2m)(2m+1)(2m+2)\sin(m+3)\theta}{(2m+n+1)(2m+n+2)(2m+n+3)3!} + \cdots \]
\[+ \frac{(-n)(-n+1)\cdots(-n+k-1)(2m)(2m+1)(2m+2)\cdots(2m+k-1)\sin(m+k)\theta}{(2m+n+1)(2m+n+2)(2m+n+3)\cdots(2m+n+k)k!} \]
\[+ \cdots \frac{(-n)(-n+1)\cdots(-2)(-1)(2m)(2m+1)(2m+2)\cdots(2m+n-1)\sin(m+n)\theta}{(2m+n+1)(2m+n+2)(2m+n+3)\cdots(2m+2n)n!}. \]

(15)

It can be shown that \(u(m, n; \theta) \) and \(v(m, n; \theta) \) do not always make a Jordan curve when \(\theta \) runs through the interval \([-\pi/2, \pi/2]\). See the figures after a conjecture in the last section.

3. THE HYPERGEOMETRIC SERIES HAS NOT ROOTS ON THE UNIT CIRCLE

It is known in [1] that the Gauss hypergeometric series is a solution of a differential equation. That is, \(g_n(z) \) satisfies the hypergeometric equation.

\[
z(1-z) \frac{d^2}{dz^2} g_n(z) + (c - (a + b + 1)z) \frac{d}{dz} g_n(z) - ab g_n(z) = 0. \]

(16)

In the above equation we assume \(a = 2m, b = -n \) and \(c = 2m + n + 1 \). We are possibly able to make use of a property of two independent solutions of the second order differential equations and obtain the following

Theorem 1. If \(2 \leq m \) and \(2 \leq n \leq 10 \) the Gauss hypergeometric series \(g_n(z) \) has not roots on the unit circle.

Proof. If \(z^m g_n(z) \) has not roots on the unit circle then \(g_n(z) \) has not roots
on the unit circle. In order to show that \(z^m g_n(z) \) has not roots on the unit circle we will show that the following relation

\[
r(\theta) = u(m, n; \theta)v'(m, n; \theta) - u'(m, n; \theta)v(m, n; \theta) = c(m, n)(1 - \cos \theta)^{n-1}
\]

holds, where \(c(m, n) \) is a positive constant not depending on the variable \(\theta \).

If and only if \(\theta_0 = 0, \ 2\pi \) then \(r(\theta_0) = 0 \). But we have \(\cos km\theta_0 = 1 = x \) and \(u(m, n; \theta_0) = \text{const} \cdot \phi(0) > 0 \) and so \(v'(m, n; \theta_0) = 0 \) and we obtain an identity

\[
m + \frac{(-n)(2m)(m + 1)}{2m + n + 1} + \frac{(-n)(-n + 1)(2m)(2m + 1)(m + 2)}{(2m + n + 1)(2m + n + 2)2!} \\
+ \frac{(-n)(-n + 1)(-n + 2)(2m)(2m + 1)(2m + 2)(m + 3)}{(2m + n + 1)(2m + n + 2)(2m + n + 3)3!} + \ldots \\
+ \frac{(-n)(-n + 1)\cdots(-n + k - 1)(2m)(2m + 1)(2m + 2)\cdots(2m + k - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3)\cdots(2m + n + k)} \\
\cdot \frac{(m + k)}{k!} + \ldots \\
+ \frac{(-n)(-n + 1)\cdots(-2)(-1)(2m)(2m + 1)(2m + 2)\cdots(2m + n - 1)}{(2m + n + 1)(2m + n + 2)(2m + n + 3)\cdots(2m + 2n)} \\
\cdot \frac{(m + n)}{n!} = 0
\]

for \(n = 2, \ldots, 10 \).

The case of \(n = 2 \): We have

\[
u(m, 2; \theta) = \cos m\theta + \frac{(-2)(2m)}{2m + 3} \cos(m + 1)\theta \\
+ \frac{(-2)(-1)(2m)(2m + 1) \cos(m + 2)\theta}{(2m + 3)(2m + 4)2!}
\]

and

\[
v(m, 2; \theta) = \sin m\theta + \frac{(-2)(2m)}{2m + 3} \sin(m + 1)\theta \\
+ \frac{(-2)(-1)(2m)(2m + 1) \sin(m + 2)\theta}{(2m + 3)(2m + 4)2!}
\]

We see that

\[
r(\theta) = \text{Re}\left\{ e^{-im\theta} g_2(e^{-i\theta}) \frac{1}{i} \frac{d}{d\theta} \{ e^{im\theta} g_2(e^{i\theta}) \} \right\}
\]

\[
= \left\{ 1 + \frac{(-2)(2m)}{2m + 3} \cos \theta + \frac{(-2)(-1)(2m)(2m + 1) \cos 2\theta}{(2m + 3)(2m + 4)2!} \right\}
\]
\[
\{ m + \frac{(-2)(2m)}{2m+3}(m+1) \cos \theta \\
+ \frac{(-2)(-1)(2m)(2m+1)}{(2m+3)(2m+4)}(m+2) \cos 2\theta \} \\
+ \{ \frac{(-2)(2m)}{2m+3} (m+1) \sin \theta + \frac{(-2)(-1)(2m)(2m+1)}{(2m+3)(2m+4)} (m+2) \sin 2\theta \} \\
\cdot \{ \frac{(-2)(2m)}{2m+3} \sin \theta + \frac{(-2)(-1)(2m)(2m+1)}{(2m+3)(2m+4)} \sin 2\theta \}.
\]

For simplicity, set \(y = \cos \theta \) and substitute the following identities, \(\cos 2\theta = 2y^2 - 1 \) and \(\sin 2\theta = \sin \theta \cdot (2y) \), in the last member of (22). Then we see that

\[
\begin{align*}
 r(\theta) &= \left\{ 1 - \frac{2(2m)}{2m+3} y + \frac{2 \cdot 1(2m)(2m+1)(2y^2 - 1)}{(2m+3)(2m+4)2!} \right\} \\
 &\cdot \left\{ m - \frac{2(2m)(m+1)}{2m+3} y + \frac{2 \cdot 1(2m)(2m+1)(m+2)(2y^2 - 1)}{(2m+3)(2m+4)2!} \right\} \\
 &+ (1 - y^2) \left\{ -\frac{2(2m)}{2m+3} + \frac{2 \cdot 1(2m)(2m+1)(2y)}{(2m+3)(2m+4)2!} \right\} \\
 &\cdot \left\{ -\frac{2(2m)(m+1)}{2m+3} + \frac{2 \cdot 1(2m)(2m+1)(m+2)(2y)}{(2m+3)(2m+4)2!} \right\} \\
 &= \frac{2(2m)(2m+1)(2m+2)}{(2m+3)(2m+4)} (1 - y^2)
\end{align*}
\]

and we obtain (17) for the case \(n = 2 \).

The case of \(n = 3 \): We have

\[
\begin{align*}
 u(m, 3; \theta) &= \cos m\theta + \frac{(-3)(2m)}{2m+4} \cos (m+1)\theta \\
 &+ \frac{(-3)(-2)(2m)(2m+1)}{(2m+4)(2m+5)} \cos (m+2)\theta \\
 &+ \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2)}{(2m+5)(2m+6)(2m+7)} \cos (m+3)\theta \\
 &= \frac{(-3)(2m)}{2m+4} \sin m\theta + \frac{(-3)(2m)(2m+1)}{(2m+4)(2m+5)} \sin (m+1)\theta \\
 &+ \frac{(-3)(-2)(2m)(2m+1)}{(2m+4)(2m+5)} \sin (m+2)\theta \\
 &+ \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2)}{(2m+4)(2m+5)(2m+6)} \sin (m+3)\theta.
\end{align*}
\]

and

\[
\begin{align*}
 v(m, 3; \theta) &= \sin m\theta + \frac{(-3)(2m)}{2m+4} \sin (m+1)\theta \\
 &+ \frac{(-3)(-2)(2m)(2m+1)}{(2m+4)(2m+5)} \sin (m+2)\theta \\
 &+ \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2)}{(2m+4)(2m+5)(2m+6)} \sin (m+3)\theta.
\end{align*}
\]
We see that

\[
\begin{align*}
 r(\theta) &= \text{Re}\left\{ e^{-im\theta} g_3(e^{-i\theta}) \frac{1}{i} \frac{d}{d\theta} e^{im\theta} g_3(e^{i\theta}) \right\} \\
 &= \left\{ 1 + \frac{(-3)(2m)}{2m+4} \cos \theta + \frac{(-3)(-2)(2m)(2m+1) \cos 2\theta}{(2m+4)(2m+5)2!} \\
 &\quad + \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2) \cos 3\theta}{(2m+5)(2m+6)(2m+7)3!} \right\} \\
 &\quad \cdot \left\{ m + \frac{(-3)(2m)}{2m+4} (m+1) \cos \theta \\
 &\quad + \frac{(-3)(-2)(2m)(2m+1) (m+2) \cos 2\theta}{(2m+4)(2m+5)2!} \\
 &\quad + \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2) (m+3) \cos 3\theta}{(2m+5)(2m+6)(2m+7)3!} \right\} \\
 &\quad + \left\{ \frac{(-3)(2m)}{2m+4} \sin \theta + \frac{(-3)(-2)(2m)(2m+1) \sin 2\theta}{(2m+4)(2m+5)2!} \\
 &\quad + \frac{(-3)(-2)(-1)(2m)(2m+1)(2m+2) \sin 3\theta}{(2m+5)(2m+6)(2m+7)3!} \right\} \\
 &\quad \cdot \left\{ m - \frac{3(2m)(m+1) \sin \theta}{2m+4} \sin \theta + \frac{3 \cdot 2(2m)(2m+1)(2m+2)(2m+3) \sin 2\theta}{(2m+4)(2m+5)2!} \\
 &\quad - \frac{3!(2m)(2m+1)(2m+2)(2m+3)(2m+4)3!}{(2m+4)(2m+5)(2m+6)(2m+7)} \right\}.
\end{align*}
\]

(26)

(27)

Substituting the following identities, \(\cos 2\theta = 2y^2 - 1 \), \(\cos 3\theta = 4y^3 - 3y \) and \(\sin 2\theta = \sin \theta \cdot (2y) \), \(\sin 3\theta = \sin \theta \cdot (4y^2 - 1) \) in the last member of (27), then we see that

\[
\begin{align*}
 r(\theta) &= \left\{ 1 - \frac{3(2m)}{2m+4} y + \frac{3 \cdot 2(2m)(2m+1)(2m+2)(2m+3)}{(2m+4)(2m+5)2!} \\
 &\quad \cdot \left\{ m - \frac{3(2m)(m+1) y + 3 \cdot 2(2m)(2m+1)(m+2)(2m+3)}{(2m+4)(2m+5)2!} - \frac{3!(2m)(2m+1)(2m+2)(2m+3)(2m+4)3!}{(2m+4)(2m+5)(2m+6)(2m+7)} \right\} \\
 &\quad + (1-y^2) \left\{ -\frac{3(2m)}{2m+4} + \frac{3 \cdot 2(2m)(2m+1)(2m+2)}{(2m+4)(2m+5)2!} \right\} \right\}.
\end{align*}
\]
\[\frac{3!(2m)(2m+1)(2m+2)(4y^2 - 1)}{(2m+4)(2m+5)(2m+6)3!} \} \\
\cdot \left\{ -\frac{3(2m)(m+1)}{2m+4} + \frac{3 \cdot 2(2m)(2m+1)(m+2)(2y)}{(2m+4)(2m+5)2!} \right\} \\
- \frac{3!(2m)(2m+1)(2m+2)(m+3)(m+3)(4y^2 - 1)}{(2m+4)(2m+5)(2m+6)3!} \} \\
= \frac{2^2(2m)(2m+1)(2m+2)(2m+3)}{(2m+4)(2m+5)(2m+6)}(1-y)^3 \] (28)

and we obtain (17) for the case \(n = 3 \). Repeating this method for the cases \(n = 4, 5, 6, ..., 10 \) we obtain the assertion of theorem. q.e.d.

4. **THE HYPERGEOMETRIC SERIES HAS ROOTS OUTSIDE THE UNIT DISK**

If \(m = 1 \) it is known in [8] that the roots of \(g_n(z) \) appears outside the closed unit disk. If \(n = 1 \) the root of \(g_1(z) \) is \(z_1 = m + 1/m \) and if \(n = 2 \) the two roots of \(g_2(z) \) are

\[z_1 = \frac{m + 1}{2m + 1} + \frac{m + 2}{m + 1} + i \left(\frac{\sqrt{3(m + 2)}}{m} \right), \quad z_2 = \frac{m + 1}{2m + 1} + \frac{m + 2}{m + 1} - i \left(\frac{\sqrt{3(m + 2)}}{m} \right) \]

for all \(m \in \mathbb{N} \). These roots are outside the unit disk. We obtain the following computational result.

Conjecture: If \(2 \leq m \leq 20 \) and \(3 \leq n \leq 17 \) the Gauss hypergeometric series \(g_n(z) \) has roots outside the closed unit disk.

By the following graphs which were drawn with the computer, we are able to conclude that this conjecture is true. If the value of \(g_n(z) \) is most near 0, then \(z \) is a point on the unit circle since it can be seen from the curve that the origin is outside the range of the hypergeometric series with the domain of the unit disk and \(g_n(z) \) is not equal to 0.
References

Katsuo TAKANO
Department of Mathematics
Faculty of Science, Ibaraki University
Mito-city, Ibaraki 310, JAPAN
e-mail:ktaka@mx.ibaraki.ac.jp

Hiromitsu OKAZAKI
Department of Mathematics
Faculty of Education, Kumamoto University
Kumamoto-city, Kumamoto 860, JAPAN
e-mail:okazaki@educ.kumamoto-u.ac.jp